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Lupus nephritis (LN) is an important driver of end-stage renal disease (ESRD). However,
few biomarkers are available for evaluating the diagnosis and prognosis of LN. For this
study, we downloaded microarray data of multiple LN expression profiles from the GEO
database. We used the WGCNA and R limma packages to identify LN hub genes and
differentially-expressed genes (DEGs). We identified nine co-DEGs in the intersection with
LN-related genes from the Genecards database. We found DEGs that are primarily
associated with immune-related functions and pathways (including with the
complement pathway, primary immunodeficiency markers, and MHC-like protein
complexes) through our comprehensive GSEA, GO, and KEGG enrichment analyses.
We used other LN and SLE validation datasets and discovered six explicitly expressed co-
DEGs: HLA-DMA, HLA-DPA1, HLA-DPB1, HLA-DRA, IL10RA, and IRF8 in the LN set;
ROC and Precision-Recall curve analyses revealed that these six genes have a good
diagnostic efficacy. The correlation analysis with prognostic data from the Nephroseq
database indicates that the differential expression of these co-DEGs is associated with a
low glomerular filtration rate in that cohort. Additionally, we used a single-cell LN database
of immune cells (for the first time) and discovered these co-DEGs to be predominantly
distributed in different types of macrophages and B cells. In conclusion, by integrating
multiple approaches for DEGs discovery, we identified six valuable biomarkers that are
strongly correlated with the diagnosis and prognosis of LN. These markers can help clarify
the pathogenesis and improve the clinical management of LN.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a common chronic autoimmune disease with multifactorial
causes. SLE affects mainly women of childbearing age and its progression and prognosis are highly
heterogeneous. The characteristics of SLE include the production of autoantibodies, the deposition of
immune complexes, and impairment of multiple organ systems (Kiriakidou and Ching, 2020). A
genetic predisposition, environmental factors, apoptosis abnormalities, infections, the use of certain
drugs, and sex hormone levels are factors thought to play a role in the pathogenesis of SLE (Durcan
et al., 2019). The kidney is the most commonly affected organ in patients with SLE, and renal biopsies
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show a nearly 100% involvement with approximately 45–85% of
patients presenting clinical symptoms of lupus nephritis (LN)
(Furie et al., 2020). The pathogenesis of LN includes a process of
kidney damage caused by immune complex deposition in renal
tissues (Anders et al., 2020) due to inflammatory cell recruitment,
cytokine production, oxidative damage, complement activation,
and abnormal fibroblast proliferation (Davidson et al., 2019).
Inflammation and fibrosis are critical for the development of LN
because they include the interaction of innate and adaptive
immune cells with resident renal cells. Although
glucocorticoids and immunosuppressants have been shown to
improve survival in patients with LN, the current treatment for
this disease remains unsatisfactory (Lech and Anders, 2013).
Additionally, the adverse effects of non-specific treatments
(including those against infection and renal failure) make a
more effective and targeted approach urgent. Thus, conducting
additional research into the etiology and pathogenesis of the
disease is necessary to further improve the survival of patients
with LN.

Bioinformatics is a branch of computer science that focuses on
the storage, retrieval, and analysis of biological data. The analysis
of massive amounts of data generated by biochips has provided
helpful information to help understand molecular disease
mechanisms (Wooller et al., 2017). Bioinformatics has been
widely used to obtain disease gene expression profiles, to
identify disease-related genes and drug targets, and to analyze
complex disease pathogenic mechanisms. Craciun et al., for
example, used RNA sequencing to characterize the renal
transcriptomic profile of specimens in a mouse model of folic
acid-induced nephropathy (Craciun et al., 2016). As a result, they
identified 10 molecules associated with renal fibrosis, with the
levels of CDH11, MRC1, and PLTP being significantly increased
in the urine of patients with chronic kidney disease. Köttgen et al.
used genetic and genotype-population analyses to obtain 67093
European genome-wide SNPs and then performed a GWAS
analysis to identify SNP mutations in UMOD, a susceptibility
gene for chronic kidney disease (Köttgen et al., 2010).
Additionally, GWAS studies have helped identify susceptibility
genes for diabetic nephropathy and IgA nephropathy (Salem
et al., 2019; Sallustio et al., 2019).

In this study, we used bioinformatics approaches to screen for
co-differentially-expressed genes (co-DEGs) in LN from multiple
LN dataset sources. The purpose of this study was to identify and
prioritize diagnostic and prognostic biomarkers for lupus
nephritis and to explore the potential pathways and immune
cells that are related to the pathogenesis of LN.

MATERIALS AND METHODS

Data Download
We searched the GEO database (https://www.ncbi.nlm.nih.gov/
geo/) (Barrett et al., 2013) for human SLE- and LN-related
expression profiles using the keywords “lupus nephritis” and
“systemic lupus erythematosus.” GSE32591 is based on the
GPL14663 platform, which includes 29 normal kidney biopsy
and 64 LN kidney biopsy samples (Berthier et al., 2012). We

extracted data from 17 normal blood samples and 29 peripheral
blood samples from SLE patients with lupus nephritis from the
GSE99967 dataset (based on the GPL21970 platform) for
subsequent analysis (Wither et al., 2018). In addition, we
extracted data from seven normal and 14 lupus nephritis
samples from the GSE112943 dataset (built on the GPL10558
platform). GSE81622 is based on the GPL10558 platform and
includes 25 normal and 15 SLE samples of patients without LN
(Zhu et al., 2016). The GSE60681 dataset based on the GPL13497
platform includes data from 11 patients with LN and from 37
control samples in stable phase (Magnusson et al., 2017). Finally,
we also searched the Genecards database (https://www.genecards.
org/) using the keyword “lupus nephritis” to identify differential
genes associated with LN. Figure 1 illustrates the specific
applications used and the workflow for all data in this study.

Data Pre-Processing
We used the Perl language to process the original matrix of
GSE32591, GSE99967, GSE112943, GSE81622, and GSE60681.
The probe IDs were converted to gene symbols, and empty probes
were removed based on the annotation information contained in
each platform file. When multiple probes matched the same gene,
the average expression value was used to determine the gene’s
expression level. The Perl script we used to pre-process is detailed
in Supplementary Data S1.

Weighted Gene Co-expression Network
Analysis
We used the R language package WGCNA (Langfelder and
Horvath, 2008) to evaluate the GSE99967 expression matrix. We
extracted the LN grouping, SLEDIA-2K score, age, and gender data
from the original set as input data for the WGCNA. The sample
clustering dendrogram was constructed with the hcluster function,
and the TOM matrix was constructed using the pickSoftThreshold
function to determine the optimal soft threshold.We used candidate
power values (1–30) to determine the average connectivity and
independence of various modules. Dynamic shear trees were used to
identify gene modules. Next, we measured the association between
modules and sample traits using gene significance values (GS) and
module membership values (MM), and keymodules were identified.
We set |GS| to >0.3 and |MM| to >0.7 to filter hub genes in
accordance with the official WGCNA guidelines and prior
application examples to obtain the most relevant genes to the
traits in the key module (Langfelder and Horvath, 2008; Tang
et al., 2018).

Identification of
Co-Differentially-Expressed Genes
The annotated GSE32591 expression matrix was analyzed for
differentially-expressed genes (DEGs) using the R limma package
(http://www.bioconductor.org/packages/release/bioc/html/
limma.html) (Smyth, 2004) setting the |logFC| to >0.75 and the
adjusted p-value to <0.05 as the criterion. The DEGs were then
intersected with the module hub genes identified using WGCNA
in the GSE99967 set and the LN-related differential genes used in
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the Genecards database to identify co-expressed LN differential
genes (co-DEGs) across multiple source datasets.

Gene Set Enrichment Analysis
We performed a gene set enrichment analysis (GSEA)
(Subramanian et al., 2005) using the KEGG and REACTOME
gene sets in the GSEA C2 dataset (c2.cp.kegg.v7.4.symbols.gmt
c2.cp.reactome.v7.4.symbols.gmt), the GO gene set in the C5
dataset (c5.go.bp.v7.4.symbols.gmt, c5.go.cc.v7.4.symbols.gmt,
c5.go.mf.v7.4.symbols.gmt), and the hallmarker gene set
h.all.v7.4.symbols.gmt). |NES| > 1, NOM p-value < 0.05, FDR
q-value < 0.25 were set as the screening criteria for enrichment

pathways. The results were visualized using the OmicShare
(http://www.omicshare.com) cloud platform tool.

Gene Ontology, Kyoto Encyclopedia of
Genes and Genomes Enrichment Analysis
and Protein-Protein Interaction Network
Construction
We performed gene ontology (GO) (Ashburner et al., 2000) and
Kyoto encyclopedia of genes and genomes (KEGG) (http://www.
genome.jp/kegg/) (Kanehisa and Goto, 2000) enrichment
analyses of co-DEGs using the ClueGo (Bindea et al., 2009)

FIGURE 1 | | Study workflow. Abbreviations: Systemic lupus erythematosus (SLE); Lupus nephritis (LN); Weighted gene co-expression network analysis (WGCNA);
Gene set enrichment analysis (GSEA); Differentially-expressed genes (DEGs); Gene ontology (GO); Kyoto encyclopedia of genes and genomes (KEGG); Protein-Protein
interaction (PPI); Receiver operating characteristic curve (ROC); Precision-Recall curve (PRC).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2021 | Volume 9 | Article 7172343

Chen et al. Identification Valuable Biomarkers of LN

http://www.omicshare.com/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


FIGURE 2 | | WGCNA analysis in GSE99968. (A) Sample-trait clustering heatmap. (B) Principal component analysis (PCA) shows the dimensionality reduction
distribution of control and LN sets. (C) Dynamic shearing tree merging similar module genes. (D) Module-trait correlation heatmap. (E) Module-module clustering tree
and correlation heatmap.
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and the Cluepedia (Bindea et al., 2013) plugins within the
CytoScape software (V 3.7.2, http://www.cytoscape.org/) (Cline
et al., 2007), setting p to <0.05 to screen the results and construct
the target-pathway network. The co-DEGs were submitted to the
STRING database (https://www.string-db.org/) (Szklarczyk et al.,
2015) to evaluate the interaction between co-DEGs from the
protein level; we obtained protein interaction network co-DEGs
by setting the confidence level to 0.4.

Validation of Co-Differentially-expressed
genes
We validated the expression levels of co-DEGs in theGSE112943 LN
expression profile dataset and the GSE81622 SLE expression profile
dataset without lupus nephritis to verify that co-DEGs have similar
expression profiles in different LN datasets and to verify whether the
co-DEGs were specific to LN. Significance tests were performed
using the Wilcoxon–Mann–Whitney test, with results visualized
using the ggplot2 package (Villanueva and Chen, 2019).We used the
PRROC package (Grau et al., 2015) to examine the co-DEGs’
diagnostic efficacy by performing Receiver Operating
Characteristic (ROC) and Precision-Recall curves (PRC) analyses
in the GSE60681 dataset. We validated the distribution of co-DEGs
in the published LN single-cell transcriptome sequencing database
(https://singlecell.broadinstitute.org/) to explore co-DEGs’
distribution in LN immune cells) (Arazi et al., 2019). Finally, we
analyzed the association between co-DEGs and clinical features
using the Nephroseq database (http://v5.nephroseq.org/) (Zheng
et al., 2017). A scatter plot was constructed after calculating the
Pearson correlation coefficient between co-DEGs and glomerular
filtration rates (GFRs). The Kruskal–Wallis test was used to test the
significance of co-DEGs and lupus pathological staging.

RESULTS

Weighted Gene Co-Expression Network
Analysis Identifies Key Lupus Nephritis
Genes
Genes of interest can be identified by combining gene and clinical
trait data and dividing the gene co-expression network of complex
biological processes into several highly correlated signature modules
that can detect the genes that perform critical functions. As shown by
the hierarchical clustering in Figure 2A, potential differences
between control and LN clusters exist between the different
clinical phenotypes. Our principal component analysis (PCA)
results show the dimensionality reduction distribution of control
and LN sets (Figure 2B). We used WGNCA to analyze the
GSE99967 expression matrix, with the shear height of the
function hcluster set to 100 and an outlier sample GSM266765
excluded (Supplementary Figure S1). We calculated the
pickSoftThreshold parameter to determine the optimal soft
threshold, which is 4 (Supplementary Figure S2). The dynamic
shear tree’s merged shear height was 0.25 for module identification
and module merging (Figure 2C). The minimum number of genes
in each networkmodule was set to 120, resulting in a total of 12 gene

modules. The most strongly correlated positive and negative
modules were chosen as critical modules for the pathogenesis of
the LN and SLEDAI-2K traits. Our results indicate that the blue
module was significantly negatively correlated with the LN trait,
while the cyan module was significantly positively correlated with
the SLEDAI-2K trait (Figures 2D,E). These two modules were
identified as critical modules, and when |GS|>0.3 and |MM|>0.7
were used to screen for essential genes, we found 2255 genes in the
LN trait and 1,388 genes in the SLEDAI-2K trait.

Gene Set Enrichment Analysis Enrichment
Analysis
We performed a comprehensive enrichment analysis of the
screened blue and cyan modules to discover the functions or
pathways associated with LN using the GSEA software and
exploring the functions and pathways of the key modules. Our
results show that the key modules were mainly enriched for GO
entries (including antimicrobial humoral response, defense
response to fungus), and KEGG pathways (including cell cycle,
P53 signaling pathway, systemic lupus erythematosus, and
primary immunodeficiency). The hallmark entries included
G2M checkpoint, mitotic spindle, and REACTOME pathways
including the RNA pol-I promoter opening and meiotic
recombination pathways (Supplementary Figure S3). Figures
3A,B present two GSEA pathways that are highly associated with
lupus pathogenesis. The complete GSEA enrichment results are
presented in Supplementary Table S1.

Identification of Differentially-Expressed
Genes and Screening of
Co-Differentially-Expressed Genes
In our screen for critical LN genes, we used a variety of methods to
obtain differentially-expressed LN genes. The differential genes in
GSE32591 were screened using the R limma package, setting the |
logFC| to >0.75 and the adjusted p-value to <0.05 as criteria, yielding
a total of 216 up-regulated and 63 down-regulated differential genes.
The volcano plot in Figure 3C depicts the distribution of DEGs.
Additionally, we entered the keyword “lupus nephritis” to search the
Genecards database for LN-related differential genes and found
1,248 genes (Supplementary Table S2). After using the
VennDiagram package (Chen and Boutros, 2011) to intersect the
critical genes of WGCNA, the DEGs of GSE32591, and the LN-
related genes in the Genecards database, we identified nine co-
expressed differential genes in multiple source datasets: TLR2, LTF,
IL10RA, IRF8, CD163, HLA-DMA, HLA-DRA, HLA-DPA1, and
HLA-DPB1 (Figure 3D).

Co-Differentially-Expressed Genes Gene
Ontology and Kyoto Encyclopedia of Genes
and Genomes Enrichment Analysis and
Protein-Protein Interaction Network
Construction
We deduced the specific functions and pathways of co-DEGs via
GO and KEGG enrichment analyses. Additionally, the PPI
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network results uncovered intrinsic co-DEG connections. The
ClueGo plugin in Cytoscape software can show a network of the
association between pathways and the enrichment of genes
among them. We imported co-DEGs into ClueGo for analysis,
and the results show that the main GO entries enriched by co-
DEGs included those for the MHC and MHC class II protein
complexes (Figure 4A). The KEGG pathways involved include
those for toxoplasmosis, inflammatory bowel disease, and others
(Figure 4B). Our STRING database results showed the protein
interaction associations of co-DEGs; we imported the results into
CytoScape software to calculate the degree values between the
networks (visualized using the cytoHubba plugin). IRF8 was the
hub gene in the network (Figure 4C).

Validation of Co-Differentially-Expressed
Genes in Other Lupus Nephritis and
Systemic lupus erythematosus Datasets
We used other LN and SLE expression profile data to validate the
expression of co-DEGs in different datasets. Our results indicated
that all co-DEGs were differentially expressed between control

and LN groups in the LN GSE112943 set (Figure 5A). The
expression levels of IRF8, IL10RA, HLA-DPA1, HLA-DPB1,
HLA-DMA, and HLA-DRA were not significantly different
between the control and SLE groups (without LN) in the
GSE81622 expression profile data. (Figure 5B). Therefore,
these six genes highly expressed in LN samples indicated that
they may serve as novel biomarkers for the disease.

Validation of Co-Differentially-Expressed
Genes’ Distribution in Single-Cell Datasets
Due to the close association between LN pathogenesis and
immune disorders, we investigated the distribution of co-
DEGs in immune cells using the published LN single-cell
sequencing database. We found that among the six co-DEGs
explicitly expressed in LN, HLA-related genes were overexpressed
in a variety of macrophage subtypes (inflammatory CD16+

macrophages, tissue-resident macrophages, phagocytic CD16+

macrophages) and B cells (naive B cells, ISG-high B cells,
activated B cells). However, IRF8 and IL10RA were expressed
at a relatively low level in macrophages and B cells. Additionally,

FIGURE 3 | | GSEA enrichment analysis and identification of co-DEGs. (A) KEGG dataset enrichment results. (B) HALLMARKER dataset enrichment results. (C)
Volcano map of GSE32591 differentially-expressed genes. (D) Venn diagram screening for co-differentially-expressed genes.
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FIGURE 4 | | Functional and pathway analysis of co-DEGs. (A)GO enrichment analysis of co-DEGs. (B)KEGG enrichment analysis of co-DEGs. (C) Protein-protein
interaction network of co-DEGs, color shades represent the degree size calculated with the cytoHubba plugin.
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three other co-DEGs, TLR2, LTF, and CD163, were only partially
expressed in macrophages (tissue-resident macrophages,
phagocytic CD16+ macrophages, M2-like CD16+macrophages)
(Figure 6A).

Diagnostic and Prognostic Analysis of Six
Co-Differentially-Expressed Genes
We further evaluated the six LN-specific co-DEGs as diagnostic
biomarkers by using ROC curves and a PRC analysis in a new LN
dataset GSE60681 to assess the sensitivity and specificity of co-
DEGs for LN diagnosis. As shown in Figure 6B, the ROC-AUC
values for all six genes were greater than 0.78 (IRF8, 0.919; HLA-
DPB1, 0.875;HLA-DRA, 0.882; IL10RA, 0.867;HLA-DMA, 0.803;
and HLA-DPA1, 0.781) suggesting that these six genes have good
diagnostic efficacy as LN markers. To obtain the minimum set of
genes with the greatest predictive power, we tested combinations
of the six genes; we found that the combination of IRF8, IL10RA,
HLA-DMA, and HLA-DPA1 had the greatest AUC value (0.94)
among the 15 tested combinations (Figure 6C). We also
performed a PRC analysis to compensate for the imbalance of
the selected samples, and our results showed that IRF8 (PR-AUC,
0.707) and IL10RA (PR-AUC, 0.605) retained a good diagnostic
sensitivity despite the unevenness of the samples (Figure 6D).
However, considering that the results of this method are affected
by the number of positive and negative samples, analysis using a
dataset with a different number of imbalanced samples would

allow for a more comprehensive assessment of the results (that is,
both ROC-AUC and PR-AUC showed good diagnostic efficacy
when analyzed using the GSE32591 dataset; please see
Supplementary Figures S4, S5). Thus, we believe that all six
genes have good diagnostic efficacy after combining the ROC and
PRC results from different datasets. To assess the association
between co-DEGs and LN prognostic factors, we validated the
association between co-DEGs and clinical traits in LN samples
from the Nephroseq database. Our findings indicate that a high
expression of different co-DEGs was correlated with a low
glomerular filtration rate in kidney disease samples (IL10RA,
HLA-DPA1, r � −0.490, p < 0.001; IRF8, HLA-DRA, r � −0.500,
p < 0.001; HLA-DPB1, r � −0.510, p < 0.001; HLA-DMA, r �
−0.480, p < 0.001) (Figure 7A). Further analysis revealed that
HLA-DPA1, IL10RA, and IRF8 were differentially expressed in
different pathological staging samples of lupus nephritis
(Figure 7B).

DISSCUSSION

We identified nine differential genes that were simultaneously
significant in datasets from multiple sources. Six of the genes are
LN-specific and are associated with a poor prognosis, and their
good diagnostic efficacy suggests that these genes can serve as
novel LN biomarkers. In addition, a comprehensive functional
and pathway enrichment approach revealed that the biological

FIGURE 5 | | Validation of co-DEGs in additional LN and SLE datasets. (A) Expression of co-DEGs in the additional LN dataset GSE112943. (B) Expression of co-
DEGs in the GSE81622 SLE dataset. (*p < 0.05, **p < 0.01, ***p < 0.001)
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mechanisms mediating LN development are interrelated. A
single DEG identification approach may miss some DEGs, but
not those that are significantly differentially expressed; thus,
the co-expressed genes identified in this study by integrating
multiple approaches may be critical for elucidating the
pathogenesis of LN.

The SLEDIA-2K score is a tool for assessing the severity of SLE
(Touma et al., 2018). Our WGCNA analysis revealed that the
critical modules derived from the LN trait are consistent with
those derived from the SLEDIA trait, indicating that the module

genes obtained are genuinely involved in the pathogenesis of LN.
LN is primarily caused by an antigen-antibody complex immune
response that results in large amounts of autoantibodies in the
intrarenal space (Qiu et al., 2019). These atypical antigen-
antibody reactions result in vascular damage, abnormal
complement activation, complex deposition, and an imbalance
of the oxidative/antioxidant and cytokine systems (Davidson
et al., 2019; Anders et al., 2020). Our results on the function
and pathways of critical gene enrichments confirm these
mechanisms (Supplementary Table S1).

FIGURE 6 | | Analysis of immune cell distribution and diagnostic efficacy of LN biomarkers (A). Expression of co-DEGs in different immune cell types in the single cell
LN sequencing database. (B) ROC curves of six differentially-expressed genes specific to LN in GSE60861. (C) ROC curve with optimal minimal gene set (IRF8, IL10RA,
HLA-DMA, HLA-DPA1) in GSE60861. (D) Precision-Recall Curves of six differentially-expressed genes specific to LN in GSE60861.
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Among the LN-specific DEGs identified, HLA-DMA, HLA-
DPA1,HLA-DPB1, andHLA-DRA all belong to the humanmajor
histocompatibility complex (MHC) and the HLA class II region,
alternatively referred to as the HLA-D region. Most genes in this
region are involved in immune responses and are classified into

several subregions (HLA-DR, DQ, DP, DO, and DM) (Wieczorek
et al., 2017; Wang et al., 2019). SLE has been linked to
polymorphisms in the HLA-D region that vary by race and
geographical region. Alleles at the same HLA locus, which
may differ structurally by a few nucleotides, can result in

FIGURE 7 | | Association of co-DEGs with LN clinical traits in the Nephroseq database. (A) Correlation analysis of six co-DEGs with the glomerular filtration rate of
patients (GFR). (B) Variations of six co-DEGs in samples from patients with different pathological staging of lupus nephritis. (*p < 0.05, ***p < 0.001).
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completely different disease susceptibility or resistance profiles
(Xue et al., 2018). This explains the differential expression of the
four HLA genes we identified in the SLE and LN datasets, with
genetic polymorphisms resulting in systemic and local
pathological changes (Xu et al., 2017). IRF8 is a member of
the interferon regulatory factor (IRF) family that regulates the
signaling pathway for Toll-like receptors (Salem et al., 2020).
Alternatively, IRF8 regulates Th cell differentiation, thereby
regulating immune cell development and inhibiting tumor cell
growth. Silencing the IRF8 gene in SLE mice has been suggested
to inhibit DC-mediated activation of NF-κβ or MAPKs, thereby
impairing type I interferon induction (Salem et al., 2020). IL-10 is
a multifunctional cytokine derived from multicellular organisms
that functions only when bound to a specific receptor (Moore
et al., 2001). IL-10 interacts with IL10RA and delivers excitatory
or inhibitory signals to cells via the JAK-STAT signal
transduction pathway (Geginat et al., 2019). Increased IL-10
expression in LN kidney tissues is associated with an increase
in macrophage infiltration and is highly correlated with the
severity of kidney damage (Saraiva et al., 2020). Additionally,
our results suggest that co-DEGs are differentially expressed
primarily in macrophages and B cells, a finding consistent
with the previous view that different types of macrophages
and B cells play more important roles in LN (through
complex interactions) than T cells (Arazi et al., 2019).

In summary, we identified several valuable biomarkers
associated with the diagnosis and prognosis of lupus nephritis.
These biomarkers are involved in a variety of different molecular
pathways expressed in various immune cells. However, additional
research is necessary to determine the association between
specific HLA alleles and LN because of the presence of HLA
gene polymorphisms. In addition, the lack of a definitive
experimental validation represents a limitation of our study.
We will focus on establishing more conclusive and robust
evidence for the validity of these identified co-DEGs as novel
biomarkers in subsequent studies.

CONCLUSION

We found nine differentially expressed genes closely associated
with LN diagnosis and prognosis by integrating multiple DEG
identification methods. Next, we identified six biomarkers that
may be LN-specific by expression validation in LN and SLE
datasets. A comprehensive gene enrichment analysis revealed that
the molecular mechanisms associated with LN pathogenesis are
linked to multiple critical immune pathways. Finally, we explored
the distribution of co-DEGs in LN immune cells by analyzing

data from a single-cell transcriptome sequencing database of LN.
Our prioritized biomarkers should be helpful for the diagnosis
and prognosis of LN and they should deepen our understanding
of its pathogenesis.
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