A RTl C L E W) Check for updates

Robust high-dimensional memory-augmented
neural networks

Geethan Karunaratne® 23, Manuel Schmuck'?3, Manuel Le Gallo® !, Giovanni Cherubini® !, Luca Benini?,

Abu Sebastian® "™ & Abbas Rahimi® 1>

Traditional neural networks require enormous amounts of data to build their complex
mappings during a slow training procedure that hinders their abilities for relearning and
adapting to new data. Memory-augmented neural networks enhance neural networks with an
explicit memory to overcome these issues. Access to this explicit memory, however, occurs
via soft read and write operations involving every individual memory entry, resulting in a
bottleneck when implemented using the conventional von Neumann computer architecture.
To overcome this bottleneck, we propose a robust architecture that employs a computational
memory unit as the explicit memory performing analog in-memory computation on high-
dimensional (HD) vectors, while closely matching 32-bit software-equivalent accuracy. This
is achieved by a content-based attention mechanism that represents unrelated items in the
computational memory with uncorrelated HD vectors, whose real-valued components can be
readily approximated by binary, or bipolar components. Experimental results demonstrate
the efficacy of our approach on few-shot image classification tasks on the Omniglot dataset
using more than 256,000 phase-change memory devices. Our approach effectively merges
the richness of deep neural network representations with HD computing that paves the way
for robust vector-symbolic manipulations applicable in reasoning, fusion, and compression.

TIBM Research - Zurich, Rischlikon, Switzerland. 2 Department of Information Technology and Electrical Engineering, ETH Zirich, Zurich, Switzerland. 3These
authors contributed equally: Geethan Karunaratne, Manuel Schmuck. ®email: ase@zurich.ibm.com; abr@zurich.ibm.com

| (2021)12:2468 | https://doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications 1

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22364-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22364-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22364-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22364-0&domain=pdf
http://orcid.org/0000-0002-0805-4789
http://orcid.org/0000-0002-0805-4789
http://orcid.org/0000-0002-0805-4789
http://orcid.org/0000-0002-0805-4789
http://orcid.org/0000-0002-0805-4789
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0003-1600-6151
http://orcid.org/0000-0002-0573-2919
http://orcid.org/0000-0002-0573-2919
http://orcid.org/0000-0002-0573-2919
http://orcid.org/0000-0002-0573-2919
http://orcid.org/0000-0002-0573-2919
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0003-3141-4970
http://orcid.org/0000-0003-3141-4970
http://orcid.org/0000-0003-3141-4970
http://orcid.org/0000-0003-3141-4970
http://orcid.org/0000-0003-3141-4970
mailto:ase@zurich.ibm.com
mailto:abr@zurich.ibm.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

ecurrent neural networks are able to learn and perform

transformations of data over extended periods of time that

make them Turing-Complete!. However, the intrinsic
memory of a recurrent neural network is stored in the vector of
hidden activations and this could lead to catastrophic forgetting?.
Moreover, the number of weights and hence the computational
cost grows exponentially with memory size. To overcome this
limitation, several memory-augmented neural network (MANN)
architectures were proposed in recent years’~ that separate the
information processing from memory storage.

What the MANN architectures have in common is a controller,
which is a recurrent or feedforward neural network model, fol-
lowed by a structured memory as an explicit memory. The con-
troller can write to, and read from the explicit memory that is
implemented as a content addressable memory (CAM), also
called associative memory in many architectures»*8. Therefore,
new information can be offloaded to the explicit memory, where
it does not endanger the previously learned information to be
overwritten subject to its memory capacity. This feature enables
one-/few-shot learning, where new concepts can be rapidly
assimilated from a few training examples of never-seen-before
classes to be written in the explicit memory®. The CAM in
MANN architectures is composed of a key memory (for storing
and comparing learned patterns) and a value memory (for storing
labels) that are jointly referred to as a key-value memory®.

The entries in the key memory are not accessed by stating a
discrete address, but by comparing a query from the controller’s
side with all entries. This means that access to the key memory
occurs via soft read and write operations, which involve every
individual memory entry instead of a single discrete entry.
Between the controller and the key memory there is a content-
based attention mechanism that computes a similarity score for
each memory entry with respect to a given query, followed by
sharpening and normalization functions. The resulting attention
vector serves to read out the value memory?. This may lead to
extremely memory intensive operations contributing to 80% of
execution time?, quickly forming a bottleneck when implemented
in conventional von Neumann architectures (e.g., CPUs and
GPUs), especially for tasks demanding thousands to millions of
memory entriesb!0. Moreover, complementary metal-oxide-
semiconductor (CMOS) implementation of key memories is
affected by leakage, area, and volatility issues, limiting their
capabilities for lifelong learning!!.

One promising alternative is to realize a key memory with non-
volatile memory (NVM) devices that can also serve as compu-
tational memory to efficiently execute such memory intensive
operations!®!1. Initial simulation results have suggested key
memory architectures using NVM devices such as spintronic
devices!9, resistive random access memory (RRAM)!2, and fer-
roelectric field-effect transistors (FeFETs)!3. To map a vector
component in the key memory, devices have either been simu-
lated with high multibit precision!?, or multiple ternary CAM
(TCAM) cells by using intermediate mapping functions and
encoding to get a binary code!>!4. Besides these simulation
results, a recent prototype has demonstrated the use of a very
small scale 2 x 2 TCAM array based on FeFETs!!.

However, the use of TCAM limits such architectures in many
aspects. First, TCAM arrays find an exact match between the
query vector and the key memory entries, or in the best case can
compute the degree of match up to very few bits (i.e., limited-
precision Hamming distance)!>15, which fundamentally restricts
the precision of the search. Secondly, a TCAM cannot support
widely used metrics such as cosine distance. Thirdly, a TCAM is
mainly used for binary classification tasks!®, because it only finds
the first-nearest neighbor (i.e., the minimum Hamming distance),
which degrades its performance for few-shot learning, where the

similarities of a set of intra-class memory entries should be
combined. Furthermore, a key challenge associated with using
NVM devices and in-memory computing is the low computa-
tional precision resulting from the intrinsic randomness and
device variability!”. Hence there is need for learned representa-
tions that can be systematically transformed to robust bipolar/
binary vectors at the interface of controller and key memory, for
efficient inference as well as operation at scale on NVM-based
hardware.

One viable option is to exploit robust binary vector repre-
sentations in the key memory as used in high-dimensional (HD)
computing!8, also known as vector-symbolic architectures!®. This
emerging computing paradigm postulates the generation,
manipulation, and comparison of symbols represented by wide
vectors that take inspiration from attributes of brain circuits
including high-dimensionality and fully distributed holographic
representation. When the dimensionality is in the thousands,
(pseudo)randomly generated vectors are virtually orthogonal to
each other with very high probability??. This leads to inherently
robust and efficient behavior tailor-made for RRAM2! and phase-
change memory (PCM)?2 devices operating at low signal-to-noise
ratio conditions. Further, the disentanglement of information
encoding and memory storage is at the core of HD computing
that facilitates rapid and lifelong learning!8-20. According to this
paradigm, for a given classification task, generation and manip-
ulation of the vectors are done in an encoder designed using HD
algebraic operations to correspond closely with the task of
interest, whereas storage and comparison of the vectors is done
with an associative memory!8. Instead, in this work, we provide a
methodology to substitute the process of designing a customized
encoder with an end-to-end training of a deep neural network
such that it can be coupled, as a controller, with a robust asso-
ciative memory.

In the proposed algorithmic-hardware codesign approach, first,
we propose a differentiable MANN architecture including a deep
neural network controller that is adapted to conform with the HD
computing paradigm for generating robust vectors to interface
with the key memory. More specifically, a novel attention
mechanism guides the powerful representation capabilities of our
controller to store unrelated items in the key memory as uncor-
related HD vectors. Secondly, we propose approximations and
transformations to instantiate a hardware-friendly architecture
from our differentiable architecture for solving few-shot learning
problems with a bipolar/binary key memory implemented as a
computational memory. Finally, we verify the integrated infer-
ence functionality of the architecture through large-scale mixed
hardware/software experiments, in which for the first time the
largest Omniglot problem (100-way 5-shot) is established, and
efficiently mapped on 256,000 PCM devices performing analog
in-memory computation on 512-bit vectors.

Results

Proposed MANN architecture using in-memory computing. In
the MANN architectures, the key-value memory remains mostly
independent of the task and input type, while the controller
should be fitted to the task and especially the input type. Con-
volutional neural networks (CNNs) are excellent controllers for
few-shot Omniglot?® image classification task (see Methods) that
has established itself as the core benchmark for the
MANNs® 111314 We have chosen a 5-layer CNN controller that
provides an embedding function to map the input image to an
internal feature representation (see Methods). Our central con-
tribution is to direct the CNN controller to encode images in a
way that combines the richness of deep neural network repre-
sentations with robust vector-symbolic manipulations of HD

2 | (2021)12:2468 | https.//doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

Support se

‘ Controller |

Real-valued HD vector

HD binary/bipolar key memory

(N NEN BN N EEN NN
EEE B N =N

HD key memory vector space

Quasi-orthogonal vectors .

Backpropagation

Directing HD vector-symbolic
representations

attention mechanism

N

‘ sharpening

" regularization
function “

Dimensionality-preserving
transformations

Output
prediction

Fig. 1 Proposed methodology to merge deep network representations with vector-symbolic representations in high-dimensional (HD) computing. The
goal is to guide a deep network controller to conform with HD computing by assigning quasi-orthogonal HD vectors to unrelated objects in the key
memory. The HD vectors are then directed by adjusting the controller weights during meta-learning in such a way that the query vector gets near the set of
correct class vectors, and the vectors from different classes move away from each other to produce mutually quasi-orthogonal vectors in the key memory
(demonstrated in a 3D space for sake of visualization). This is achieved by using proper similarity and sharpening functions, regularizer, and expanding the
vector dimensionality at the interface of controller and key memory. Then, the resulting real-valued representations can be readily transformed to dense
binary/bipolar HD vectors for efficient and robust inference in a key memory using in-memory computing.

computing. Fig. 1 illustrates the steps in our methodology to
achieve this goal, that is, having the CNN controller to assign
quasi-orthogonal HD dense binary vectors to unrelated items in
the key memory. In the first step, our methodology defines the
proper choice of an attention mechanism, i.e., similarity metric
and sharpening function, to enforce quasi-orthogonality (see
Section “A new attention mechanism appropriate for HD geo-
metry”). Next step is tuning the dimensionality of HD vectors
between the last layer of CNN controller and the key memory.
Finally, to ease inference, a set of transformation and approx-
imation methods convert the real-valued HD vectors to the dense
binary vectors (see Sections “Bipolar key memory: transforming
real-valued HD vectors to bipolar” and “Binary key memory:
transforming bipolar HD vectors to binary”). Or even more
accurately, such binary vectors can be directly learned by applying
our proposed regularization term (see Supplementary Note 1).
Our proposed MANN architecture is schematically depicted in
Fig. 2. In the learning phase, our methodology trains the CNN
controller to encode complex image inputs to vectors conforming
with the HD computing properties. These properties encourage
assigning dissimilar images to quasi-orthogonal (i.e., uncorre-
lated) HD vectors that can be stored, or compared with vectors
already stored in an associative memory as the key-value memory
with extreme robustness. Our methodology enables both
controller and key-value memory to be optimized with the
gradient descent methods by using differentiable similarity and
sharpening functions at the interface of memory and controller. It
also uses an episodic training procedure for the CNN by solving
various few-shot problem sets that gradually enhance the quality
of the mapping by exploiting classification errors (see the learning
phase in Fig. 2). Those errors are represented as a loss, which is
propagated all the way back to the controller, whose parameters
are then updated to counter this loss and to reach maturity; a
regularizer can be considered to closely tune the desired
distribution of HD vectors. In this supervised step, the controller

is updated by learning from its own mistakes (also referred to as
meta-learning). The controller finally learns to discern different
image classes, mapping them far away from each other in the HD
feature space.

The inference phase comprises both giving the model a few
examples—that are mutually exclusive from the classes that were
presented during the learning phase—to learn from, and inferring
an answer with respect to those examples. During this phase,
when a never-seen-before image is encountered, the controller
quickly encodes and updates the key-value memory contents, that
can be later retrieved for classification. This avoids relearning
controller parameters through otherwise expensive and iterative
training (see Supplementary Note 2). While our architecture is
kept continuous to avoid violating the differentiability during the
learning phase, it is simplified for the inference phase by applying
transformations and approximations to derive a hardware-
friendly version. These transformations directly modify the real-
valued HD vectors to nearly equiprobable binary or bipolar HD
vectors to be used in the key memory with memristive devices.
The approximations further simplify the similarity and sharpen-
ing functions for inference (see the inference phase in Fig. 2). As a
result, the similarity search is efficiently computed as the dot
product by exploiting Kirchhoffs circuit laws in O(1) time
complexity using the memristive devices that are assembled in a
crossbar array. This combination of binary/bipolar key memory
and the mature controller in our architecture efficiently handles
few-shot learning and classification of incoming unseen examples
on the fly without the need for fine tuning the controller weights.
For more details about the learning and inference phases see
Supplementary Note 2.

A new attention mechanism appropriate for HD geometry. HD
computing starts by assigning a set of random HD vectors to
represent unrelated items, e.g., different letters of an alphabet!S.

| (2021)12:2468 | https://doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-021-22364-0

Learning Phase

Controller (l Real-valued Key Memory ™\

10/

E

Query Image Sets (i I/ Si?r?islgliety
- High Dimensional
=HpT e"’& Support Vectors F —
S| Jar] < |
Q(c>°\ (Bipolar/Binary Key Memorﬁ
Support Image Sets
REREEEKIR
D, P / — = Support
Inference Phase ‘&% 4 ‘%' ‘&% Sharpening AL Labels
oo Dot-product :
Query ImagesN Similarity Normalizatign l HHHHHH
D L~
AR IRKKKEKEK 1 L
e ERI Rz R 1

Support Images

N

Approximate Sharpenin

llll=

Support Labels

Load
Support

Evaluate Back-
Query Propagatio

Learning Phase Value Memory

Value Memory

Prediction
Probabilities

Ground Truth

Argm.

Load
Support

Evaluate
Query

Inference Phase

‘ a Predicted Class

Fig. 2 Proposed robust HD MANN architecture. The learning phase of the proposed MANN involves a CNN controller which first propagates images in
the support set to generate the HD support vector representations that are stored in the real-valued key memory. The corresponding support labels are
stored in the value memory. For the evaluation, the controller propagates the query images to produce the HD vectors for the query. A cosine similarity
module then compares the query vector with each of the support vectors stored in the real-valued key memory. Subsequently, the resulting similarity
scores are subject to a sharpening function, normalization, and weighted sum operations with the value memory to produce prediction probabilities. The
prediction probabilities are compared against the ground truth labels to generate an error which is backpropagated through the network to update the w
eights of the controller (see pink arrows). This episodic training process is repeated across batches of support and query images from different problem
sets until the controller reaches maturity. In the inference phase, we use a hardware-friendly version of our architecture by simplifying HD vector
representations, similarity, normalization, and sharpening functions. The mature controller is employed along with an activation function that readily clips
the real-valued vectors to obtain bipolar/binary vectors at the output of controller. The modified bipolar or binary support vectors are stored in the key
memristive crossbar array (i.e., bipolar/binary key memory). Similarly, when the query image is fed through the mature controller, its HD bipolar or
binary representation, as a query vector, is used to obtain similarity scores against the stored support vectors in the memristive crossbar array. The
bipolar/binary key memristive crossbar approximates cosine similarities between a query and all the support vectors with the constant-scaled dot products
in O(1) by employing in-memory computing. The results are weighted and summed by the support labels (in the value memory) after an approximate
sharpening step and the maximum response index is output as the prediction.

The HD vector representation can be of many kinds (e.g., real and
complex?4, bipolar?®, or binary2%); however, the key properties
are shared independent of the representation, and serve as a
robust computational infrastructure!821, In HD space, two ran-
domly chosen vectors are quasi-orthogonal with very high
probability, which has significant consequences for robust
implementation. For instance, when unrelated items are repre-
sented by quasi-orthogonal 10,000-bit vectors, more than a third
of the bits of a vector can be flipped by randomness, device
variations, and noise, and the faulty vector can still be identified
with the correct one, as it is closer to the original error-free vector
than to any unrelated vector chosen so far, with near certainty!8.
It is therefore highly desirable for a MANN controller to map
samples from different classes, which should be dissimilar in the
input space, to quasi-orthogonal vectors in the HD feature space.
Besides this inherent robustness, finding quasi-orthogonal vectors
in high dimensions is easy and incremental to accommodate
unfamiliar items!8. In the following, we define conditions under
which an attention function achieves this goal.

Let o be a similarity metric (e.g., cosine similarity) and € a
sharpening function. Then o is the attention function

cw@K) o aK
7 ea(@ k) Y TR

where q is a query vector, K; is a support vector in the key
memory, m is the number of ways (i.e., classes to distinguish),
and 7 is the number of shots (i.e., samples per class to learn
from). The key-value memory contains as many support vectors
as mn. The attention function performs the (cosine) similarity
comparison across the support vectors in the key memory,
followed by sharpening and normalization to compute its output
as an attention vector w =0 (q, K) (see Methods). The cosine
similarity has a domain and range of a:RYxRY — [-1,1],
where o (x,y)=1 means x and y are perfectly similar or
correlated, & (x,y) =0 means they are perfectly orthogonal or
uncorrelated, and & (x,y) = —1 means they are perfectly antic-
orrelated. From the point of view of attention, two nearly

0(‘]7 Kz‘) = (1)

4 NATURE COMMUNICATIONS | (2021)12:2468 | https://doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

dissimilar (i.e., uncorrelated) vectors should lead to a focus closely
to 0. Therefore, ¢ should satisfy the following condition:

e(a(x,y)) =0 when a(x,y)~0. (2)

Equation (2) ensures that there is no focus between a query
vector and a dissimilar support vector. The sharpening function
should also satisfy the following inequalities:

e(a)20 (3)

€(a;) <e(a,) when a;<a, and oaj,a,>0 (4)

e(a;) 2 e(ay) when a;<a, and a,0,<0, (5)

Equation (3) implies non-negative weights in the attention
vectors, whereas Egs. (4) and (5) imply a strictly monotonically
decreasing function on the negative axis and a strictly mono-
tonically increasing function on the positive axis. Among a class
of sharpening functions that can meet the above-mentioned

conditions, we propose a soft absolute (softabs) function:

_ 1 1 6)
(o) = 1 4 e~ (B(a=05)) + 1 + e (B(—a—05)) (

where =10, as a stiffness parameter, which leads to €(0) =
0.0134. Supplementary note 3 shows the proof for softabs as a
sharpening function that meets the optimality conditions.

As a common attention function, in various works34638 the
cosine similarity is followed by a softmax operation that uses an
exponential function as sharpening function (e(x) = e%). How-
ever, the exponential sharpening function does not satisfy the
above-mentioned conditions, and leads to undesired conse-
quences related to the cost function optimization. In fact, when
a query vector q belongs to a different class than some support
vector K; and they are quasi-orthogonal to each other, then
nevertheless w; > 0, where w; = 0 (q, K;). This eventually leads to a
probability p;>0 for class j of support vector i. During model
training, a well chosen cost function will penalize probabilities
larger than zero for classes different from the query’s class, and
thus force the probability towards 0. This also forces e* towards 0,
or o towards —eo. However, « only has a range of [—1, 1] and the
optimization algorithm will therefore try to make « as small as
possible, corresponding to anticorrelation instead of uncorrela-
tion. Consequently the softmax function unnecessarily leads to
anticorrelated instead of uncorrelated vectors, as the controller is
forced to map samples of different classes to those vectors.

The proposed softabs sharpening function leads to uncorre-
lated vectors for different classes, as they would have been
randomly drawn from the HD space to robustly represent
unrelated items (see Fig. 3a, b). It can be seen that the learned
representations by softabs bring the support vectors of the same
class close together in the HD space, while pushing the support
vectors of different classes apart. This vector assignment provides
higher accuracy, and retains robustness even when the HD real
vectors are transformed to bipolar. Compared to the softmax, the
softabs sharpening function effectively improves the separation
margin between inter-class and intra-class similarity distributions
(Fig. 3¢, d), and therefore achieves up to 5.0%, 9.6%, 19.6% higher
accuracy in 5-way 1-shot, 20-way 5-shot, and 100-way 5-shot
problems, respectively (Fig. 3). By using this new sharpening
function, our architecture not only makes the end-to-end training
with backpropagation possible, but also learns the HD vectors
with the proper direction. In the next sections, we describe how
this architecture can be simplified, approximated, and trans-
formed to a hardware-friendly architecture optimized for efficient
and robust inference on memristive devices.

Bipolar key memory: transforming real-valued HD vectors to
bipolar. A key memory trained with real-valued support vectors
results in two considerable issues for realization in memristive
crossbars. First, the representation of real numbers demands
analog storage capability. This significantly increases the
requirements on the NVM device, and may require a large
number of devices to represent a single vector component. Sec-
ond, a memristive crossbar which computes a matrix-vector
product in a single cycle is not directly applicable for computing
cosine similarities that are at the very core of the MANN archi-
tectures. For a single query, the similarities between the query
vector q and all the support vectors in the key memory needs to
be calculated, which involves computing the norm of mn + 1
vectors. An approximation strives to use the absolute-value norm
instead of the square root!0, however it still involves a vector-
dependent scaling of each similarity metric requiring additional
circuitry to be included in the computational memory.

HD computing offers the tools and the robustness to counter-
act the aforementioned shortcomings of the real number
representation by relying on dense bipolar or binary representa-
tion. As common properties in these dense representations, the
vector components can occupy only two states, and pseudo-
randomness leads to approximately equally likely occupied states
(i.e., equiprobability). We propose simple and dimensionality-
preserving transformations to directly modify real-valued vectors
to dense bipolar and dense binary vectors. This is in contrast to
prior work! L1314 that involves additional quantization, mapping,
and coding schemes. In the following, we describe how our
systematic transition first transforms the real-valued HD vectors
to bipolar. Subsequently, we describe how the resulting bipolar
HD vectors can be further transformed to binary vectors.

The output of the controller is a d-dimensional real vector as
described in Section “A new attention mechanism appropriate for
HD geometry”. During the training phase, the real-valued vectors
are directly written to the key memory. However, during the
inference phase, the support vector components generated by the
mature controller can be clipped by applying an activation
function as shown in Fig. 2. This function is the sign function for
bipolar representations. The key memory then stores the bipolar
components. Afterwards, the query vectors that are generated by
the controller also undergo the same component transformation,
to generate a bipolar query vector during the inference phase. The
reliability of this transformation derives from the fact that
clipping approximately preserves the direction of HD vectors?’.

The main benefit of the bipolar representation is that every
two-state component is mapped on two binary devices (see
Supplementary Fig. 1). Further, bipolar vectors with the same
dimensionality always have the same norm: | x ||=Vd, x €
{-1, +1}d7 where X denotes a bipolar vector. This renders the
cosine similarity between two vectors as a simple, constant-scaled
dot product, and turns the comparison between a query and all
support vectors to a single matrix-vector operation:

a-b (7)

(®)

As a result, the normalization in the cosine similarity (i.e., the
product of norms in the denominator) can be removed during
inference. The requirement to normalize the attention vectors is
also removed (see the inference phase in Fig. 2).

Binary key memory: transforming bipolar HD vectors to
binary. To obtain an even simpler binary representation for the

| (2021)12:2468 | https://doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-021-22364-0

a Softmax b Softabs
1 - - 1 HER S
2 L,
0.8 €
4]
0.6 5
y oL
> ! = 1% shot =7
= z 2M shot s
8 02 = 3 shot 2 9T
1S hvt 4 shot e =
%) 0) 5% shot S 10
o < =R
21 % phcs
13
© 04 B 8 44
SO Oas”
06 16
1704 s LG R CEE R T
-0.8 18__ ______
19]
I T o pr o 2
1234567 891011121314151617 181920 123456 7.8 91011121314151617 181920
Class Index (way) Class Index (way)
C 17 d
——intra class similarity
0.8 0.8+ inter class similarity
Z 06 h ' 206
= =
£ i s LT T TR RIOR
£ 04 £ 04
(7] %)
2 02 2 oz
2 2
(S o g
0.2 0.2 intra class 10th-90th percentile range
‘ inter class 10th-90th percentile range
0.4 L L L .04 L T T T ,
0 200 400 600 800 1000 0 200 400 600 800 1000
testing episode(sorted) testing episode(sorted)
e
e — 973 B 980 T
= 1 1 I
:. E= ‘
> 90 - | 88.4 | | B
© I | |
3 1 1
8 80 |- .
<
c
o
= 70 - -
e I
2 [_Isoftabs I
s 60 | —
5 I softmax |
|
50 L 1 i
5-way 1-shot 20-way 5-shot 100-way 5-shot

Fig. 3 The role of sharpening functions. The pairwise cosine similarity matrix from the support set of a single testing episode of 20-way 5-shot problem
learned using the softmax (a) and the softabs (b) as the sharpening functions. Intra-class and inter-class cosine similarity spread across 1000 testing

episodes in 20-way 5-shot problem with the softmax (¢) and the softabs (d) as the sharpening functions (the episodes are sorted by the intra-class to
inter-class cosine similarity ratio highest to lowest). In the case of the softmax sharpening function, the margin between 10th percentile of intra-class

similarity and 90th percentile of inter-class similarity is reduced, and sometimes becomes even negative due to overlapping distributions. In contrast, the
softabs function leads to a relatively larger margin separation (1.75x, on average) without causing any overlap. The average margin for the softabs is 0.1371,
compared with 0.0781 for the softmax. (e) Classification accuracy in the form of a box plot from 1000 few-shot episodes, where each episode consists of a
batch of 32 queries. The softabs sharpening function achieves better overall accuracy and less variations across episodes for all few-shot problems. The

average accuracy is depicted in each case.

key memory, we used the following simple linear equation to
transform the bipolar vectors into binary vectors

x=2G+D) ©)

where X denotes the binary vector. Unlike the bipolar vectors, the
binary vectors do not necessarily maintain a constant norm
affecting the simplicity of the cosine similarity in Eq. (7). How-
ever, the HD property of pseudo-randomness comes to the res-
cue. By initializing the controller’s weights randomly, and
expanding the vector dimensionality, we have observed that the
vectors at the output of the controller exhibit the HD computing
property of pseudo-randomness. In case x has a near equal
number of —1 and +1-components, after transformation with
Eq. (9), this also holds for X in terms of the number of 0- and

1-components, leading to || X ||~ \/g. Hence the transformation

given by Eq. (9) approximately preserves the cosine similarity as
shown below

a(é,B)%f—iﬁ-AT
1 . 2 T
= 3@+ (b+1)
1 [, 2T 2 R
=272 b +2a+3b+d (10)
~0
1/1 . 2T
%5<ga b +1>
1 .z
= E(“(éw b) + 1)7

6 NATURE COMMUNICATIONS | (2021)12:2468 | https://doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

Support Labels

Support Images

Crossbar Hardware
Software

1x32x32

Mature
Controller

512

» 00000

Value Memory

Binary Key Memory

=)
[

AEREREN
§ 8 8§

Wordline Drivers

o RN
g

-l

I 10
K| K5

| Analog-to-digital Converter Array |

=

‘mxn

mxn elements

| Max Comparator |
|

y Prediction

Fig. 4 The MANN architecture with the binary key memory using analog in-memory computations. The architecture is simplified for efficient few-shot
inference: (1) The transformed HD support vectors are stored in a memristive crossbar array as the binary key memory; the query vectors are binarized too.
(2) The cosine similarity (a) between the input query vectors and the support vectors is computed through in-memory dot products in the crossbar using
Eqg. (10). (3) To further simplify the inference pipeline, the normalization of the attention vectors and the regular absolute sharpening function are
bypassed. The accumulation of similarity responses belonging to the same support label in the value memory and finding the class with maximum
accumulated response are implemented in software. The binary query/support vectors have 512 dimensions. m and n stand for “way"” and “shot” of the
illustrated problem respectively. A similar architecture with the bipolar key memory is shown in Supplementary Fig. 1.

where the approximation between the third and fourth line is
attributed to the equal number of —1 and +1-components. We
have observed that the transformed vectors at the output of the

controller exhibit 2.08% deviation from the fixed norm of /4, for

d =512 (see Supplementary Note 1). Because this deviation is not
significant, we have used the transformed binary vectors in our
inference experiments. We also show that this deviation can be
further reduced to 0.91% by training the controller to closely
learn the equiprobable binary representations, using a regular-
ization method that drives the HD binary vectors towards a fixed
norm (see Supplementary Note 1). Adjusting the controller to
learn such fixed norm binary representations improves accuracy
as much as 0.74% compared to simply applying bipolar and
binary transformations (See Supplementary Note 1, Table 2).

The proposed architecture with a binary key memory is shown
in Fig. 4. Its major block is the computational key memory that is
implemented in one memristive crossbar array with some
peripheral circuitry for read-out. The key memory stores the
dense binary representations of support vectors, and computes
the dot products as the similarities thanks to the binary vectors
with the approximately fixed norm. The value memory is at least
5x-100 x smaller than the key memory, depending upon the
number of ways, and stores sparse one-hot support labels that are
not robust against variations (see Methods). Therefore, the value
memory is implemented in software, where class-wise similarity
responses are accumulated, followed by finding the class with
maximum accumulated response (for more details on sum-
argmax ranking see Supplementary Note 4).

Experimental results. Here, we present experimental results where
the key memory is mapped to PCM devices and the similarity
search is performed using a prototype PCM chip. We use a simple

two-level configuration, namely SET and RESET conductance
states, programmed with a single pulse (see Methods).

The experimental results for few-shot problems with varying
complexities are presented. For the Omniglot dataset, a few
problems have established themselves as standards such as 5-way
and 20-way with 1-shot and 5-shots each!l!131428-32 There has
been no effort for scaling to more complex problems (i.e., more
ways/shots) on the Omniglot dataset so far. This is presumably due
to the exponentially increasing computational complexity of the
involved operations, especially the similarity operation. While the
“complexity” of writing the key memory scales linearly with
increasing number of ways/shots, the similarity operation (reading)
has constant complexity O(1) on memristive crossbars. We have
therefore extended the repertoire of standard Omniglot problems
up to 100-way problem. For each of these problems we show the
software classification accuracy for 32-bit floating point real
number, bipolar and binary representations in Fig. 5a. To simplify
the inference executions, we approximate the softabs sharpening
function with a regular absolute function (€jpference(®) = |]), which
is bypassed for the binary representation due to its always positive
similarity scores (see Supplementary Note 5). This is the only
approximation made in the software inference, hence Fig. 5a reflects
the net effect of transforming vector representations: a maximum of
0.45% accuracy drop (94.53% vs. 94.08%) is observed by moving
from the real to the bipolar representation among all three
problems. The accuracy drop from the bipolar to the binary is
rather limited to 0.11% because both representations use the cosine
similarity, otherwise the drop can be as large as 1.13% by using
the dot product (see Supplementary Note 5). This accuracy drop in
the binary representation can be reduced by using the regularizer as
shown in Supplementary Note 1.

We then show in Fig. 5b the classification accuracy of our
hardware-friendly architecture that uses the dot product to

| (2021)12:2468 | https://doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-021-22364-0

L & b o8} . 1
= Representation M ArchltecFure

’\c\ b Real ’\c\ b - - Bipolar Blnaryi

.97 M Bipolar 97 Ideal @ |

) W Binary) - Model B a

© 96 © 961 Experiments 1

3 3

3 3

< 95} < 95}

C C

= o

=] b=

g 94r lg 94r

k= k=

8 931 8 93¢

o o

O O

92r 92r
91 - 91 = - = -

5-way 1-shot 20-way 5-shot 100-way 5-shot 5-way 1-shot 20-way 5-shot 100-way 5-shot

[o8 5-way 1-shot problem d o5 100-way 5-shot problem

Classification Accuracy (%)

ipolar

+binary 1

91l . . n .

©o
=

Classification Accuracy (%)
[}
N

+bipo|ar

binary

0 20 40 60 80 100
Conductance Variation (%)

88
0 20 40 60 80

Conductance Variation (%)

100

Fig. 5 Experiments on Omniglot classification. a Average software classification accuracy with the real, bipolar, and binary vector representations on three
problems, each using the approximate sharpening function (i.e., the regular absolute), and the precise similarity function (i.e., the cosine) over 10 test runs
each containing 1000 few-shot episodes (effectively 10,000 episodes); these capture the net effect of changing vector representations in software.

b Classification accuracy results with the hardware-friendly inference architecture on an ideal crossbar without any PCM variations, a crossbar simulated
with the PCM model (see Methods), and the actual experiments with the PCM devices (see Methods). The ideal and the PCM model simulations are
conducted over 10 test runs each containing 1000 few shot episodes (effectively 10,000 episodes). The experiments were conducted over one test run
containing 1000 episodes. ¢ Classification accuracy as a function of percentage of device conductance variation in the PCM model with bipolar and binary
as architectures for the 5-way 1-shot problem, and the (d) 100-way 5-shot problem. The error bars represent one standard deviation of sample distribution

on either directions in all plots.

approximate the cosine similarity. The architecture adopts both
binary and bipolar representations in three settings: (1) an ideal
crossbar in the software with no PCM variations; (2) a PCM
model to capture the non-idealities such as drift variability and
read out noise variability (see Methods); (3) the actual
experiments on the PCM hardware. As shown the PCM model
accuracy is closely matched (+£0.2%) by the PCM experiments. By
going from the ideal crossbar to the PCM experiment, a
maximum of 1.12% accuracy drop (92.95% vs. 91.83%) is
observed for the 100-way 5-shots problem when using the binary
representation (or, 0.41% when using the bipolar representation).
This accuracy drop is caused by the non-idealities in the PCM
hardware that could be otherwise larger without using the sum-
argmax ranking as shown in Supplementary Note 4. For the other
smaller problems, the accuracy differences are within 0.58%.
Despite the variability of the key memory crossbar of the SET
state at the selected conductance state (see Supplementary Note 6)
our binary representations are therefore sufficiently robust
against the deviations.

To further verify the robustness of the key memory, we
conducted a set of simulations with the PCM model in Fig. 5¢, d.
We take the 5-way 1-shot and the 100-way 5-shot problems and
compute the accuracy achieved by the architecture with respect to
different levels of relative conductance variations. It can be seen
that both the binary and the bipolar architectures closely
maintain their original accuracies (with a maximum of 0.75%

accuracy drop) for up to 31.7% relative conductance deviation in
the two problems. This robustness is accomplished by associating
each individual item in the key memory with a HD vector
pointing to the appropriate direction. At the extreme case of
100% conductance variation, the binary architecture accuracy
degrades by 5.1% and 4.1%, respectively, for the 5-way 1-shot and
the 100-way 5-shot problems. The accuracy of the bipolar
architecture, with a number of devices doubled with respect to the
binary architecture, degrades only by 0.93% and 0.58%,
respectively, for the same problems. The bipolar architecture
exhibits higher classification accuracy and robustness compared
to the binary architecture, even with an equal number of devices,
as further discussed in the next section, and illustrated in
Supplementary Fig. 2.

We also compare our architecture with other in-memory
computing works that use multibit precision in the CAM!1L13.14,
Our binary architecture, despite working with the lowest possible
precision, achieves the highest accuracy across all the problems.
Compared to them, our binary architecture also provides higher
robustness in the presence of device non-ideality and noise (See
Supplementary Note 7). Further, the other in-memory computing
works cannot support the widely-used cosine similarity due to the
inherent limitations of multibit CAMs. Therefore, we compare the
energy efficiency of our binary key memory with a CMOS digital
design that can provide the same functionality. The search energy
per bit of PCM is 25.9] versus 5 pJ in 65 nm digital (see Methods).

8 NATURE COMMUNICATIONS | (2021)12:2468 | https://doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

Discussion

HD computing offers a framework for robust manipulations of
large patterns to such an extent that even ignoring up to a third of
vector coordinates still allows reliable operation!$. This makes it
possible to adopt noisy, but extremely efficient devices for oft-
loading similarity computations inside the key memory. Mem-
ristive devices such as PCM often exhibit high conductance
variability in an array, especially when the devices are pro-
grammed with a single-shot (i.e., one RESET/SET pulse) to avoid
iterative program-and-verify procedures that require complex
circuits and much higher energy consumption??2. While the
RESET state variations are not detrimental because its small
conductance value, the significant SET state variations of up to a
relative standard deviation of 50% could affect the computational
accuracy. Equation (11) provides an intuition about the rela-
tionship between deviations in the cosine similarity and the
relative SET state variability:

20
U(A) = \/;O-rel

where A denotes the result of the noisy cosine similarity opera-
tion, a denotes the cosine similarity value between the noise-free
vectors, d is the dimensionality of the vectors, and oy is the
relative SET state variability. It states that the standard deviation
of the noisy cosine similarity inversely scales with the square root
of the vector dimensionality. See Supplementary Note 8 for the
proof of Eq. (11). Supplementary Fig. 3 provides a graphical
illustration of how the robustness of the similarity measurement
improves by increasing the vector dimensionality. Hence, even
with an extremely high conductance variability, the deviations in
the measured cosine similarity are tolerable when going to higher
dimensions. In the case of our experiments with o, = 31.7% (see
Methods), a dimensionality of d=512 and a theoretical cosine
similarity of « = 0.5 (e.g., for uncorrelated vectors in the binary
representations), the standard deviation in the measured cosine
distance, o(A), is =0.015.

The values for the standard deviations chosen in Fig. 5¢, d are
extremely high, yet the performance, particularly that of the
bipolar architecture, is impressive. This could be mainly due to
using twice the amount of devices per vector, as the bipolar
vectors have to be transformed into binary vectors with dimen-
sionality 2d to be stored on the memristive crossbar. However,
when the binary and bipolar architectures use an equal number of
devices (i.e., a bipolar architecture operating at half dimension of
binary architecture), the bipolar architecture still exhibits lower
accuracy degradation as the conductance variations are increased
(see Supplementary Fig. 2). This could be attributed to better
approximating the cosine similarity than the architecture with the
transformed binary representation. Moreover, the softabs shar-
pening function is well-matched to the bipolar vectors that are
produced by directly clipping the real-valued vectors, whereas
there could be other sharpening function that favor learning the
binary vectors.

Using a single nanoscale PCM device to represent each com-
ponent of a 512-bit vector leads to a very high density key
memory. The key memory can also be realized using other forms
of in-memory computing based on resistive random access
memory>3 or even charge-based approaches®*. There are also
several avenues to improve the efficiency of the controller. Cur-
rently it is realized as a deep neural network with four convolu-
tional layers and one fully connected layer (see Methods). To
achieve further improvements in the overall energy efficiency, the
controller could be formulated as a binary neural network®,
instead of using the conventional deep network with a clipping
activation function at the end. Another potential improvement

(11)

for the energy efficiency of the controller is by implementing each
of the deep network layers on memristive crossbar arrays30-37,

Besides the few shot classification task that we highlighted in
this work, there are several tantalizing prospects for the HD
learned patterns in the key memory. They form vector-symbolic
representations that can directly be used for reasoning, or multi-
modal fusion across separate networks33. The key-value memory
also becomes the central ingredient in many recent models for
unsupervised and contrastive learning3*-4! where a huge number
of prototype vectors should be efficiently stored, compared,
compressed, and retrieved.

In summary, we propose to exploit the robust binary vector
representations of HD computing in the context of MANNS, to
perform analog in-memory computing. We provide a novel
methodology to train the CNN controller to conform with the
HD computing paradigm that aims at first, generating holo-
graphic distributed representations with equiprobable binary or
bipolar vector components. Subsequently, dissimilar items are
mapped to uncorrelated vectors by assigning similarity-
preserving items to vectors. The former goal is closely met by
setting the controller-memory interface to operate in the HD
space, by random initialization of the controller, and by real-to-
binary transformations that preserve the dimensionality and
approximately the distances. The quality of representations can
be further improved by a regularizer if needed. The latter goal is
met by defining the conditions under which an attention function
can be found to guide the item to vector assignment such that the
semantically unrelated vectors are pushed further away than the
semantically related vectors. With this methodology, we have
shown that the controller representations can be directed toward
robust bipolar or binary representations. This allows imple-
mentation of the binary key memory on 256,000 noisy but highly
efficient PCM devices, with less than 2.7% accuracy drop com-
pared to the 32-bit real-valued vectors in software (94.53% vs.
91.83%) for the largest problem ever-tried on the Omniglot. The
bipolar key memory causes less than 1% accuracy loss. The cri-
tical insight provided by our work, namely, directed engineering
of HD vector representations as explicit memory for MANNS,
facilitates efficient few-shot learning tasks using in-memory
computing. It could also enable applications beyond classification
such as symbolic-level fusion, compression, and reasoning.

Methods

Omniglot dataset: evaluation and symbol augmentation. The Omniglot dataset
is the most popular benchmark for few-shot image classification?. Commonly
known as the transpose of the MNIST dataset, the Omniglot dataset contains many
classes but only a few samples per class. It is comprised of 1623 different characters
from 50 alphabets, each drawn by 20 different people, hence 32460 samples in total.
These data are organized into a training set comprising of samples from 964
character types (approximately 60%) from 30 alphabets, and testing set comprising
of 659 character types (approximately 40%) from 20 alphabets such that there is no
overlap of characters (hence, classes) between the training set and the testing set.
Before going into the details of the procedure we used to evaluate a few-shot model,
we will present some terminology. A problem is defined as a specific configuration
of number of ways and shots parameters. A run is defined as a fresh random
initialization of the model (with respect to its weights), followed by training the
model (i.e., the learning phase), and finally testing its performance (i.e., the
inference phase). A support set is defined as the collection of samples from dif-
ferent classes that the model learns from. A query batch is defined as a collection of
samples drawn from the same set of classes as the support set.

During a run, a model that is trained usually starts underfitted, at some point
reaches the optimal fit and then overfits. Therefore it makes sense to validate the
model at frequent checkpoint intervals during training. A certain proportion of the
training set data (typically 15%) is reserved as the validation set for this purpose.
The number of queries that is evaluated on a selected support set is called batch
size. We set the batch size to 32 during both learning and inference phases.

One evaluation iteration of the model and update of weights in the learning
phase, concerning a certain query batch, is called an episode. During an episode,
first the support set is formed by randomly choosing n samples (shots) from
randomly chosen m classes (ways) from training/validation/testing set. Then the
query batch is formed by randomly choosing from the remaining samples from the

| (2021)12:2468 | https://doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

same classes used for the support set. At the end of an episode, the ratio between
number of correctly classified queries in the batch versus the total queries in the
batch is calculated. This ratio when averaged across the episodes is called training
accuracy, validation accuracy, or testing accuracy depending on the source of the
data used for the episode.

Our evaluation setup consists of a maximum 50,000 training episodes in the
learning phase, the validation checkpoint frequency of once every 500 training
episodes. At a validation checkpoint, the model is further evaluated on 250
validation episodes. At the end of training, the model checkpoint with the highest
validation accuracy is used for the inference phase. The final classification accuracy
that is used to measure the efficacy of a model is the average testing accuracy across
1000 testing episodes of a single run. This can be further averaged across multiple
runs (typically 10) pertaining to different initializations of the model, since the
model’s convergence towards the global minimum of the loss function is dependent
on the initial parameters.

To prevent overfitting and to gain more meaningful representations of the
Omniglot symbols, we augmented the dataset by shifting and rotating the symbols.
Specifically, every time we draw a new support set or query batch from the dataset
during training, we randomly augment each image in the batch. For that we have
two parameters s and r that we draw from a normal distribution with mean y =0
and a certain standard deviation for every image, and shift it by s and rotate it by r.
We have found that a shifting standard deviation of o, = 2.5 pixels and a rotation
standard deviation of o, = {5 work well for 32 x 32 pixel images.

The CNN as a controller for the MANN architecture. For the Omniglot few-shot
classification task, we design the embedding function f(x;) of our controller as a
CNN inspired by the embedding proposed in'%. The input is given by grayscale 32
by 32 pixel images, randomly augmented by shifting and rotating them before
being mapped. The embedding function is a non-linear mapping

f: B32x32 — Rd.

The CNN bears the following structure: two convolutional layers (each with 128
filters of shape 5 x 5), a max-pooling with a 2 x 2 filter of stride 2, another two
convolutional layers (each with 128 filters of shape 3 x 3), another max-pooling
with a 2 x 2 filter of stride 2, and finally a fully connected layer with d units. The
last fully connected layer defines the dimensionality of the feature vectors. Each
convolutional layer uses a ReLU activation function. The output of the last dense
layer directly feeds into the key memory during learning. During inference the
output of the last dense layer is subjected to a sign or step activation (depending on
the representation being bipolar or binary) before feeding into the key memory.
The Adam optimizer#? is used during the training with a learning rate of le-4. For
more details of the training procedure refer to Supplementary Note 2.

Details of attention mechanism for the key-value memory. When a key, gen-
erated from the controller, belongs to the few-shot support set, it is stored in the
key memory as a support vector during the learning phase and its corresponding
label in the value memory as a one-hot support label. When the key corresponds to
a query, it is compared to all other keys (i.e., the support vectors stored in the key
memory) using a similarity metric. As part of an attention mechanism, the simi-
larities then have to be transformed into weightings to compute a weighted sum of
the vectors in the value memory. The output of the value memory represents a
probability distribution over the available labels. The weightings (i.e., attention)
vector has unit norm such that the weighted sum of one-hot labels represents a
valid probability distribution. For an m-way n-shot problem with s; support
samples (i €{1,..., mn}) and a query sample x, there is a parameterized embed-
ding function f, with p trainable parameters in the controller, that maps samples to
the feature space R?, where d is the dimensionality of the feature vectors. Hence,
the set of support vectors K;, which will be stored in the key memory, and the query
vector q are defined as follows:

K= fols); q=/fox)
Ke R™? qeRY 0eRe.

The attention mechanism is a comparison of vectors followed by sharpening and
normalization. Let « be a similarity metric (e.g., cosine similarity) and € a sharpening
function (e.g., exponential function) with « : RYx«RY - R, e:R — R. Then,

e(a(q,K;
o(q,K;) = Zmn((q—))
‘j=1 €((X(q7 K]))

Z U(q7 Kj) =1
j=1

(12)

(13)

o: RIxR™™ 4 [0,1]™

is the attention function for a query vector q and key memory K, and its output is the
attention vector w = o(q, K).

Similar support vectors to the query lead to a higher focus at the corresponding
index. The normalized attention vector (i.e., X" w; = 1) is used to read out the
value memory. The value memory contains the one-hot labels of the support
samples in the proper order. A relative labeling is used that enumerates the support
set. Using the value memory (V € B™"*™), the output probability distribution and

the predicted label are derived as:

p=w-V

; (14)

B el B

Note that the output probability distribution p is the weighted sum of one-hot
labels (i.e., the probabilities of individual shots within a class are summed together).
We call this ranking sum-argmax that results in higher accuracy in the PCM
inference experiments compared to a global-argmax where there is no summation
for the individual probabilities per class. See Supplementary Note 4 for a
comparison between these two ranking criteria.

predicted —

PCM model and simulations. For the simulations of our architecture we use
TensorFlow. A model implemented with the appropriate API calls can easily be
accelerated on a GPU. We have also made use of the high-level library Keras, which
is part of TensorFlow and enables quick and simple construction of deep neural
networks in a plug-and-play like fashion. This was mainly utilized for the con-
struction of the controller. For modeling the PCM computational memory, the
low-level library API was used, since full control over tensors of various shapes and
sizes had to be ensured. In order to model the most important PCM non-idealities,
a simple conductance drift behavior has been assumed:

w0=c,(;)

where v is the drift component and G means conductance after ¢ time since
programming. Since we fit these parameters to our measurements, we can simply
chose reference time t, = 1 sec so that Eq. (15) becomes

G(t) =G, -t™". (16)
We then introduce several parameters to model variations (see Supplementary

Table 1). The variations are assumed to be of Gaussian nature. Our final model of
the conductance of a single PCM device is the following:

G(t) = N (0.G}) + (Gy - N(1, G,)) - 1V 07,

(15)

(17)
with (g, 6?) being the normal distribution with mean ¢ and standard deviation o

S22 T L . . .
and G, G, 7" represent the variability in additive read noise, programming noise
and drift respectively. Since we model a whole crossbar and time between
successive query evaluations (estimated 1usec) of a batch is negligible compared to
the evaluation time of the first query of the batch since programming (estimated
20s). With this, our simulation setup is simplified to batch-wise processing of
multiple inputs (i.e. queries) to the crossbar, and thus we solve

I1=U-G’ (18)

in one step. Where U is read-out voltages representing the batch of query vectors,
G is conductance value of the PCM array at evaluation time (20s) and I is the
corresponding current values received for each query in the batch.

To derive the PCM model parameters, we SET 10,000 devices and measure their
conductance over a time spanning 5 orders of magnitude. The distribution of the
devices’ conductance at two time instants is shown in Supplementary Fig. 4(a) and
4(b). The drift leads to a narrower conductance distribution over time, yet the
relative standard deviation increases. In the interest of time scales used for the
experiments, the PCM model simulations, uses o, = 31.7%.

In a second step, we fit a linear curve with offset G, and steepness —v in a log-
log regime of the measurements to each device measured (see Supplementary Fig. 4
(c) for a set of example measurements and their fitted curves). The mean values of
all fitted G, and v give us the parameters for the model. They are calculated to be
22.8 uS and 0.0715, respectively. Their relative standard deviation gives us the
programming variability Gp and drift variability 7, which are calculated as 31.7%

and 22.5% respectively. In order to derive the read-out noise G,, we calculate the
deviation of measured conductance from the conductance value obtained from the
fit line for each point on the curve to retrieve the standard deviation. This gives us
the standard deviation of the read-out noise as 0.926 uS.

Experimental details. For the experiments, we use a host computer running a
Matlab environment to coordinate the experiments, which is connected via
Ethernet with an experimental platform comprising two FPGAs and an analog
front end that interfaces with a prototype PCM chip?2. The phase-change memory
(PCM) chip contains PCM cells that are based on doped-Ge,Sb,Te, (d-GST) and
are integrated in 90 nm CMOS baseline technology. In addition to the PCM cells,
the prototype chip integrates the circuitry for cell addressing, on-chip 8-bit analog-
to-digital converter (ADC) for cell readout, and voltage- or current-mode cell
programming. The experimental platform comprises the following main units: (1)
a high-performance analog-front-end (AFE) board that contains the digital-to-
analog converters (DACs) along with discrete electronics, such as power supplies,
voltage, and current reference sources; (2) an FPGA board that implements the
data acquisition and the digital logic to interface with the PCM device under test
and with all the electronics of the AFE board; (3) a second FPGA board with an
embedded processor and Ethernet connection that implements the overall system
control and data management as well as the interface with the host computer.

10 | (2021)12:2468 | https://doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

ARTICLE

The PCM array is organized as a matrix of 512 word lines (WL) and 2048 bit
lines (BL). The PCM cells were integrated into the chip in 90 nm CMOS
technology using the key-hole process*3. The selection of one PCM cell is done by
serially addressing a WL and a BL. The addresses are decoded and they then drive
the WL driver and the BL multiplexer. The single selected cell can be programmed
by forcing a current through the BL with a voltage-controlled current source. It can
also be read by an 8-bit on-chip ADC. For reading a PCM cell, the selected BL is
biased to a constant voltage of 300 mV by a voltage regulator. The sensed current,
I ead> is integrated by a capacitor, and the resulting voltage is then digitized by the
on-chip 8-bit cyclic ADC. The total time of one read is 1 ys. For programming a
PCM cell, a voltage V},.,, generated off-chip is converted on-chip into a
programming current, Irog. This current is then mirrored into the selected BL for
the desired duration of the programming pulse. The RESET pulse is a box-type
rectangular pulse with duration of 400 ns and amplitude of 450 #A. The SET
pulse is a ramp-down pulse with total duration of approximately 12 ys.

This programming scheme yields a 0 S conductance for the RESET state and 22.8 x
1079S average conductance with 31.7% variability for the SET state (see
Supplementary Table 1).

For the experiments on Omniglot classification, the MANN is implemented as a
TensorFlow** model. For testing, the binarized, or bipolarized query and support
vectors are stored in files. These are then accessed by the Matlab environment and
either programmed onto the PCM devices (support vectors) or applied as read-out
voltages (query vectors) in sequence.

When it comes to programming, in the case of binary representation, all
elements of a support vector are programmed along a bit line so that binary 1
elements are programmed at SET state and binary 0 elements are programmed at
RESET state. For bipolar representation, the support vectors are programmed along
a pair of adjacent bit lines so that +1 elements are programmed to SET state at the
corresponding wordline indices of the left bit line while —1 elements are
programmed to SET state at the corresponding wordline indices of the right bit
line. The rest of the locations in the PCM array are programmed to RESET state in
bipolar experiments (see Supplementary Fig. 1). The relative placement of each
support vector is arbitrarily determined for each episode independently.

Since the PCM devices are only accessible sequentially, we measure the analog
read-out currents for each device separately using the on-chip ADC and compute
the reduced sum along the bitlines digitally in order to obtain the attention values.
The attention values are in turn stored in files again, which are accessed by the
TensorFlow model to finalize the emulation of the key memory.

Energy estimation and comparison. To determine the level of energy efficiency of
PCM key memory search operation with respect to alternative technologies, we
develop a dedicated digital CMOS binary key memory in register transfer level
(RTL). The CMOS binary key memory stores the support vectors in binary form,
and computes dot product operation from a query binary vector to each of the
support vectors in the key memory and outputs the resulting array of dot product
values—similar to the functionality of the PCM hardware. The resources are
allocated to the CMOS baseline in such a way that its throughput is equivalent to
the PCM-based counterpart. The digital CMOS design is synthesized in a UMC 65
nm technology node using Synopsys Design Compiler. During post-synthesis
simulation of 100 queries, the design is clocked at a frequency of 440 MHz to create
a switching activity file. Then using Synopsys Primetime at the typical operating
condition with voltage 1.2 V and temperature 25 °C, the average power values are
obtained. Finally, the energy estimation is performed by integrating these average
power values over time and normalizing it by diving by the number of key memory
vectors and their dimensions, resulting in the search energy per bit of 5 pJ. The
energy of PCM-based binary key memory is obtained by summing the average read
energy per PCM device (2.5 f]) and the normalized energy consumed by the
analog/digital peripheral circuits (23.4 f]).

Data availability
The data that support the findings of this study are available from the corresponding
authors upon request.

Code availability

The code used to generate the results of this study is proprietary to IBM.

Received: 25 September 2020; Accepted: 9 March 2021;
Published online: 29 April 2021

References

1. Siegelmann, H. & Sontag, E. On the computational power of neural nets. J.
Computer Syst. Sci. 50, 132-150 (1995).

2. Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A. & Bengio, Y. An empirical
investigation of catastrophic forgeting in gradientbased neural networks. In

10.

11.

12.

13.

15.

16.

18.

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Proceedings of International Conference on Learning Representations (ICLR)
(2014).

Graves, A., Wayne, G. & Danihelka, I. Neural turing machines. Preprint at
http://arxiv.org/abs/1410.5401 (2014).

Graves, A. et al. Hybrid computing using a neural network with dynamic
external memory. Nature 538, 471-476 (2016).

Weston, J., Chopra, S. & Bordes, A. Memory networks. In Proceedings of
International Conference on Learning Representations (ICLR) (2015).
Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D. & Lillicrap, T. P. One-
shot learning with memory-augmented neural networks. Preprint at http://
arxiv.org/abs/1605.06065 (2016).

Wu, Y., Wayne, G., Graves, A. & Lillicrap, T. The Kanerva machine: a
generative distributed memory. In Proceedings of International Conference on
Learning Representations (ICLR) (2018).

Sukhbaatar, S., szlam, a., Weston, J. & Fergus, R. End-to-end memory
networks. In Advances in Neural Information Processing Systems (2015).
Stevens, J. R., Ranjan, A,, Das, D., Kaul, B. & Raghunathan, A. Manna: an
accelerator for memory-augmented neural networks. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture, 794-
806 (2019).

Ranjan, A. et al. X-mann: A crossbar based architecture for memory
augmented neural networks. In Proceedings of the 56th Annual Design
Automation Conference 2019, 130:1-130:6 (2019).

Ni, K. et al. Ferroelectric ternary content-addressable memory for one-shot
learning. Nat. Electron. 2, 521-529 (2019).

Liao, Y. et al. Parasitic resistance effect analysis in rram-based tcam for
memory augmented neural networks. In 2020 IEEE International Memory
Workshop (IMW), 1-4 (2020).

Laguna, A. F,, Yin, X,, Reis, D., Niemier, M. & Hu, X. S. Ferroelectric fet based
in-memory computing for few-shot learning. In Proceedings of the 2019 on
Great Lakes Symposium on VLSI, 373-378 (2019).

Laguna, A. F.,, Niemier, M. & Hu, X. S. Design of hardware-friendly memory
enhanced neural networks. In 2019 Design, Automation Test in Europe
Conference Exhibition (DATE) (2019).

Rahimi, A., Ghofrani, A., Cheng, K., Benini, L. & Gupta, R. K. Approximate
associative memristive memory for energy-efficient gpus. In 2015 Design,
Automation Test in Europe Conference Exhibition (DATE), 1497-1502 (2015).
Wu, T. F. et al. Brain-inspired computing exploiting carbon nanotube fets and
resistive ram: hyperdimensional computing case study. In 2018 IEEE
International Solid - State Circuits Conference - (ISSCC), 492-494 (2018).
Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory
devices and applications for in-memory computing. Nat. Nanotechnol. 15,
529-544 (2020).

Kanerva, P. Hyperdimensional computing: an introduction to computing in
distributed representation with high-dimensional random vectors. Cogn.
Comput. 1, 139-159 (2009).

Gayler, R. W. Vector symbolic architectures answer Jackendoff’s challenges for
cognitive neuroscience. In Proceedings of the Joint International Conference on
Cognitive Science, 133-138 (2003).

Kanerva, P. Sparse Distributed Memory (MIT Press, Cambridge, MA, USA, 1988).
Rahimi, A. et al. High-dimensional computing as a nanoscalable paradigm.
IEEE Trans. Circuits Syst. I: Regul. Pap. 64, 2508-2521 (2017).

Karunaratne, G. et al. In-memory hyperdimensional computing. Nat. Electron.
3, 327-337 (2020).

Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning
through probabilistic program induction. Science 350, 1332-1338 (2015).

Plate, T. A. Holographic reduced representations. IEEE Trans. Neural Netw. 6,
623-641 (1995).

Gayler, R. W. Multiplicative binding, representation operators & analogy.
Advances in analogy research: Integration of theory and data from the
cognitive, computational, and neural sciences 1-4 (1998).

Kanerva, P. Binary spatter-coding of ordered k-tuples. In Proceedings of the
1996 International Conference on Artificial Neural Networks, 869-873 (1996).
Anderson, A. G. & Berg, C. P. The high-dimensional geometry of binary
neural networks. In Proceedings of International Conference on Learning
Representations (ICLR) (2018).

Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of the 34th International
Conference on Machine Learning, 1126-1135 (2017).

Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, k. & Wierstra, D.
Matching networks for one shot learning. In Advances in Neural Information
Processing Systems (2016).

Li, A, Luo, T., Xiang, T., Huang, W. & Wang, L. Few-shot learning with global
class representations. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) (2019).

Sung, F. et al. Learning to compare: Relation network for few-shot learning. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1199-1208 (2018).

| (2021)12:2468 | https://doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications 1

http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1605.06065
http://arxiv.org/abs/1605.06065
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

32. Snell, J., Swersky, K. & Zemel, R. Prototypical networks for few-shot learning.
In Proceedings of the 31st International Conference on Neural Information
Processing Systems, 4080-4090 (2017).

33. Liu, Q. et al. A fully integrated analog ReRAM based 78.4 TOPS/W compute-
in-memory chip with fully parallel MAC computing. In Proc. of International
Solid-State Circuits Conference (ISSCC), 500-502 (2020).

34. Verma, N. et al. In-memory computing: advances and prospects. IEEE Solid-
State Circuits Mag. 11, 43-55 (2019).

35. Al Bahou, A, Karunaratne, G., Andri, R, Cavigelli, L. & Benini, L. Xnorbin: A
95 top/s/w hardware accelerator for binary convolutional neural networks. In
2018 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS),
1-3 (2018).

36. Joshi, V. et al. Accurate deep neural network inference using computational
phase-change memory. Nat. Commun. 11, 1-13 (2020).

37. Yao, P. et al. Fully hardware-implemented memristor convolutional neural
network. Nature 577, 641-646 (2020).

38. Mitrokhin, A., Sutor, P., Summers-Stay, D., Fermiiller, C. & Aloimonos, Y.
Symbolic representation and learning with hyperdimensional computing.
Front. Robot. Al 7, 63 (2020).

39. Wu, Z, Xiong, Y., Stella, X. Y. & Lin, D. Unsupervised feature learning via
non-parametric instance discrimination. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2018).

40. Caron, M. et al. Unsupervised learning of visual features by contrasting cluster
assignments. In Advances in Neural Information Processing Systems (eds H.
Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan & H. Lin) (NeurIPS, 2020).

41. Tian, Y., Krishnan, D. & Isola, P. Contrastive multiview coding. In Computer
Vision - ECCV 2020, 776-794, http://arxiv.org/abs/2006.09882 (2020).

42. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In Proceedings
of International Conference on Learning Representations (ICLR) (2015).

43. Breitwisch, M. et al. Novel lithography-independent pore phase change memory.
In Proceedings of the Symposium on VLSI Technology, 100-101 (2007).

44. Abadi, M. et al. Tensorflow: a system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), 265-283 (2016).

Acknowledgements

This work was partially funded by the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation program (grant agreement
number 682675).

Author contributions

ALR. defined the research question and direction. M.S. and G.K. conceived the metho-
dology, and performed the experiments. M.L.G., G.C,, L.B., A.S., and A.R. supervised the
project. GK. and A.R. wrote the manuscript with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-22364-0.

Correspondence and requests for materials should be addressed to A.S. or A.R.

Peer review information Nature Communications thanks Massimo Barbaro and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

12 | (2021)12:2468 | https://doi.org/10.1038/s41467-021-22364-0 | www.nature.com/naturecommunications

http://arxiv.org/abs/2006.09882
https://doi.org/10.1038/s41467-021-22364-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Robust high-dimensional memory-augmented neural networks
	Results
	Proposed MANN architecture using in-memory computing
	A new attention mechanism appropriate for HD geometry
	Bipolar key memory: transforming real-valued HD vectors to bipolar
	Binary key memory: transforming bipolar HD vectors to �binary
	Experimental results

	Discussion
	Methods
	Omniglot dataset: evaluation and symbol augmentation
	The CNN as a controller for the MANN architecture
	Details of attention mechanism for the key-value memory
	PCM model and simulations
	Experimental details
	Energy estimation and comparison

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

