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PseUI: Pseudouridine sites identification
based on RNA sequence information
Jingjing He1, Ting Fang1, Zizheng Zhang1, Bei Huang1, Xiaolei Zhu1* and Yi Xiong2*

Abstract

Background: Pseudouridylation is the most prevalent type of posttranscriptional modification in various stable
RNAs of all organisms, which significantly affects many cellular processes that are regulated by RNA. Thus, accurate
identification of pseudouridine (Ψ) sites in RNA will be of great benefit for understanding these cellular processes.
Due to the low efficiency and high cost of current available experimental methods, it is highly desirable to develop
computational methods for accurately and efficiently detecting Ψ sites in RNA sequences. However, the predictive
accuracy of existing computational methods is not satisfactory and still needs improvement.

Results: In this study, we developed a new model, PseUI, for Ψ sites identification in three species, which are
H. sapiens, S. cerevisiae, and M. musculus. Firstly, five different kinds of features including nucleotide composition
(NC), dinucleotide composition (DC), pseudo dinucleotide composition (pseDNC), position-specific nucleotide
propensity (PSNP), and position-specific dinucleotide propensity (PSDP) were generated based on RNA segments.
Then, a sequential forward feature selection strategy was used to gain an effective feature subset with a compact
representation but discriminative prediction power. Based on the selected feature subsets, we built our model by
using a support vector machine (SVM). Finally, the generalization of our model was validated by both the jackknife
test and independent validation tests on the benchmark datasets. The experimental results showed that our model
is more accurate and stable than the previously published models. We have also provided a user-friendly web
server for our model at http://zhulab.ahu.edu.cn/PseUI, and a brief instruction for the web server is provided in this
paper. By using this instruction, the academic users can conveniently get their desired results without complicated
calculations.

Conclusion: In this study, we proposed a new predictor, PseUI, to detect Ψ sites in RNA sequences. It is shown that
our model outperformed the existing state-of-art models. It is expected that our model, PseUI, will become a useful
tool for accurate identification of RNA Ψ sites.
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Background
Pseudouridylation, which occurs at the uridine site and
is catalyzed by pseudouridine synthase (PUS), has been
observed in various RNAs of all organisms [1–4]. As the
most abundant posttranscriptional modification, pseu-
douridylation plays an important role in the structure,
function and metabolism of RNAs [5–9]. Therefore, it is
crucial to identify pseudouridylation information for
revealing the biological principles.

Although some experimental techniques for identifying
Ψ sites have been developed, they are both time-consum-
ing and costly [10–13]. Facing the exponential-increasing
of RNA sequences in the post-genomic era, it is urgent to
have an accurate, efficient and low-cost method to identify
Ψ sites on RNA segments. Former studies suggest that
computational methods or statistical learning methods are
promising candidates because of their low cost and rea-
sonable efficiency [14, 15].
Unfortunately, to the best of our knowledge, only two

computational methods have been developed to predict
Ψ sites in RNAs. Li et al. [15] built a model called PPUS
to predict the PUS-specific Ψ sites in H. sapiens and S.
cerevisiae. This model employed support vector machine
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(SVM) as the classifier and used the nucleotides around
Ψ as features. Besides this PPUS model, Chen et al. [14]
developed another model called iRNA-PseU to identify
Ψ sites in H. sapiens, S. cerevisiae, and M. musculus.
This model was built by incorporating the chemical
properties of nucleotides and their occurrence frequency
density distributions into the general form of pseudo nu-
cleotide composition (pseKNC) [14]. Despite the prom-
ising results offered by these two computational
methods, it is suggested that the performance of compu-
tational methods can be further improved by introdu-
cing other effective features such as position-specific
nucleotide propensity and position-specific dinucleotide
propensity [16].
In this study, we have developed a new model, PseUI,

for Ψ sites identification from RNA sequences in H.
sapiens, S. cerevisiae, and M. musculus. Based on the
RNA sequence segment, we first generated five different
kinds of features including nucleotide composition (NC),
dinucleotide composition (DC), pseudo dinucleotide
composition (pseDNC), position-specific nucleotide
propensity (PSNP), and position-specific dinucleotide
propensity (PSDP). Then, we selected a relevant feature
combination by using a sequential forward feature selec-
tion strategy [17, 18]. Based on the selected features, our
model was built by using a support vector machine
(SVM). Finally, the prediction results provided by our
models for the three species, H. sapiens, S. cerevisiae,
and M. musculus, were compared with iRNA-PseU’s
results by using both jackknife tests and independent
validation tests on the benchmark datasets, and it is
convincing from the result of comparison that our
model PseUI can offer more accurate identification of Ψ
sites than iRNA-PseU.
To develop a really useful feature-based analysis

method for a biological system as reported in a series of
recent studies [19–23], one should observe the 5-step
rule [24]: (i) construct or select a valid benchmark data-
set to train and test the predictor; (ii) formulate the bio-
logical sequence samples with an effective mathematical
expression that can truly reflect their intrinsic correl-
ation with the target to be predicted; (iii) develop a
powerful algorithm (or engine) to operate the prediction;
(iv) perform cross-validation and independent tests
properly to objectively evaluate the anticipated accuracy
of the predictor; and (v) establish a user-friendly
web-server for the predictor that is accessible to the
public. Below, we are to describe how to deal with these
steps one-by- one.

Methods
Benchmark datasets
Three benchmark datasets, H_990, S_628, and M_944,
were used for training in this study, where H, S, and M

represent for H. sapiens, S. cerevisiae, and M. musculus,
respectively, and 990, 628, 944 are the number of exam-
ples in each dataset. These three datasets are the same
as that were used in Chen et al.’s work [14]. In their
work, they downloaded RNA sequences with experimen-
tally validated Ψ sites of H. sapiens, M. musculus and S.
cerevisiae from RMBase [25]. In addition, they collected
the RNA segments with uridine at the center but not
experimentally conformed as Ψ sites from genomes as
negative samples. More details about how to construct
these datasets can be found in the reference [14].
The positive subset of H_990, S_628, and M_944 con-

tains 495, 314, and 472 RNA segments, respectively, and
each of these RNA segments has a uridine at the center
position that can be pseudouridylated. The negative
subset is composed of 495, 314, and 472 RNA segments,
respectively, and each of these RNA segments has a
uridine at the center position that cannot be
pseudouridylated.
We can formulate each RNA segment, denoted as

Rξ(U), in these datasets as follow:

Rξ Uð Þ ¼ N−ξN− ξ−1ð Þ⋯N−1UN1⋯Nþ ξ−1ð ÞN ξ ð1Þ

where the center U represents ‘uridine’, N-ξ represents
the ξ-th upstream nucleotide from the central uridine
and N+ξ represents the ξ-th downstream nucleotide.
The RNA samples in both of H_990 and M_944 are all

composed of 21 nucleotides, while those in S_628 are
composed of 31 nucleotides. Namely, the value of ξ is 10
and the RNA segment length is 2 × 10 + 1 for the data-
sets H_900 and M_944. The value of ξ is 15 and the
RNA segment length is 2 × 15 + 1 for the dataset S_628.
Corresponding to the training datasets, Chen et al.

[14] provided two independent testing datasets for H.
sapiens and S. cerevisiae, i.e. H_200 and S_200, but
not for M. musculus. The detailed sequence informa-
tion for all the aforementioned datasets is given in
Table 1; and the sequences of the five datasets can be
found in Additional files 1, 2, 3, 4 and 5.

Feature representation of the RNA samples
One of the key problems in designing a predictor based
on machine learning is how to encode an RNA sequence
as a feature vector containing highly discriminative
information. With the explosive growth of biological
sequences in the post-genomic era, one of the most
important but also most difficult problems in computa-
tional biology is how to represent a biological sequence
with a discrete model or a vector, yet still keep consider-
able sequence-order information or key pattern character-
istic. This is because all the existing machine-learning
algorithms can only handle vectors with equal lengths for
all sequence samples, as elucidated in a comprehensive
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review [26]. However, a vector defined in a discrete model
may completely lose all the sequence-pattern information.
To avoid completely losing the sequence-pattern informa-
tion for proteins, the pseudo amino acid composition [27]
or PseAAC [28] was proposed. Encouraged by the success
of using PseAAC to represent protein/peptide sequences,
the concept of PseKNC (Pseudo K-tuple Nucleotide Com-
position) [29] was developed for generating various feature
vectors to represent DNA/RNA sequences. Particularly,
recently a very powerful web-server called Pse-in-One
[30] have been established that can be used to generate
any desired feature vectors for protein/peptide and DNA/
RNA sequences according to the need of users’ studies. In
the current study, five types of features, nucleotide
composition (NC) feature, dinucleotide composition (DC)
feature, pseudo dinucleotide composition (pseDNC)
feature, position-specific nucleotide propensity (PSNP)
feature, and position-specific dinucleotide propensity
(PSDP) feature, were proposed to encode the RNA seg-
ments for identifying pseudouridine sites in RNA. Three
of them, NC, DC, and pseDNC, can also be generated by
Pse-in-One server [30].

Nucleotide composition (NC) and dinucleotide composition
(DC) feature
Nucleotide composition, a classic method for the
characterization of nucleotide sequences, is widely used
in previous studies [31–33]. Theoretically, a k-mer
nucleotide composition for an RNA sequence is a 4k-
dimensional vector which is consisted of the frequency
of each k-mer types. Thus, we can obtain 4 types of
nucleotide frequencies and 16 types of dinucleotide
frequencies when k is equal to 1 and 2, respectively. We
called these two features as NC and DC, respectively,
and a 4-dimensional NC feature vector and a
16-dimensional DC feature vector were generated for an
RNA segment.

Pseudo dinucleotide composition (pseDNC) feature
The pseudo oligonucleotide composition, or pseudo
K-tuple nucleotide composition (PseKNC) [34–37], can be
used to represent an RNA sequence with a discrete model
or vector. This type of pseudo composition can still keep
considerable sequence order information, particularly the
global or long-range sequence order information, via the
physicochemical properties of its constituent oligonucleo-
tides [38]. In this study, we choose the value of K to be 2,
namely, using pseudo dinucleotide composition (pseDNC)
feature to represent the information of RNA sequences.
Three physicochemical properties, free energy, hydrophil-
icity, and stacking energy, were used to generate features
of pseudo dinucleotide composition (pseDNC), which are
listed in Table 2.

Position-specific nucleotide propensity (PSNP) and
position-specific dinucleotide propensity (PSDP) feature
While position-specific amino acid preferences have
been widely used in bioinformatics to predict functional
site in biological sequences [39–42], the position-specific
nucleotide preferences were first introduced in Li et
al.’s paper [16], which were obtained by calculating the
differences of the frequency of nucleotides in specific
locations between positive and negative RNA segments.
For position-specific nucleotide propensity (PSNP)

feature, according to the equation (1), the RNA segment
can be reformulated as:

Rξ ¼ N1N2…N2ξþ1 ð2Þ

Table 2 Three types of physicochemical properties of
dinucleotides in RNA

Dinucleotide Free energy Hydrophilicity Stacking energy

GG −3.260 0.170 −11.100

GA − 2.350 0.100 − 14.200

GC −3.420 0.260 −16.900

GU −2.240 0.270 −13.800

AG −2.080 0.080 −14.000

AA −0.930 0.040 −13.700

AC −2.240 0.140 −13.800

AU −1.100 0.140 −15.400

CG −2.360 0.350 −15.600

CA −2.110 0.210 −14.400

CC −3.260 0.490 −11.100

CU −2.080 0.520 −14.000

UG −2.110 0.340 −14.400

UA −1.330 0.210 −16.000

UC −2.350 0.480 −14.200

UU −0.930 0.440 −13.700

More details about the pseudo dinucleotide composition (pseDNC) feature
refer to [38]

Table 1 The information of training datasets and independent
testing datasets

Species The name
of training/
testing
datasetsa

The length
of the RNA
sequences (bp)

The number
of positive
samples

The number of
the negative
samples

H. sapiens H_990 21 495 495

H_200 21 100 100

S. cerevisiae S_628 31 314 314

S_200 31 100 100

M.
musculus

M_944 21 472 472

– – – –
aH_900, S_628, M_944 are the training datasets for H. sapiens, S. cerevisiae, M.
musculus, respectively; H_200 and S_200 are the independent testing datasets
for H. sapiens and S. cerevisiae, respectively
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where Nj(j=1,2,...,2ξ+1) represents the nucleotide at the
j-th position of the RNA segment, and can be any one of
the 4 nucleotides, i.e., Nj ∈ {A,C,G,U}.
First, we calculated the frequency of occurrence at the

j-th position for the 4 types of nucleotides from both the
positive and negative samples, respectively. Then, we
combined the 4-dimensional positive vectors and the
4-dimendional negative vectors individually. In this way,
we obtained two 4× (2ξ + 1) position-specific occurrence
frequency matrixes, i.e., Z+ and Z−, where Z+ was
obtained from all the positive samples, and Z− was
obtained from all the negative samples. Next, we defined
the position-specific nucleotide propensity (PSNP)
matrixes, denoted as ZPSNP, as below:

ZPSNP ¼ Zþ−Z− ð3Þ
As for position-specific dinucleotide propensity

(PSDP) feature, according to equation (2), the RNA seg-
ment can be rewritten in a dinucleotide form:

Rξ ¼ N1N2…N2ξþ1 ¼ D1D2…D2ξ ð4Þ
where Dj =NjNj + 1(j = 1, 2,…, 2ξ) represents the di-
nucleotide at the j-th position of the RNA segment, and
can be any of 16 types of dinucleotides, i.e., Dj ∈ {AA,
AC, AG,…, UU}.
Similarly, following the principle we used to generate

the ZPSNP matrix, we can get the 16 × 2ξ position-specific
dinucleotide propensity (PSDP) matrix. Both of the PSNP
matrix and PSDP matrix can then be used to encode the
new samples.
For the features encoded by PSNP and PSDP, we

should pay particular attention to the fact that the
propensity matrices (ZPSNP/ZPSDP) were only generated
from the training samples without the one validation
sample when evaluating the model using the jackknife
test.
Figure 1 clearly described the jackknife cross validation

for features encoded by PSNP/PSDP. The validation
process has four steps: (1) Input the dataset (R), e.g.,
H_990, S_628, or M_944, which is assumed to have n
samples. (2) Divide the dataset (R) into n subsets and
each subset will contain only one sample. (3) One subset
is selected as the validation set, and the rest are used as
the training set. The samples of the training set will be
used to calculate the frequency of nucleotides at specific
locations, and the position specific propensity matrices
(ZPSNP/ZPSDP) will be obtained and then used to encode
the RNA segments in the training set and the validation
set. In such way, the feature matrices RT(PSNP/PSDP)
and RV(PSNP/PSDP) can be obtained to represent the
statistical information extracted from the training set
and the validation set, respectively. A model will be then
built by SVM based on the training set, and evaluated

on the validation set. The whole process will be repeated
for n times and each time a different sample will be
selected as the validation set. (4) Count the results from
the previous steps and calculate the evaluation param-
eter, i.e., Sen, Spe, Acc, and MCC, which are described
in “Evaluation parameter” section.

Model construction
Support vector machine
As a popular statistical learning method, SVM has been
extensively used to build bioinformatics models [43–52].
Both of the PPUS and iRNA-PseU models [14, 15] men-
tioned in the background section were built by using
SVM due to its high efficiency and robust output. In this
study, we used the Matlab function FITCSVM to build
our models. Different kernel functions can be used in
SVM training, and we selected the radial basis function
in this study. Two parameters c and g were referred for
the radial basis function, which were called box
constraint and kernel scale in FITCSVM, respectively.
Here, we optimized these two parameters based on the
jackknife test using a grid search.

Fig. 1 Flow charts of the jackknife cross validation for features
encoded by PSNP or PSDP
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In statistical analysis fields, three different validation
methods have mostly been used to evaluate the perform-
ance of a machine learning model: independent dataset
test, subsampling (or K-fold cross-validation) test, and
jackknife test [53]. The jackknife test has already proved
its effectiveness in many aspects [54, 55]. It is not
affected by the random partition of the samples, and
the final result is unique. In addition, the training set
used by the jackknife test is only one sample less
than the initial training set. Therefore, in most cases,
the actual model evaluated by the jackknife test is
very close to the expected model, which will offer
more accurate results. Based on all these advantages,
the jackknife test was used to evaluate the perform-
ance of our models.

Evaluation parameters
In recent studies, four evaluation parameters, Accuracy
(Acc), Sensitivity (Sen), Specificity (Spe), and the
Matthews correlation coefficient (MCC) have been fre-
quently used to measure the predictor’s quality [46, 56].
The original formulas of the four parameters, particu-
larly the MCC, are lacking intuitiveness and not easy to
understand for most biologists. To make the most
readers easy to understand, we here introduced the
Chou’s intuitive formulas of the four parameters, as
elaborated by the four sub-equations in Eq. 19 of [57],
or the four sub-equations in Eq. 14 of [58]. Particularly,
the advantages of Chou’s intuitive metrics have been an-
alyzed and concurred by a series of studies published
very recently [19, 20, 22, 59, 60]. The Chou’s intuitive
metrics are formulated as below:(

Sen ¼ 1−
Nþ

−

Nþ ; 0 << Sen << 1

Spe ¼ 1−
N−

þ
N− ; 0 << Spe << 1

Acc ¼ 1−
Nþ

− þ N−
þ

Nþ þ N− ; 0 << Acc << 1

MCC ¼
1 − Nþ

−

Nþ þ N−
þ

N−

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ N−
þ − Nþ

−

Nþ

� �
1 þ Nþ

− − N−
þ

N−

� �s ;−1 << MCC << 1

ð5Þ

Where N+ represents the total number of positive RNA
samples; N− represents the total number of negative
RNA samples; Nþ

− represents the number of positive
RNA samples that are incorrectly predicted as nega-
tive RNA samples; N−

þ represents the number of
negative RNA samples that are incorrectly predicted
as positive RNA samples. In addition, it should be
noted that the set of metrics in eq. (5) is only valid
for the single-label systems (in which each sample
only belongs to one class). For the multi-label systems

(in which a sample might belong to several classes),
whose existence has become more frequent in system
biology [61] and system medicine [20] and biomedi-
cine [60], a completely different set of metrics as de-
fined in [62] is needed.

Feature selection
In this study, we generated five types of features which
composed a high dimensional feature vector for each
sample. In order to obtain a more compact and effective
feature subset, we conducted a sequential forward
feature selection (SFS) [17, 18] process on the original
features, which is described as follows:
In the first round, the performance metrics of each of

the five types of features were calculated based on the
jackknife test using a specific prediction engine, respect-
ively. According to Acc or MCC, the best type of feature
was selected to enter the next round of calculation. In
the second round, the remaining four types of features
were added to the type of feature selected by the first
round. Similarly, according to Acc or MCC, the best
combination of features was selected to enter the next
round of calculation. This process continued to run until
the Acc or MCC converged. The subset obtained with
the highest Acc or MCC value will be regarded as the
optimal feature subset.

Results and discussion
Performance of single type of feature
In this section, we evaluated the performance of each
type of features using SVM over the rigorous jackknife
test, and the feature PSNP was found to be particularly
excellent for identifying Ψ sites. The performance of
each evaluation index for the three species, i.e., H.
sapiens, S. cerevisiae, and M. musculus, were listed in
Tables 3, 4, and 5, respectively.
In addition, the receiver operating characteristic

(ROC) curves [63] were employed to show the results
more clearly. On the ROC curve, the diagonal line from
point (0, 0) to (1, 1) corresponds to the random guessing
model, and the point (0, 1) corresponds to the ideal
model with no positive example wrongly predicted.
When comparing models, if the ROC curve of one
model is completely enveloped by the curve of the other
model, it can be asserted that the latter model is super-
ior to the former in performance. However, it is difficult
to judge when the ROC curves of two models cross. In
this situation, the area under the ROC curve (AUC) will
be used as the more reasonable criteria for comparing
model performance, and the lager AUC indicates better
performance. The ROC curves of the five types of
feature for each species were plotted in Fig. 2, together
with the AUC values.
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As shown in Fig. 2, the AUC values of PSNP are
0.6569, 0.6441, and 0.7443 for H. sapiens, S. cerevi-
siae, and M. musculus, respectively. For H. sapiens
and M. musculus, the AUC values of PSNP are much
higher than those of the other four types of features.
For S. cerevisiae, the AUC value of PSNP is only
0.0077 lower than the highest AUC value 0.6518
given by DC. Moreover, the accuracy was improved
from 62.10 to 64.49% when PSNP was added in the
second round of SFS for S. cerevisiae, which was
shown in Table 4. These results all indicate that
PSNP offered the best performance among these five
types of features and the addition of PSNP provided
a great possibility of improving the model
performance, which may lay the foundation for our
future works.

Feature subsets selected by SFS
For the selection of feature subset with SFS described in
the “Feature selection” section, we run three rounds of
calculation for the datasets H_990 and M_944, respect-
ively. Finally, the subset that made up of DC and PSNP
features was chosen as the optimal feature subset. The
results of each round for H. sapiens and M. musculus are
shown in Tables 3 and 5, respectively. For both H. sapiens
and M. musculus, the best models were built based on the
feature subset PSNP+DC.
For the dataset S_628, four rounds of calculation were

conducted, and the subset with a combination of DC,
pseDNC, and PSNP, was selected as the optimal feature
subset. The results of each round are listed in Table 4.
The best model of S. cerevisiae is built based on the
feature subset DC + PSNP+pseDNC.

Table 3 The results of feature selection for H_990

Feature subset Sen (%) Spe (%) Acc (%) MCC Kernel scale Box constraint

NC 62.83 51.31 57.07 0.1424 0.5 4

DC 46.87 74.95 60.91 0.2273 2 256

pseDNC 44.24 76.57 60.40 0.2199 4 1024

PSNP 66.06 60.61 63.33 0.2671 8 512

PSDP 55.15 57.17 56.16 0.1233 0.5 1024

PSNP+NC 65.05 61.21 63.13 0.2628 1 4

PSNP + DC 64.85 63.64 64.24 0.2849 2 8

PSNP+pseDNC 64.44 62.42 63.43 0.2687 1 8

PSNP+PSDP 66.26 59.39 62.83 0.2572 8 1024

PSNP+DC + NC 64.85 63.43 64.14 0.2829 8 128

PSNP+DC + pseDNC 63.03 63.23 63.13 0.2626 4 32

PSNP+DC + PSDP 64.24 63.43 63.84 0.2768 1 2

The feature combination with the maximum MCC was italicized in the table

Table 4 The results of feature selection for S_628

Feature subset Sen (%) Spe (%) Acc (%) MCC Kernel scale Box constraint

NC 71.97 45.22 58.60 0.1785 1 8

DC 64.33 59.87 62.10 0.2423 0.25 1

pseDNC 58.92 62.42 60.67 0.2135 0.25 0.5

PSNP 50.96 72.93 61.94 0.2448 1 0.125

PSDP 49.36 73.57 61.46 0.2363 0.25 0.03125

DC + NC 59.55 61.78 60.67 0.2134 4 512

DC + pseDNC 62.42 60.51 61.46 0.2293 1 1024

DC + PSNP 63.69 65.29 64.49 0.2898 0.5 16

DC + PSDP 60.51 66.88 63.69 0.2744 0.125 2

DC + PSNP+NC 61.78 65.61 63.69 0.2741 0.25 1

DC + PSNP + pseDNC 64.97 66.88 65.92 0.3185 0.25 2

DC + PSNP+PSDP 63.38 67.20 65.29 0.3060 0.25 2

DC + PSNP+pseDNC+NC 61.78 65.92 63.85 0.2773 0.25 2

DC + PSNP+pseDNC+PSDP 62.74 67.52 65.13 0.3029 0.25 4

The feature combination with the maximum MCC was italicized in the table
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Comparison with existing methods
In this section, we compared our model PseUI with the
latest model iRNA-PseU [14] by using two validation
methods (i.e., the jackknife cross validation and independ-
ent tests) to confirm the predictability of our model.
Unfortunately, after a careful study of Chen et al.’s art-

icle [14], we found that some of the results reported by
the authors were not reasonable. For example, the values
of Sen (Sensitivity) and Spe (Specificity) for S. cerevisiae
using the jackknife cross validation were 64.65 and 64.33%
(see Table 6). However, according to the ROC curve in
Chen et al.’s paper [14], the value of “1-Specificity” is esti-
mated to be approximately 0.24, thus the “Specificity”
value should be approximately 0.76, when “Sensitivity” is
0.6465. This “specificity” value (0.76) is significantly differ-
ent from the aforementioned “specificity” value (64.33%).
Besides this big discrepancy in “specificity” values, the

optimized parameters g and c were not reported in the
paper.
To have a more accurate comparison with Chen

et al.’s method, we wrote our programs in strict accord-
ance with the description of their paper to re-implement
iRNA-PseU. The software LIBSVM-3.22 was used to
train the SVM models. To obtain the best performance
of the jackknife cross validation, we used a grid search
to optimize the SVM parameter g from 2− 15 to 2− 5 and
parameter c from 2− 5 to 215 with a step of 2. Finally, the
parameters g and c were set at 0.01562 and 2 for H.
sapiens, 0.0003 and 32,768 for S. cerevisiae, and 0.00098
and 4 for M. musculus, respectively.
Then, we compared the proposed PseUI with the

re-implemented iRNA-PseU (named re-iRNA-PseU) by
using the jackknife cross validation. The comparison re-
sults for the three training datasets, i.e., H_990, S_628,

Table 5 The results of feature selection for M_944

Feature subset Sen (%) Spe (%) Acc (%) MCC Kernel scale Box constraint

NC 56.99 53.18 55.08 0.2233 2 2

DC 61.86 52.75 57.31 0.1468 4 1024

pseDNC 72.46 44.28 58.37 0.1744 4 128

PSNP 73.31 66.31 69.81 0.3972 0.5 1

PSDP 68.22 60.38 64.30 0.2869 1 256

PSNP+NC 69.70 70.34 70.02 0.4004 0.25 0.125

PSNP + DC 74.58 66.31 70.44 0.4103 1 2

PSNP+pseDNC 74.15 66.53 70.34 0.4080 0.5 1

PSNP+PSDP 68.64 70.97 69.81 0.3963 0.125 0.5

PSNP+DC + NC 74.15 66.10 70.13 0.4039 0.5 0.25

PSNP+DC + pseDNC 73.09 67.80 70.44 0.4095 0.5 0.5

PSNP+DC + PSDP 74.58 66.31 70.44 0.4103 0.5 0.25

The feature combination with the maximum MCC was italicized in the table

Fig. 2 The ROC curves that show the performances of the five type of features for H.sapiens, S.cerevisiae, and M.musculus, respectively

He et al. BMC Bioinformatics  (2018) 19:306 Page 7 of 11



and M_944, were listed in Table 6, and the ROC curves
of PseUI were shown in Fig. 3. As shown in Table 6, both
Acc and MCC obtained by PseUI are higher than those
obtained by re-iRNA-PseU. For Acc, improvements of
2.32%, 0.95%, and 0.10% were observed for H_990, S_628,
and M_944, respectively, and for MCC, improvements of
4 and 2% were observed for H_990 and S_628. In addition,
as shown in Fig. 3, the AUC values of PseUI are 0.68 and
0.77, which are 0.03 and 0.02 higher than the correspond-
ing AUC values of re-iRNA-PseU for H. sapiens and M.
musculus, respectively. These findings confirmed that the
PseUI outperformed the re-iRNA-PseU in both accuracy
and stability for identifying Ψ sites. Note that the
re-iRNA-PseU is superior to iRNA-PseU according to the
evaluation metrics shown in Table 6.
Next, we compared our models PseUI with the

re-iRNA-PseU on the independent datasets. In this
study, independent datasets are only available for the

species of H. sapiens and S. cerevisiae (i.e., H_200 and
S_200), so the comparison was only conducted on these
two datasets. The results were listed in Table 7.
As shown in Table 7, the predictive Accs of H_200

and S_200 are 65.50 and 68.50%, which are similar to
the corresponding cross validation Accs on the training
datasets. This means that our model is stable and has
good generalization ability for predicting Ψ sites. When
compared with re-iRNA-PseU, the proposed PseUI
model showed improvements of 4 and 8.5% of the Accs
values on the two independent test sets, respectively. As
for MCC, PseUI outperformed re-iRNA-PseU with
improvements of 0.08 and 0.17 for H_200 and S_200, re-
spectively. All these results confirmed that our proposed
model PseUI is superior to re-iRNA-PseU.

Web implementation
As demonstrated in a series of recent publications
[58, 61, 64–75], user-friendly and publicly accessible
web-servers or source codes represent the future direction
for developing practically more useful analysis methods
and computational tools. Actually, many practically useful
web-servers have significant impacts on medical science
[26], driving medicinal chemistry into an unprecedented
revolution [76]. For the convenience of academic users,
we did the same and established a user-friendly and
publicly accessible web server for PseUI, which is freely
accessible at http://zhulab.ahu.edu.cn/PseUI. Users can

Table 6 A comparison of PseUI with iRNA-PseU and re-iRNA-PseU on three training datasets

Training datasets Predictor Sen (%) Spe (%) Acc (%) MCC AUC

H_990 iRNA-PseUa 61.01 59.80 60.40 0.21 0.64

re-iRNA-PseUb 65.05 58.79 61.92 0.24 0.65

PseUIc 64.85 63.64 64.24 0.28 0.68

S_628 iRNA-PseUa 64.65 64.33 64.49 0.29 0.81

re-iRNA-PseUb 66.88 64.33 65.61 0.31 0.69

PseUIc 62.10 71.02 66.56 0.33 0.69

M_944 iRNA-PseUa 73.31 64.83 69.07 0.38 0.75

re-iRNA-PseUb 79.87 60.81 70.34 0.41 0.75

PseUIc 74.58 66.31 70.44 0.41 0.77
aThe predictor developed by Chen et al. [14]
bThe predictor we re-implemented by the method proposed by Chen et al. [14]
cThe predictor proposed in this paper

Fig. 3 The ROC curves of the best models for H.sapiens, S.cerevisiae,
and M.musculus, respectively

Table 7 A comparison of PseUI with the re-iRNA-PseU on two
independent datasets

Datasets Predictor Sen (%) Spe (%) Acc (%) MCC

H_200 re-iRNA-PseUa 58.00 65.00 61.50 0.23

PseUIb 63.00 68.00 65.50 0.31

S_200 re-iRNA-PseUa 63.00 57.00 60.00 0.20

PseUIb 72.00 65.00 68.50 0.37
aThe predictor we re-implemented by the method proposed by Chen et al. [14]
bThe predictor proposed in this paper
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easily get their desired results without complicated mathe-
matic calculations. The final online PseUI method was
trained on H_990, S_628, and M_944, which are
composed of 21, 31, and 21 nucleotides, respectively. The
detailed procedure to predict Ψ sites by using PseUI
method is as follows:
Firstly, a query RNA sequence is submitted and the

RNA sequence should be longer than 21 bp for H.sapi-
ens and M.musculus or longer than 31 bp for S.cerevisiae
in FASTA format. Secondly, PseUI identifies each uri-
dine site in the query RNA sequence, and a correspond-
ing 21-nt RNA segment for H.sapiens and M.musculus
or 31-nt RNA segment for S.cerevisiae is constructed by
placing a sliding window centered on the uridine site.
Thirdly, according to the reconstructed RNA segment,
the vector for the statistical information of the sequence
is extracted by the features, and then submitted to the
SVM classification engine for prediction. Finally, the
users can get the result they desired. Please notice that
the reconstructed RNA segment for unequal number of
nucleotides around the target uridine is filled with its
mirror image [47].

Conclusion
In this study, we proposed a model, PseUI, for accurate
and efficient identification of Ψ sites in RNA sequences.
We compared our model PseUI with the latest Ψ site
identification model iRNA-PseU [14] by using two dif-
ferent methods, jackknife cross validation and independ-
ent tests. The results showed that our model is more
accurate and stable than iRNA-PseU. In addition, the
performances of the five types of features used in this
study were systematically evaluated and compared, and
the feature of PSNP was found to show the best
performance. To facilitate the use of our model, a web
server was built at http://zhulab.ahu.edu.cn/PseUI,
which allows the academic users to easily use our model
to predict the Ψ sites in RNA sequences.
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