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ABSTRACT Many computations with SNP data including genomic evaluation, parameter estimation, and genome-wide association
studies use an inverse of the genomic relationship matrix. The cost of a regular inversion is cubic and is prohibitively expensive for large
matrices. Recent studies in cattle demonstrated that the inverse can be computed in almost linear time by recursion on any subset of
�10,000 individuals. The purpose of this study is to present a theory of why such a recursion works and its implication for other
populations. Assume that, because of a small effective population size, the additive information in a genotyped population has a small
dimensionality, even with a very large number of SNP markers. That dimensionality is visible as a limited number of effective SNP
effects, independent chromosome segments, or the rank of the genomic relationship matrix. Decompose a population arbitrarily into
core and noncore individuals, with the number of core individuals equal to that dimensionality. Then, breeding values of noncore
individuals can be derived by recursions on breeding values of core individuals, with coefficients of the recursion computed from the
genomic relationship matrix. A resulting algorithm for the inversion called “algorithm for proven and young” (APY) has a linear
computing and memory cost for noncore animals. Noninfinitesimal genetic architecture can be accommodated through a trait-specific
genomic relationship matrix, possibly derived from Bayesian regressions. For populations with small effective population size, the
inverse of the genomic relationship matrix can be computed inexpensively for a very large number of genotyped individuals.
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FOR animals and plants, many genomic analyses with SNP
data use one of two approaches. Either effects of SNP

markers are estimated with best linear unbiased prediction
(SNP-BLUP) (Meuwissen et al. 2001; VanRaden 2008;
Gianola et al. 2009; Piepho 2009) or a genomic relationship
matrix (GRM) is used in genomic BLUP (GBLUP) (VanRaden
2008). Estimation of SNP effects makes SNP selection and
estimation of SNP variance easy, leading to straightforward
single-trait prediction and genome-wide association study
(GWAS). GBLUP is easier to use in more complex models
(e.g., multiple traits) and for parameter estimation because
existing BLUP including parameter estimation methodology
can be used, although the use of GBLUP for GWAS is more

complex (Zhang et al. 2010). For prediction, SNP-BLUP (pos-
sibly with SNP weighting) and GBLUP are equivalent models
(VanRaden 2008) but they differ in computing cost. SNP
estimation includes the same number of SNPs independent
of the number of individuals. Adding extra individuals incurs
linear computing costs and no additional storage. GBLUP
usually requires an inverse of GRM, and explicit inversion
requires quadratic memory and cubic computations.

When only a small fraction of the population is genotyped,
GBLUP can be extended to single-step GBLUP (ssGBLUP)
(Aguilar et al. 2010; Christensen and Lund 2010). In this
method, a numerator relationship matrix (NRM) for all indi-
viduals and a GRM are combined and then applied to BLUP.
Benefits of ssGBLUP include simplicity of application (an-
other BLUP), avoidance of double counting, and accounting
for preselection onMendelian sampling (Legarra et al. 2014).
However, ssGBLUP also requires an inverse of GRM.

The inverse of GRM can be computed with general algo-
rithms only for up to perhaps 150,000 individuals because of
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memory and computing time limitations. However, the num-
ber of genotyped individuals across animal populations is
expanding. In dairy cattle, .950,000 Holsteins have been
genotyped in the United States as of November 2015 (Coun-
cil on Dairy Cattle Breeding; https://www.cdcb.us/Geno-
type/cur_density.html). Several algorithms were proposed
to lower the cost of ssGBLUP (Legarra and Ducrocq 2012;
Fernando et al. 2014; Liu et al. 2014), but either they are
computationally expensive or the algorithms do not converge
with a large number of genotypes.

Past progress in animal breeding resulted to a large degree
from a fast algorithm to invert the NRM (Henderson 1976).
Although the cost of explicit inversion of the NRM is cubic
with the number of animals, the cost of creating that inverse
directly by recursion is very low (Henderson 1976; Quaas
1988). When animals are ordered from oldest to youngest,
a recursion for each animal includes at most only two terms
(one for each parent). Consequently, the inverse of the NRM
can be created at a linear cost.

Faux et al. (2012) applied recursions on relatives of geno-
typed individuals to the GRM; however, the inverse was not
accurate.Misztal et al. (2014) postulated recursions on “proven”
animals (with their own phenotypes or their progeny pheno-
typed) and called themethodology an algorithm for proven and
young (APY) animals. The APY was tested in a population of
Holsteins with a total of 100,000 genotyped animals and differ-
ent groups of animals in recursion (Fragomeni et al. 2015).
When recursions were on proven bulls only, the correlation of
genomic estimated breeding values (GEBVs) for selection can-
didates with APYG21 with GEBVs from a complete inverse was
.0.99. When only cows were in the recursion, the correlation
remained .0.99. When the recursion included random sub-
sets of 5000, 10,000, and 15,000 animals, the correlations
were 0.97, 0.98, and 0.99, respectively, with minimal variabil-
ity among replicates. Moreover, the convergence rates with
random subsets were superior, indicating better numerical
conditioning. The APY was also applied to a commercial pop-
ulation of Angus cattle (Lourenco et al. 2015). With recursions
on 4000, 8000, and 33,000 animals, the APY accounted for
84%, 97%, and 100%of accuracy gains of ssGBLUPover BLUP,
respectively. The APY computing and storage costs when ap-
plied to cattle are almost linear, which allows for inverting
practically any GRM size. However, why the APY works and
its possible internal limitations have not been addressed. The
first purpose of this study was to develop a theory explaining
why recursion on a limited number of individuals results in an
accurate GRM inverse. The second purpose is to determine
implications of that theory for populations other than cattle.

Methods

Recursions and the inverse of the numerator
relationship matrix

Henderson’s (1976) inverse of the relationship matrix can
be derived by recursion. Let u be a vector of additive effects or

breeding values (BVs) distributed as u � Nð0;AÞ; where A is a
numerator relationship matrix and, for simplicity, the additive
variance is set to 1. Following developments in Misztal et al.
(2014), the joint distribution of u1; :::; un can be written as

pðu1; ::; unÞ ¼ pðu1Þ  pðu2ju1Þ  pðu3ju2; u1Þ . . .  
pðunju1; u2; . . . ; un21Þ:

A notation below n:m denotes an index from n to m. Assum-
ing normality, the conditional distributions are

pðuiju1; u2; . . .; ui21Þ � N
h
ai;1:i21ðA1:i21;1:i21Þ21u1:i21; ai;i

2 ai;1:i21ðA1:i21;1:i21Þ21ai;1:i21

i

with ai;1:i21 part of the ith row of A, and with the recursion
equation

ui
��u1 . . . ui21 ¼

Xi21

j¼1

pijuj þ ui;

where ui   is independent of u1 . . . ui21: In matrix notation

pi;1:i21 ¼ ai;1:i21ðA1:i21;1:i21Þ21;

Mi;i ¼ mi ¼ varðuiÞ ¼ ai;i 2pi;1:i21a9i;1:i21:

In matrix notation, the recursions can be written as

u ¼ PuþF; varðFÞ ¼ M;

where M is a diagonal matrix. Because u ¼ ðI2PÞ21F; the
inverse of A can be computed as

A21 ¼ ðI2PÞ9M21ðI2PÞ;

which is a form of a Cholesky decomposition with diagonal
M = diag{mi) and lower diagonal p = {pij} with entries
defined for elements with indexes j# i. Each different order-
ing of individuals will lead to a different matrix P but identi-
cal A21. For random ordering P is likely dense, and the cost of
the Cholesky decomposition with dense coefficients is cubic.
Additional costs of the inverse will include calculation of A
and P.

Henderson (1976) discovered rules to create A21 at a low
cost. Indirectly, the rules are based on a recursion (Quaas
1988),

ui ¼ 0:5ðusi
þ udi

Þ þ ui;

where si and di refer to the sire and dam of animal i, and fi is
the Mendelian sampling. Subsequently, when animals are
ordered from the oldest to the youngest,

uiju1 . . . ui21 ¼ uijusi ; udi
;

P has atmost only two nonzero elements per row correspond-
ing to parents and equal to 0.5, and the inverse can be
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calculated at a low and linear cost. Additionally, computing A
is no longer needed as the nonzero elements of P are known
and diagonal elements of M are easy to compute. Even
though the inverse by Henderson (1976) is very simple, it
is not an approximation. In practice, it may be more accurate
than an inverse derived from inverting A explicitly because of
fewer computations and thus lower rounding errors.

Recursions and the inverse of the genomic
relationship matrix

Let u be distributed as u � Nð0;GÞ; where G is a genomic
relationship matrix. The recursion equations are the same as
previously,

ui
��u1 . . . ui21 ¼

Xi21

j¼1

pijuj þ ui;

but with different coefficients,

pi;1:i21 ¼ gi;1:i21ðG1:i21;1:i21Þ21;

Mi;i ¼ mi ¼ varðuiÞ ¼ gi;i 2pi;1:i21g9i;1:i21;
(1)

and a similar inverse

G21 ¼ ðI2PÞ9M21ðI2PÞ: (2)

This inverse can be computed at a low cost only when P is
sparse and only a small fraction of G needs to be computed.
The next sections show that both conditions can be met for
populations with limited effective population size.

Recursion and SNP model

Assume availability of an optimal number of SNP markers
(called effective SNP) such that increasing that numberwould
not increase the accuracy of prediction. Let y ¼ mþ Zaþ e
with varðaÞ ¼ Is2

a and varðeÞ ¼ Is2
e be a SNP BLUP, where y

is a vector of phenotypes (or phenotype equivalents), m is
population mean, a is a vector of SNP marker effects, Z is a
centered matrix of gene content, e is a vector of residual
effects, I is an identity matrix, s2

a is SNP marker variance,
and se

2 is residual variance. If u is a vector of BVs, then
u ¼ Zaþ e; where e is the fraction of BVs unexplained
by SNP effects with varðeÞ ¼ Is2

e : Applications to farm ani-
mals using medium-size SNP chips usually assume e � 0
(VanRaden 2008; Goddard et al. 2011).

Divide individuals arbitrarily into two groups: core indi-
viduals denoted as c and other (noncore) individuals denoted
as n. Then uc ¼ Zcaþ ec and un ¼ Znaþ en: The conditional
expectation of a|uc is BLUP prediction of SNP effects calcu-
lated from BVs of core animals

â ¼ ðZ9cZc þ IaÞ21Z9cuc;

where a ¼ s2
e =s

2
a: Let a ¼ âþ ea; where ea is prediction er-

ror, varðeaÞ is prediction error variance (PEV), and â and ea
are independent. Then

un ¼ Zn
h
ðZ9cZc þ IaÞ21Z9cuc þ ea

i
þ en

¼ ZnðZ9cZc þ IaÞ21Z9cuc þ en þ Znea:

If SNP effects nearly fully explain BVs (ec � 0;  en � 0),

un ¼ Pncuc þFn;

where Pnc ¼ ZnðZ9cZc þ IaÞ21Z9c is a matrix that relates breed-
ing values of noncore to core individuals andFn ¼ en þ Znea:
Note that the combined error term Fn has a nondiagonal
variance but can be approximated as diagonal especially
when the number of core individuals is equal to or greater
than the number of SNPs (ea � 0).

In the formula that relates noncore to core animals, using
fewer core animals than the number of SNPs necessary would
lead to increased PEV, and using more core animals than the
number of SNPs should not affect PEV. Note that when the
number of core animals is the same as the number of effective
SNPs and Zc is invertible, BVs of core animals contain almost
the same information as these SNP effects or

a � Z21
c u c:

Consequently, BVs of core individuals act as linear combina-
tions of effective SNP effects and BVs of noncore individuals
depend approximately only on BVs of core individuals. The
above formula is useful only for presentation as in practice the
differences in GEBVs with slightly different numbers of core
animals are minuscule (see Figure 1).

Recursions and independent chromosome segments

For populations with limited effective population size (Ne), the
genome is broken into a small number called homogenic or
independent chromosome segments (ICS), with the number of
segments inversely proportional to Ne (Stam 1980; Daetwyler
et al. 2010). If the number of ICS in a population isMe and each
segment has an additive effect, the BV of each individual is a
sum of effects of chromosome segments present in that indi-
vidual. The following derivations use the previous derivations
while substituting effective SNP effects by ICS effects.

Let s be a vector of additive effects of ICS. Assume that
these effects explain nearly all the additive variance. Let tij be
a fraction of segment j in individual i, and assume that the
value of tij is tijsj. Assuming a gametic model, tij would take
values of 0, 1, or 2, although this assumption is not critical
here. Then u ¼ Tsþ e; where T is a matrix that relates u to
chromosome segments, var(s) = Is2

t ; s
2
t is segment variance,

and e is the fraction of BVs unexplained by ICS effects.
Following thepreviousderivations,divide the individuals into two

groups: core andnoncore,uc ¼ Tcsþ ec andun ¼ Tnsþ en: If the
number of core animals is equal toMe, T is full rank, and ec � 0;

s � T21
c uc

or nearly all the additive information present in ICS is also
present in BVs of core animals. Then,
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un � TnT
21
c uc þ en ¼ Pncuc þ en

and like before, BVs of noncore individuals depend approx-
imately only on BVs of core individuals.

Recursions and the APY formula

Based on previous derivations, when the number of core
animals is sufficiently large, BVs of noncore animals depend
only on BVs of core animals. However, obtaining the values of
Pnc and corresponding errors from the formula with effective
SNPs or ICS is hard. If the GRM is available, the inverse can be
obtained indirectly, by applying Equations 1 and 2. In (1), de-
compose the componentmatrices P andM into sections due to
core and noncore animals

P ¼
�
Pcc 0
Pnc 0

�
; F ¼ �

ui
� ¼

�
Fc
Fn

�
; M ¼

�
Mcc 0
0 Mnn

�
:

Subsequently, the complete recursion is
�
uc
un

�
¼

�
Pcc 0
Pnc 0

��
uc
un

�
þ
�
Fc
Fn

�
;

as the term relating BVs of noncore animals to BVs of noncore
animals (Pnn) is null. Following Equation 2, the inverse ofG is

G21 ¼
�
I2P9cc 2Pcn

0 I

��
M21

cc 0
0 M21

nn

��
I2Pcc 0
2Pnc I

�
:

If the inverse corresponding to core animals is available,
G21

cc ¼ ðI2P9ccÞM21
cc ðI2PccÞ; and the complete inverse can

be simplified to

G21 ¼
�
G21
cc 0
0 0

�
þ
�
2Pcn
I

�
M21

nn ½2Pnc I �:

Computing Pnc directly is impossible especially when the ef-
fective SNPs or ICS are not known; however, Pnc can be com-
puted indirectly from the GRM. Denote

var
�
uc
un

�
¼ G ¼

�
Gcc Gcn
Gnc Gnn

�
s2
u;

where G is a GRM and s2
u is the additive variance.

Using conditional distributions, Pnc ¼ GncG21
cc ; Mnn ¼

diagfgi;i 2pi;1:i21g9i;1:i21g for individual i in the noncore
group, and the inverse of G can be calculated as

G21 ¼
�
G21
cc 0
0 0

�
þ
�
2G21

cc Gcn
I

�
M21

nn
�
2GncG21

cc I
�
:

The above equation is the same as that reported by Misztal
et al. (2014) for the APY with proven animals as the core
group and young animals as the noncore group. The formula
above requires that onlyGcc be full rank. WhenG is not of full
rank, the APY inverse may in fact be a generalized inverse.

The above derivations can be simplified if the recursion
includes only the noncore animals. Then

�
uc
un

�
¼

�
I 0

Pnc I

��
uc
Fn

�
:

Subsequently

G ¼
�

I 0
Pnc I

��
Gcc 0
0 Mnn

��
I Pcn
0 I

�
;

and

G21 ¼
�
I 2Pcn
0 I

��
G21
cc 0
0 M21

nn

��
I 0

2Pnc I

�
;

which leads to the same formula as derived previously.

Computing costs

Inversion of G by APY has a cubic cost (and quadratic mem-
ory) for core individuals and a linear cost (and linear mem-
ory) for noncore individuals. Savings inmemory and computing
are due to ignoring storage and computations for the blocks of
noncore3noncore animals (except diagonal elements) for both
G and APY G21 (see Figure 2). Assume n core and p noncore
individuals. Although regular G21 requires �ðnþ pÞ2 memory
and ðnþ pÞ3 computations, APY G21 requires only �2npmem-
ory and n3 þ 2n2p computations. If b ¼ n=ðnþ pÞ is the frac-
tion of individuals that compose the core group and n,, p;
APY G21 would require only �2b memory and 2b2 compu-
tations of the regular algorithm. If n = 10,000 and n + P =
600,000, this is equivalent to 3% of the storage and 0.05% of
the computations of the regular algorithm.When the number of
core animals is limited, the APY effectively removes limits from
computing G21.

Determination of effective number of SNP markers

Assume an SNP model with a very large number of possibly
redundant SNP markers. The real dimensionality of the SNP
information and subsequently the number of core animals
required to account for all information in thesemarkers can be

Figure 1 Correlations between genomic estimated breeding values (GEBVs)
for selection candidates using regular and the APY inverse of the genomic
relationship matrix (GRM) with various numbers of base individuals (Fragomeni
et al. 2015). Correlations are based on analysis of 10,102,702 final scores on
6,930,618 Holstein cows, with genotypes available on 100,000 animals; and
correlations are based on GEBVs for 49,611 selection candidates.
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determined by singular value decomposition (e.g., Wall et al.
2003). In a formula that relates BVs to SNP effects u ¼ Za
(ignoring the error term), apply singular value decomposi-
tion Z=UDV, whereU and V are unitarian matrices (UU9= I
and VV9 = I) and D={dij} is a diagonal matrix with singular
values on the diagonal. Then

u ¼ UDVa:

Let Ds be a matrix of rows of D where small singular values
(say , u) are zeroed. A well-chosen u would retain the ac-
curacy of BVs

u ¼ Za ¼ UDVa � UDsVa

while reducing thedimensionality of theSNP information; the
number of nonzero values in Ds can be called the effective
number of SNPs and the nonzero fraction of DsVa could be
called effective SNP markers. The parameter u and the effec-
tive number of SNPs can be obtained from eigenvalues of the
GRM. On the variance scale

G ¼ varðUDVaÞ�UDD9U9;

where the formula above shows eigendecomposition of G
with DD9 as a diagonal matrix of eigenvalues. Following
Janss et al. (2012), the average fraction of retained variance
over all individuals with small eigenvalues set to 0 is pro-
portional to the sum of retained eigenvalues. Subsequently
f2 can be chosen to retain a high fraction of the variance (say
0.98) by

u :

P
di .u

d2i

P
d2i

¼ 0:98:

Summarizing, the number of effective independent SNPs and
subsequently the minimum number of core animals can be
derived from eigenvalue analysis of the GRM.

Genetic architecture and the GRM

While the derivations for the APY included SNP effects or
effects of ICS, these effects are absent from final APY deriva-
tions,which depend onGRMonly. Therefore, any information
on specific architecture of a trait, if present, needs to be
included in the GRM. In the GBLUP case (same variance of
each SNP effect) the GRM can be derived from SNP BLUP as
G ¼ ZZ9=q; where q is a scaling factor (VanRaden 2008). For
weighted SNP BLUP, where varðaÞ ¼ Ds2

a andD is a diagonal
matrix of weights, the GRM becomes G ¼ ZDZ9=q: Weights
can be computed with the SNP model (e.g., Gianola et al.
2009), the GBLUP model (Zhang et al. 2010, 2015; Sun
et al. 2012), or ssGBLUP (Wang et al. 2012).

Discussion

Derivations using SNP effects

Because adjacent SNP markers carry limited information due
to linkage disequilibrium, the required number of core indi-
viduals in the APY may be equal to some number of “effective
independent” SNP markers, as discussed; such a number
would be almost independent of the actual number of
markers if the number of actual markers is large enough. In
Holsteins, predictions using SNP-BLUP were considerably
more accurate with 40,000 than with 10,000 SNPs (VanRa-
den et al. 2009). However, improvements in accuracy using
SNP-BLUP with higher-density SNP chips (VanRaden et al.
2013) or sequencing (Druet et al. 2014) are very small. Pre-
dictions with APY G21 for the national evaluation of �7 mil-
lion Holsteins were accurate when the number of core
animals was .10,000 (Figure 1), with little improvement
beyond that number (Fragomeni et al. 2015). This suggests
the effective number of SNPs for Holstein cattle to be
�10,000. For GWAS, Li et al. (2012) presented methods for
estimating the effective number of independent markers
based on eigenvalues of a SNP correlation matrix. For a hu-
man HapMap CEU population, they estimated the number
of independent SNPmarkers at,620,000. The effective pop-
ulation size for that population was estimated at �3100
(Tenesa et al. 2007). Assuming that the number of such
markers is proportional to an effective population size, a sim-
ple extrapolation for Holsteins (effective population size
�100) leads to,20,000 effective independent SNP markers.
Pintus et al. (2013) found that �15,000 eigenvalues extract-
ed from a matrix similar to the correlation matrix based on
40,000 SNPs explained 99% of variance for various traits of
Holstein bulls. Marginally higher realized accuracies with
higher SNP density could partially be due to lower sampling
errors in the GRM (VanRaden 2008; Goddard et al. 2011).

There is a question of whether the number of core animals
is trait dependent. In this study, APY G21 was derived as an

Figure 2 Sparsity pattern of a regular genomic relationship matrix (G) and
its inverse (G21) and elements of the genomic relationship matrix needed
for construction of the APY (G for the APY) and the APY inverse (APY G21).
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extension of the theory for the inverse of the numerator re-
lationship matrix, which is not trait specific. On the other
hand, when all QTL are SNPs and identified, the number of
effective SNPs is equal to the number of QTL.

ICS

The main advantage of derivations with ICS is linking the
number of core animals to an effective population size. Many
definitions exist for the average number of ICS (Me)
(Daetwyler et al. 2010), with the upper bound Me = 4NeL,
where Ne is effective population size and L is the length of
the genome in morgans (Stam 1980). Assuming that most
commercial populations of animals have Ne # 100 and L# 30,
Me # 12,000.

The concept of ICS is abstract, with segments not di-
rectly identifiable. Because ICS are associated with linkage-
disequilibrium blocks (Cuppen 2005), the number of ICS and
the number of effective independent SNPs may be similar
under the polygenic model. Estimates of the number of ICS
in commercial livestock populations vary greatly when esti-
mated from realized accuracies (Brard and Ricard 2015),
probably because those accuracies are dependent on selec-
tion intensity, with smaller accuracies under stronger selec-
tion (Bijma 2012; Lourenco et al. 2015). Another reason
could be an implicit assumption of a constant size of each
chromosome segment. In fact, Stam (1980) gave formulas
for a distribution of segment size. Assuming that the propor-
tion of variance explained is approximately proportional to
segment size, a relatively small number of the largest seg-
ments may explain a large fraction of the variance while the
remaining majority of segments may explain a small fraction
of the variance. This is analogous to eigenvalue distribution.
In a study by Fragomeni et al. (2015), the correlations of
GEBVs obtained with regular and APY G21 were very high,
0.94 with only 2000 core animals, increasing to 0.99 with
15,000 animals. In a study by Lourenco et al. (2015), 84% of
accuracy gains due to genomic information were obtained
using 4000 animals, with an increase to 97% with 8000 an-
imals and 100% with 33,000 animals. As the reason for both
a small number of ICS and reduced dimensionality of SNP
information is linkage disequilibrium, the number of the
largest effective SNPs and the number of largest ICS explain-
ing the same amount of variance may be similar.

If the number of effective SNPs and the number of ICS are
similar, these numbers can be estimated from eigenvalue
decomposition of the GRM, as presented. This requires avail-
ability of a genotyped population with the size a few times
larger than the number of ICS. For very large populations,
computations of eigenvalues may be a limiting factor.

A relationship betweenNe andMe allows one to determine
applicability of the APY for different populations. In general,
the APY can lead to computational savings when the number
of genotyped individuals is large and at least twice the num-
ber of ICS. Assuming (from Holsteins) Ne � 100, the APY is
useful for $20,000 individuals. Extrapolating, with Ne �
3000 (a smaller estimate in some human populations), the

APY would be useful for $600,000 individuals. Therefore,
the APY appears to be more useful for animal populations
with small Ne.

Determining the number of core individuals

Too fewcore individualswould reduceaccuracyof the inverse,
whereas too many would increase cost and possibly decrease
numerical stability because of unnecessary computations. The
optimal number of core individuals could be defined such that
increasing that number brings no notable improvement in
accuracy of GEBVs calculated using APY G21: This number of
individuals can be determined by performing many analyses
with different numbers of core individuals and comparing
GEBVs or realized accuracies. Alternatively, the number of
effective SNPs can be calculated from eigenvalue decompo-
sition of the GRM as the number of the largest eigenvalues
that explain 98–99% of the variation in the GRM, assuming
that the remaining variation is due to sampling noise. The
choice of the number of core animals is not critical.

Choice of animals for recursion

Based on the provided theory, the choice of animals for re-
cursion as core animals is not critical as long as appropriate
matricesare full rank, and this excludesonlymultiple copiesof
clones. In practice, the choice may have some impact. The
APY G21 is sparse, with the location of dense blocks depen-
dent on the definition of core animals. When such an inverse
is used in mixed-model equations solved iteratively, the con-
vergence rate may vary with the choice of core animals. In
Holsteins, the best convergence rate was found with core
animals selected randomly whereas the slowest was with
cows as core animals (Fragomeni et al. 2015). Another factor
is quality of genotypes. In commercial populations, animals
may be genotypedwith SNP chips of different density followed
by, sometimes multiple, imputation to a standard SNP density.
In genetic evaluation including �570,000 genotyped ani-
mals, use of popular sires as core resulted in slightly greater
accuracy at the same size of recursion than random choices
(Masuda et al. 2016). Therefore, the selection process may
include the quality of genotypes. In particular, more “valuable”
animals, e.g., popular sires, are more likely to have more
accurate genotypes.

Which inverse is more accurate?

A priori is not clear which of regular and APY G21 is superior.
Masuda et al. (2016) looked at realized accuracies of Holstein
bulls and found that those obtained with APY G21were mar-
ginally (,0.01) greater. If the proposed theory for the APY is
applicable, the APY G21 is accurate if the number of core
individuals reaches the number of ICS or effective number
of independent SNPs. Therefore, for large populations most
computations with regular G21 are redundant and may lead
to numerical problems. As argued before, the real rank of
GRM (disregarding very small eigenvalues) is likely equal
to the number of ICS (or independent SNPs). The GRM with
a larger number of individuals is singular and standard
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procedures to invert it include blending, a weighted mean of
the original GRMwith a NRM (VanRaden 2008; Aguilar et al.
2010); the primary purpose of blending is numerical stability
of inversion as GEBVs obtained with blending 1–10% of the
NRM were nearly identical (Misztal et al. 2010). Another
reason for higher accuracy of APYG21 could be less influence
from sampling errors in the GRM, as the APY does not use the
block of GRMs due to noncore individuals (except for diago-
nals); the standard error of an element of the GRM assuming
0.5 allele frequencies is 1=

ffiffiffiffiffiffiffi
8m

p
; where m is the number of

SNP markers (VanRaden 2008).

Concluding remarks

The presented theory explains why and when recursions on a
small subset of animals lead to an efficient computation of
inverse of the GRM. Such an inverse is accurate when the
subset is as large as the number of ICS or the rank of the GRM;
for Ne = 100 the number of ICS is �10,000. When the num-
ber of genotyped individuals is much larger than the number
of ICS, the APY inverse is sparse and facilitates genomic eval-
uation, parameter estimation, and GWAS at greatly reduced
cost and potentially higher accuracy than a regular inverse.
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Appendix

Numerical Example

Consider five individuals with two SNP genotypes aA/BB, AA/bB, aA/bB, AA/BB, and aa/BB; the third and fourth individuals
could be progeny of the first two individuals while the fifth would be unrelated. Construct a GRM as in VanRaden (2008),
assuming 0.5 gene frequencies, and add 0.01 to the diagonal as otherwise the GRM has a rank of 2:

Z ¼

2
6666664

0 1

1 0

0 0

1 1

21 21

3
7777775
;

G ¼ ZZ9
1:25

þ I 0:01 ¼

2
6666664

0:81 0 0 0:80 20:80

0:81 0 0:80 20:80

0:01 0 0

1:61 21:60

symm: 1:61

3
7777775
:

Treat the first two individuals as core and the rest as noncore. Subsequently

G21
cc ¼

�
1:235 0

0 1:235

�
;

Pcn ¼ G21
cc Gcn ¼

�
0:000 0:988 2 0:988

0:000 0:988 2 0:988

�
;

Mnn ¼
2
40:010 0 0

0:030 0
0 0 0:030

3
5;G21 ¼

2
66664

66:8 65:5 0 233:1 33:1
66:804 0 233:1 33:1

100:0 0 0
33:6 0

symm: 33:6

3
77775:

For comparison, a regular inverse of the GRM (G21
reg) is quite different,

G21
reg ¼

2
66664

40:6 39:4 0 219:9 19:9
40:6 0 219:9 19:9

100:0 0 0
60:0 39:9

symm: 60:0

3
77775;

although the inverse of the APY inverse is almost identical to the original GRM



G21�21 ¼

2
66664

0:81 0 0 0:80 20:80
0:81 0 0:80 20:80

0:01 0 0
1:61 21:58

symm: 1:61

3
77775:

Large differences on the inverse but not the original scale can be explained by eigen-decomposition G = UDU9, where D is a
diagonal matrix of eigenvalues, andG21=U9D21U. The smaller the eigenvalue is, the smaller its impact onG but the larger the
impact on G21.
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