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Abstract 

Background:  Nutrient acquisition and metabolism pathways are altered in cancer cells to meet bioenergetic and 
biosynthetic demands. A major regulator of cellular metabolism and energy homeostasis, in normal and cancer cells, 
is AMP-activated protein kinase (AMPK). AMPK influences cell growth via its modulation of the mechanistic target 
of Rapamycin (mTOR) pathway, specifically, by inhibiting mTOR complex mTORC1, which facilitates cell proliferation, 
and by activating mTORC2 and cell survival. Given its conflicting roles, the effects of AMPK activation in cancer can be 
counter intuitive. Prior to the establishment of cancer, AMPK acts as a tumor suppressor. However, following the onset 
of cancer, AMPK has been shown to either suppress or promote cancer, depending on cell type or state.

Methods:  To unravel the controversial roles of AMPK in cancer, we developed a computational model to simulate 
the effects of pharmacological maneuvers that target key metabolic signalling nodes, with a specific focus on AMPK, 
mTORC, and their modulators. Specifically, we constructed an ordinary differential equation-based mechanistic model 
of AMPK-mTORC signaling, and parametrized the model based on existing experimental data.

Results:  Model simulations were conducted to yield the following predictions: (i) increasing AMPK activity has oppo-
site effects on mTORC depending on the nutrient availability; (ii) indirect inhibition of AMPK activity through inhibition 
of sirtuin 1 (SIRT1) only has an effect on mTORC activity under conditions of low nutrient availability; (iii) the balance 
between cell proliferation and survival exhibits an intricate dependence on DEP domain-containing mTOR-interacting 
protein (DEPTOR) abundance and AMPK activity; (iv) simultaneous direct inhibition of mTORC2 and activation of 
AMPK is a potential strategy for suppressing both cell survival and proliferation.

Conclusions:  Taken together, model simulations clarify the competing effects and the roles of key metabolic signal-
ling pathways in tumorigenesis, which may yield insights on innovative therapeutic strategies.
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Background
Controlled cell division is essential for cellular homeo-
stasis and normal development. Abnormal cell prolifera-
tion is associated with pathological states such as cancer. 
To support their growth and proliferation, cancer cells 
reprogram their metabolism to promote nutrient uptake 
[1]. Despite the heterogeneity in genetic mutations that 

leads to tumorigenesis, a common alteration in tumors 
occurs in pathways to upregulate nutrient acquisition and 
optimize nutrient utilization when resources are scarce 
[2]. Indeed, metabolic reprogramming is a hallmark of 
cancer, and a better understanding of the synergy among 
the many signalling proteins and kinases may yield useful 
targets for therapies.

One of the central signaling pathways that control 
metabolic processes is the mechanistic target of Rapa-
mycin (mTOR) pathway. mTOR is a highly conserved 
serine/threonine protein kinase with two distinct com-
plexes, mTORC1 and mTORC2. mTOR controls cell 
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growth, proliferation, motility and survival, protein 
and lipid synthesis, glucose metabolism, mitochondrial 
function and transcription, in response to nutrient and 
hormonal signals [3]. mTOR is estimated to be hyper-
activated in over 70% of cancers [4] and its hyperactiva-
tion leads to tumor growth metastasis and angiogenesis 
[5]. This has stimulated interest in targeting mTORC1 
for cancer therapy. Notably, rapamycin and its ana-
logs bind to a domain separate from the catalytic site 
to block a subset of mTOR functions, inhibiting cell 
growth [6]. A limitation of rapamycin is that it is only 
an allosteric inhibitor of mTORC1 and mTORC2, the 
latter after a prolonged administration, but rapamy-
cin does not fully block mTOR activity [7, 8]. Second 
generation mTOR inhibitors that target the catalytic 
site of mTOR to block mTOR activity have been devel-
oped [9]. However, while the potency of these inhibi-
tors in slowing cell growth and proliferation has been 
demonstrated, their toxicity has limited their usage 
[10]. Furthermore, the metabolic plasticity of cancer 
cells allows them to trigger mTOR-independent mecha-
nisms to compensate for the inhibited mTOR activity, 
thereby allowing the cells to acquire sufficient nutrients 
for growth and proliferation. Consequently, there is an 
urgent need to improve therapeutic strategies to maxi-
mize their benefits [11].

Among the several proteins associated with mTOR 
and the formation of mTORC1 and mTORC2, one 
particularly intriguing modulator is the DEP domain-
containing mTOR-interacting protein (DEPTOR). 
Taken in isolation, DEPTOR inhibits both mTORC1 
and mTORC2 [12]. However, when feedback loops are 
taken into account, the overall impact of DEPTOR on 
mTOR signaling becomes more complex [13]. While 
DEPTOR depletion promotes mTORC1 activity, its loss 
has been reported to unexpectedly inhibit mTORC2 
[12]. Conversely, overexpression of DEPTOR reduces 
mTORC1 signaling and promotes mTORC2 activity 
[12]. This apparent paradox can be attributed to the 
mTORC1/Phosphoinositide 3-kinases (PI3K) feedback 
loop, whose opposing effect on mTORC2 dominates 
over DEPTOR. Because DEPTOR affects the signal-
ling of mTOR and PI3K, which are key modulators of 
cell growth, survival, and proliferation, the relationship 
between DEPTOR and cancer is a promising research 
focus. But as is often the case in cancer research, the 
ideal target compounds may differ depending on can-
cer types. In most cancers, DEPTOR expression is low 
[14–18]. Thus, it may be beneficial to administer com-
pounds that enhance the stability of DEPTOR or its 
connection to mTOR, in an attempt to suppress mTOR 
and the growth, survival, and proliferation of cancer 

cells. However, in some other cancers, e.g., multiple 
myeloma, DEPTOR expression is elevated [12]. Here, 
compounds that impair the DEPTOR-mTOR connec-
tions may be beneficial.

Another major regulator of cellular metabolism and 
energy homeostasis, in both normal and cancer cells, 
is AMP-activated protein kinase (AMPK). Known as 
a master regulator of cellular energy, AMPK is a het-
erotrimeric kinase complex consisting of a catalytic 
α-subunit and two regulatory subunits, β and γ [19]. 
Under conditions of low energy, AMPK phosphorylates 
specific enzymes and growth control nodes to increase 
ATP generation and decrease ATP consumption. The 
link between AMPK and cancer was first identified 
through the tumor-suppressive function of liver kinase 
B1 (LKB1), which phosphorylates AMPK and leads 
to mTORC1 inhibition [20]. Studies in animal models 
and humans have suggested that compounds that acti-
vate AMPK have health-promoting effects, including 
improvements in diabetes, cardiovascular health, and 
mitochondrial disease, and even extension in life span 
[21–24]. However, the role of AMPK in tumorigenesis is 
controversial: while studies have suggested that AMPK 
suppresses cancer cell proliferation and tumor forma-
tion [25], recent evidence also suggests that AMPK can 
promote T-ALL tumor cell growth through cell energy 
maintenance in some model organisms [26, 27]. Further 
complicating the picture, a direct link between AMPK 
and mTORC2 was recently discovered [28–30], which 
reveals the ability of AMPK to promote cell survival 
under energetic stress situations and emphasizes the 
strong interplay between anabolism and catabolism 
regulators: AMPK and the mTORC family [29].

Given its multifaceted and controversial roles in 
cancer and its beneficial capacity in many diseases 
such as diabetes, under what conditions is it advanta-
geous to activate AMPK and when is it not? How might 
a DEPTOR inhibitor differentially modify a cancer 
cell’s propensity to proliferate and persist? And how 
are these effects impacted by the cell’s microenviron-
ment? The multitude of biochemical reactions and 
feedback loops involved in the metabolic pathway are 
difficult to untangle. As such, we developed a computa-
tional model to simulate the effects of pharmacological 
maneuvers that target key metabolic signalling nodes, 
with a specific focus on AMPK, DEPTOR, and mTORC. 
Model simulations clarify some of these conflicting 
effects and provide a better understanding of the role 
of key metabolic signalling pathways in tumorigenesis. 
These findings may yield insights on innovative thera-
peutic strategies, including immunotherapy that targets 
relevant metabolic networks in cancer.
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Methods
The model represents key proteins in cellular metabo-
lism: insulin receptor substrate (IRS) and AKT, which 
modulate most of insulin’s effects on metabolism; 
mTORC1, mTORC2, DEPTOR, and ULK1, which medi-
ate mTORC1’s signal in autophagy initiation; and the 
two key energy sensors, AMPK and SIRT1. The dynam-
ics of the signaling pathways are modeled as a system 
of ordinary differential equations that involve Michaelis 
Menten and mass action kinetics. A schematic diagram 
of the model signalling pathway is depicted in Fig.  1. 
Model reactions are presented in Table 1S (supplemental 
materials).

Insulin activates the insulin receptor (IR), which 
triggers the IRS, resulting in the phosphorylation of 
mTORC2. mTORC2 phosphorylates AKT [31]. Activa-
tion of IRS also independently activates AKT, which 
activates mTORC1 through the phosphorylation of the 
tumor suppressor TSC2 (not represented). Activation of 
mTORC1 has a number of downstream effects, includ-
ing a negative feedback loop to IRS, and the inhibition of 
ULK1 [3, 10]. The ULK1 complex is a key contributor to 
the initiation of autophagy.

Both mTORC1 and mTORC2 are modulated by AMPK, 
a master regulator of cellular energy that is activated 
under starvation or hypoxia. AMPK can be inhibited by 
mTORC1 [32]; it can also be stimulated by LKB1 (not 

represented), which is deacetylated by SIRT1. Activated 
AMPK promotes autophagy by directly phosphorylating 
and activating ULK1 [33]. As such, there is a competition 
between mTORC1 and AMPK to phosphorylate different 
residues of ULK1 to decide cell fate. ULK1 in turn inhib-
its AMPK and mTORC1 in a negative feedback loop, 
whereas leucine activates them [34–36]. These feedback 
loops and interactions are summarized in Fig. 1.

Parameter estimation
Given that our main objective is to characterize pos-
sible emergent properties of the target metabolic net-
work under diverse physiological settings, we aim to 
explore the network behaviour over wide ranges of 
kinetic parameters, rather than constraining them to a 
specific dataset from a particular experimental model 
[37]. Nonetheless, model parameters are constrained by 
biologically plausible values. To determine the baseline 
parameter set, we perform careful calibration using data 
from multiple experimental studies. Specifically, model 
parameters are calibrated to satisfy the following crite-
ria simultaneously: (i) the model predicts oscillations 
in mTORC1, ULK1 and AMPK under energetic stress 
that approximate experimental data in Ref. [38], (ii) the 
feedback response of mTORC1 to variations in AMPK 
approximate experimental data in Ref. [39], and (iii) the 
model predicts changes in AMPK and AKT activation 

Fig. 1  Model metabolic signalling network. A schematic diagram depicting the interactions and feedback loops within the DEPTOR-mTOR network 
and their connections with external inhibitors and activators AMPK, ULK1, and insulin receptor substrate (IRS). Normal, blunt and dashed arrows 
denote activation, inhibition, and complex formation, respectively
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in response to treatment of AICAR, an AMPK activa-
tor, consistent with experimental data in Ref. [29, 40]. 
We seek to satisfy criteria (i)--(iii) simultaneously via an 
iterative process. Criterion (i) is satisfied by optimizing 
the predicted time-profiles using the interior point algo-
rithm in the MATLAB built-in function fmincon. Cri-
terion (ii) is satisfied by adjusting parameters K_AMPK 
and K_AMPK_by_SIRT1 to minimize the least-square 
difference between the predicted mTORC1 and mTORC2 
response curves, as the fractional activation of AMPK 
varies from 0.1 to 1.0. Criterion (iii) is satisfied by adjust-
ing parameters K_AMPK and K_AMPK_by_SIRT1 to 
minimize the difference between the measured and pre-
dicted AMPK and AKT activation levels. These proce-
dures are repeated iteratively until all three criteria are 
satisfied simultaneously. Baseline model parameters are 
given in Table 2S (supplemental materials).

Bifurcation analysis
To assess the impact of insulin receptor activation, [and 
whatever V_pmTORC2 and K_mTORC2_DEPTOR_diss 
describe], and AMPK abundance on metabolism, we 
conducted a bifurcation analysis to assess model sensi-
tivity to variations in parameters V_IR, V_pmTORC2, 
K_mTORC2_DEPTOR_diss, and AMPK abundance. 
The parameters are varied and at each point, the system 
of ODEs is solved in MATLAB from t = 0 to 1000 h. The 
timespan is set to last up to 1000 h to ensure that the sys-
tem has reached steady state or limit cycle oscillation. 
The maximum and minimum protein concentrations of 
the phosphorylated forms of mTORC1 and mTORC2 are 
determined from the last 200 h in time. Subsequently, 
they are plotted as single points in the bifurcation dia-
gram. Plotting both the maximum and the minimum 
allows the identification of limit cycle oscillation, as this 
would capture the maxima and minima of oscillation.

To understand the interplay between cell environment 
and type (shows itself as insulin sensitivity of the cell) and 
the amount of AMPK both V_IR and AMPK abundance 
were changed simultaneously. As a result, three-dimen-
sional bifurcation diagrams are plotted. A 1000 by 1000 
mesh is defined with varying V_IR and AMPK abun-
dance, and the initial condition for AMPK abundance 
varies from 0 to 1000. At each point in the mesh, the 
maximum and minimum protein concentrations are plot-
ted following the same procedure described previously.

Local sensitivity analysis
Local sensitivity analysis is conducted on mathematical 
models to assess how small perturbations in individual 
model parameters affect the output signals. The local 
sensitivity of a steady-state output signal S to changes 

in the parameter p can be determined by computing the 
normalized derivative of S with respect to p:

S(p0) corresponds to the steady state concentration of 
the signal S obtained using the initial parameter set p0. 
The parameter of interest p is perturbed by 0.5% (i.e., 
Δp = 0.005 * p0), and the new steady state concentration 
S(p0 + Δp) is obtained.

Global sensitivity analysis
In the global sensitivity analysis, the response of the out-
put variables to perturbations in parameter values is 
investigated across the entire parameter space. Model 
parameters are varied over the physiological ranges, 
where the maximum velocity (Vmax) ranges from 0.001 
to 10 nM/s, rates of formation and dissociation (K_form, 
K_diss) range from 10− 6 to 10 nM− 1 s− 1, rate of catalytic 
reaction (K) ranges from 10− 6 to 1 s− 1, and the Michae-
lis-Menten constant (Km) ranges from 1 to 1000 nM. 
N = 100,000 parameter sets are randomly sampled from 
the parameter space using Latin hypercube sampling. 
Model equations are solved for each parameter set p0 to 
yield steady-state solution S. The partial rank correlation 
coefficient (PRCC) is computed to characterize the cor-
relation between p0 and S using the following equation:

Comparison with existing models
The insulin/mTOR pathway has been the focus of a 
number of modeling studies. Kuepfer et  al. developed a 
dynamical model based on ordinary differential equa-
tions to study TOR signaling in budding yeast [41]. Dalle 
Pezze et  al. developed a dynamical model that includes 
both mTORC1 and mTORC2 [42], and combined with 
cell experiments to delineate amino acid-stimulated 
mTOR/AMPK network dynamics [43]. Recently, Sadria 
and Layton built a dynamical model that integrates the 
mTOR, AMPK and Sirtuin pathways, and applied that 
model to investigate the effect of them on aging and 
autophagy [10]. None of these models represent DEP-
TOR and thus cannot be used to assess the contribu-
tions of DEPTOR to the complexity of mTOR signalling. 
DEPTOR is represented in a dynamical model by Vaursai 
and Nguyen [13] however, that model does not include 
AMPK, SIRT, or ULK, all of which are key regulators of 
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mTORC dynamics and are thus included in the present 
model. Another major distinction between the present 
model and its predecessors is the incorporation of.

the recently discovered feedback from AMPK to 
mTORC2 [29]. The presentation of this feedback unrav-
els the potential role of AMPK as a tumor promoter by 
favoring cell survival.

Results
Model calibration and validation
Model parameters are chosen so that the model predicts 
oscillatory time-profiles of mTORC1, ULK1 and AMPK 
consistent with experimental observations under ener-
getic stress [38] (see materials and methods). The pre-
dicted time-courses are shown in Fig.  2(A-C) together 
with experimental data [38]. The period of oscillation is 
approximately 24 h. Additionally, model parameters are 
chosen to yield mTORC1 response to changes in AMPK 
activation level that match experimental values [39]. The 
predicted relation is shown in Fig.  2D. Recently, it has 
been shown that AMPK promotes mTORC2 [29]. Addi-
tional calibration is performed using AICAR experimen-
tal data. Upon injection, AICAR activates AMPK, which 
results in the phosphorylation of mTORC2, reflecting 
in AKT activation. A comparison between model pre-
dictions and experimental data [29, 40] can be found 
in Fig.  2E. A  Similar agreement can be found between 
model predictions and measured AKT activation follow-
ing the administration of A-769662, an AMPK activator 
[29].

To validate the calibrated model, simulation results 
were then compared against experimental data not used 
in the parameter fitting. An additional validation test 
was done using the observed reduction in mTORC1 acti-
vation in patients with diabetes. A diabetes model was 
simulated by decreasing total insulin receptor abundance 
by 50%. The model predicted fractional reduction in acti-
vated mTORC1 in diabetes that is consistent with clinical 
data [44]; see Fig. 2F.

Sensitivity analysis
Local sensitivity analysis can be used to understand the 
sensitivity of model outputs to local variations in indi-
vidual parameters around baseline values. Most param-
eters have a negligible local effect on key model outputs, 
with sensitivity values close to zero (Fig. 1S, supplemen-
tal materials). The lone exception is K_pmTORC1, which 
denotes the deactivation rate of mTORC1. Most outputs 
are highly sensitive to changes in K_pmTORC1, includ-
ing IRS, AKT, AMPK, ULK1, SIRT1, mTORC1 and 
mTORC2. The sensitivity of model outputs to variations 
in K_pmTORC1 provides evidence for the key role of 
mTORC1 in determining network dynamics.

Global sensitivity analysis assesses the robust-
ness of the model output to uncertainty in individual 
parameters over their entire range of interest. Results 
of the analysis are illustrated as a heatmap in Fig.  3A. 
The probability density functions of the sampled out-
puts are included in Fig.  3S. Results of this analysis 
can identify the most effective parameters to target to 
manipulate the abundance of a given protein or sets of 
proteins. Specifically, we seek to identify drug targets 
for suppressing the proliferation and survival of can-
cer cells. Is there a parameter to which mTORC1 and 
mTORC2 are highly sensitive, in the same direction? 
Such a parameter would indicate an ideal cancer drug 
target. Unfortunately, the global sensitivity results do 
not reveal such a parameter (Fig. 3A). As an alternative, 
we seek parameters that mTORC2 is highly sensitive to, 
as these can serve as drug targets to be administered in 
conjunction with a mTORC1 inhibitor. Parameters with 
opposite signs for the PRCC values of mTORC1 and 
mTORC2 were excluded, to avoid promoting mTORC1. 
The analysis indicated V_mTORC2 (deactivation rate 
of mTORC2) and Kd_mTORC2_DEPTOR (dissociation 
rate of the mTORC2-DEPTOR complex) as the most 
promising candidates for mTORC2 suppression.

Furthermore, parameters that contribute the most 
to the variations in key model outputs were identi-
fied. mTORC1 is most sensitive to K_mTORC1_by_
pAKT and Km_mTORC1_by_pAKT, in opposite 
directions, with PRCC values of − 0.462 and 0.4671 
respectively. These parameters constitute the Michae-
lis Menten kinetics that characterize the activation of 
mTORC1 by AKT (see model equations in Table  1S). 
Due to mTORC1’s strong inhibition of ULK1, ULK1 
is similarly sensitive to variations in these parameters 
(Fig.  3A). Additionally, ULK1 is sensitive to variations 
in K_pULK1_by_pmTORC1, which characterizes the 
inhibition of ULK1 by mTORC1, and Km_ULK1, the 
Michaelis-Menten constant that characterizes ULK1 
activation; the associated PRCC values are 0.4347 
and − 0.4385, respectively. AMPK is most sensitive 
to K_pAMPK_by_pmTORC1, which characterizes the 
inhibition of AMPK by mTORC1, and Km_AMPK, 
the Michaelis-Menten constant that characterizes 
AMPK activation; the associated PRCC values are 
0.4993 and − 0.6441, respectively. The former indicates 
the strong negative feedback strength of mTORC1 on 
AMPK.

To illustrate how the abundances of model proteins 
change concomitantly as model parameters vary, we 
randomly sampled 150 solutions and plotted the val-
ues of 7 key proteins in Fig.  3B (mTORC1, pmTORC1, 
pmTORC1 + DEPTOR, mTORC2, pmTORC2, 
pmTORC2 + DEPTOR, and pDEPTOR). Since total 
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Fig. 2  Model parameters are fitted against experimental data. A-C, oscillatory model solution under energetic stress. Predicted time profiles are 
shown for pmTORC1, pAMPK, and pULK1, together with the corresponding experimental data points [38]. D, predicted phosphorylated-to-unph
osphorylated mTORC1 ratio as a function of AMPK activation, compared with data from [39]. E, predicted activation of AMPK and AKT following 
AICAR administration, compared with data from [29, 40]. F, predicted abundance of phosphorylated mTORC1 at different insulin receptor levels, 
corresponding to healthy and diabetic conditions. Diabetes values are normalized by the respective non-diabetes values. Experimental data [44] are 
shown in red dots with error bars
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Fig. 3  Top panel, heat map that illustrates the global sensitivity of key model outputs (horizontal axis) to variations in selected model parameters 
(vertical axis). Definition of the parameters can be found in the Supplemental Materials. Bottom panel, parallel coordinate plot showing the 
oscillations-inducing sets returned from a 7D analysis where the abundances of the model species are randomly sampled
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mTORC1 is conserved, a high phosphorylated mTORC1 
level is associated with lower mTORC1 and mTORC1-
DEPTOR. A similar relationship can be seen among the 
mTORC2 species and among the DEPTOR species.

Is AMPK a cancer suppressor or promoter? It depends 
on the cellular nutrient level
Activation of AMPK is generally viewed as beneficial. 
However, given AMPK’s impact on cellular energy and 
cycle, as well as the heterogeneity of cancer cell types, are 
there microenvironments under which AMPK activation 
may be harmful to the organism’s overall survival? To 
investigate this possibility, we simulated cellular micro-
environments with different metabolic stress levels by 
considering a range of V_IR values. V_IR determines 
the activation level of IR; consequently, higher V_IR val-
ues correspond to higher insulin and thus glucose levels 
in the microenvironment, and vice versa. For each V_IR 
value we varied AMPK abundance and analyzed changes 
in key variables mTORC1 and mTORC2 to assess the 
effects on the cell population. Results are shown as a sur-
face plot in Fig. 4B. We are particularly interested in the 
implications in cancer. Because mTORC1 and mTORC2 
promote cell proliferation and survival, respectively, the 
simultaneous inhibition of both proteins may help to 
limit the proliferation of cancer cells.

For a given AMPK activation level, increasing nutri-
ent availability (V_IR) generally promotes cell popula-
tion growth. That is intuitive and not at all surprising. A 

more interesting consideration is how AMPK activation 
may impact tumor cell population at different nutrient 
levels. Activation of AMPK facilitates the phosphoryla-
tion of mTORC2 but inhibits mTORC1. What is then the 
combined effect of AMPK activation on cancer cell pro-
liferation and survival? Interestingly, the answer depends 
on the cell microenvironment, specifically, on the nutri-
ent level of the cancer environment. At low nutrient 
levels, which corresponds to low insulin receptor activa-
tion (V_IR = 0.00737 in Fig. 4), increasing AMPK abun-
dance from 20 to 480 increases phosphorylated mTORC2 
by 3.87 folds, but has  a relatively negligible effect on 
mTORC1 activation, despite AMPK’s general inhibi-
tory effect on mTORC1. This is because the inhibition 
of mTORC1 by AMPK is partially offset by the indirect 
activation of mTORC1 by mTORC2. Taken together, 
enhancing AMPK abundance results in a 13% increase 
in total phosphorylated mTORC1 and mTORC2, which 
suggests that AMPK activation may have a detrimental 
effect on promoting the cancer cell population. See the 
left set of bars in Fig. 4A and the red diamonds in Fig. 4B. 
In contrast, in a microenvironment with sufficiently high 
nutrient levels (V_IR = 0.02), increasing AMPK abun-
dance from 20 to 480 reduces the total phosphorylated 
mTORC1 and mTORC2 by 22% (right set of bars in 
Fig. 4A and the blue squares in Fig. 4B). Thus, for cancer 
cells with chronic nutrient deprivation, AMPK inactiva-
tion is expected to have the beneficial effect of limiting 
their population.

Fig. 4  The effect of AMPK activation and nutrient levels on cell proliferation and survival, given by the sum of phosphorylated mTORC1 and 
mTORC2. A, results shown for two nutritional (V_IR) levels and three AMPK values. B, the full dependence of pmTORC1 + pmTORC2 on V_IR and 
AMPK. The data points corresponding to those shown in panel A are indicated by red diamonds (V_IR = 0.00737) and blue squares (V_IR = 0.2)
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SIRT1 inhibition produces markedly different cellular 
dynamics depending on cellular nutrient level
Model results above suggest that under certain cancer 
conditions, AMPK suppression may limit cancer cell 
population. This result is consistent with the observa-
tion that AMPK activation promotes prostate cancer 
cell growth under glucose deprivation [45]. However, 
while AMPK activators such as metformin are widely 
available, the same cannot be said for AMPK inhibi-
tors. The AMPK inhibitors such as Compound C, 
which has been shown to suppress the growth of some 
tumors and SBI-0206965 [46], are limited to laboratory 
applications [47]. Hence, for potential clinical applica-
tions we consider an alternative, indirect inhibition of 
AMPK. SIRT1, a member of the sirtuin protein family, 
is known as one of the activators of AMPK through the 
deacetylation of LKB1 [48]. SIRT1 can be inhibited by 
EX-527, which results in mTOR activation and may be 
beneficial in certain inflammatory injuries [49]. Thus, 
we assessed the effect of SIRT1 inhibition on mTORC1 
and mTORC2 dynamics under different cell microen-
vironments. We simulated the application of a SIRT1 
inhibitor at a dosage that reduces SIRT1 bioavailability 
to 10% of its baseline. We then examined the resulting 
AMPK and mTORC dynamics under different nutrient 
levels.

The predicted time-courses for phosphorylated AMPK, 
mTORC1, and mTORC2, together with the sum of 
the latter two, are shown in Fig.  5. These profiles were 
obtained for three different nutrient levels, at V_IR = 0.1, 
0.005, and 0.002687. Each profile was normalized by its 
peak value in that case. In all three cases, SIRT1 inhibi-
tion suppresses AMPK. By 62% under conditions with 
sufficient nutrients (V_IR = 0.1; Fig. 5A1), and to a lesser 
but still significant extent at lower nutritional levels (52 
and 43% at V_IR = 0.005 and 0.002687, respectively; 
Figs.  5B1 and C1). At V_IR = 0.1 (i.e., sufficient nutri-
ents), the decrease in activation of AMPK that follows 
SIRT1 inhibition enhances mTORC1 activation by 30% 
and reduces mTORC2 activation by 71% (Figs. 5A2 and 
A3). However, these effects are substantially attenuated 
at lower nutritional levels, with only 3 and 4% changes 
in mTORC1 and mTORC2 activation levels, respectively, 
at V_IR = 0.005 (Figs. 5B2 and B3), and with those effects 
becoming negligible at V_IR = 0.002687 (Figs.  5C2 and 
C3). These results suggest that SIRT1 inhibition may pro-
mote cell proliferation and limit survival, but that effect 
may be insignificant under severe nutrient deprivation. 
This result may seem inconsistent with the  model pre-
diction discussed earlier (Fig.  4A), where under nutri-
tional stress, inhibiting AMPK significantly reduces total 
phosphorylated mTORC1 and mTORC2. That discrep-
ancy can be explained, in large part, by the magnitude of 

AMPK reduction: in Fig. 4A, AMPK activation decreases 
by 24 folds, which may be achievable by an inhibitor that 
directly targets AMPK; whereas in Fig. 5C, indirect inhi-
bition of AMPK only reduces its activation by 43%.

Another noteworthy finding is that both V_IR and 
SIRT1 are bifurcation parameters. Under nutrient dep-
rivation (V_IR = 0.002687), the model predicts sus-
tained oscillations in the protein levels (Fig. 5C), driven 
by the multitude of feedback loops in the signalling net-
work. Those oscillations may persist, albeit transiently, 
with higher nutrient availability if SIRT1 is inhibited 
(V_IR = 0.005, Fig.  5B). At sufficiently high nutritional 
levels, the model predicts time-independent steady-
state solutions (V_IR = 0.1, Fig. 5A).

Effect of concomitant changes in DEPTOR and AMPK levels
DEPTOR is another key regulator of the mTORC fam-
ily. We seek to understand how changes in AMPK and 
DEPTOR abundance shift the balance between cell 
proliferation and survival, measured by the mTORC1/
mTORC2 ratio, and how that shift is affected by cel-
lular environments. With the plentitude of feedback 
loops and other connections among the signalling pro-
teins, the model predicts that variations in AMPK and 
DEPTOR abundance may generate complex mTORC 
dynamics. Results, obtained for V_IR = 0.01 and 
0.002687, are shown in Fig. 6.

DEPTOR inhibits both mTORC1 and mTORC2 but 
to different degrees, and the feedback loops intro-
duce further complexity. With sufficient nutrients and 
in the absence of stress in the cellular environment 
(V_IR = 0.01, Fig. 6B), the model predicts that cell pro-
liferation is maximized at mid-range DEPTOR abun-
dance values (~ 400–500, see Fig. 6B); either decreasing 
or increasing DEPTOR abundance favors cell survival 
over proliferation, as does increasing AMPK abundance 
(see Fig. 6B inset). mTORC dynamics is most sensitive 
to variations in AMPK abundance at this mid-range 
DEPTOR abundance regime; at sufficiently low or high 
DEPTOR abundance, changing AMPK abundance does 
not noticeably shift the cell proliferation versus survival 
balance. Sustained oscillations are not observed in the 
parameter space considered.

Under nutrient deprivation or stress (V_
IR = 0.002687, Fig.  6A), sustained oscillations are 
predicted at sufficiently low DEPTOR and AMPK 
abundance, but not in other parameter regimes. With 
low DEPTOR abundance, increasing AMPK abun-
dance introduces a significant shift towards cell sur-
vival (Fig. 6A inset). However, as DEPTOR abundance 
increases, AMPK’s role in the competition between cell 
proliferation and survival becomes negligible, as can be 
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seen in the red line in Fig. 6A inset, which shows that 
the pmTORC1/pmTORC2 ratio remains essentially 
unchanged as AMPK increases from 0 to 200.

Simultaneous suppression of cell proliferation and survival 
in cancer
To discourage cancer cell survival, mTORC2 may be 
inhibited via pharmaceutical manipulations. However, 
given the many protein-protein interactions, inhibition 
of mTORC2 inevitably affects mTORC1 activity, with 
potential unfavorable consequences. To understand the 

synergistic effect on cell proliferation and survival, we 
simulated the effect of a mTORC2 inhibitor, by vary-
ing the rate of deactivation of mTORC2 (V_pmTORC2). 
Given the somewhat unintuitive effect of AMPK activa-
tion on cell growth identified above under nutrient depri-
vation, model simulations were conducted for a range of 
AMPK abundance with V_IR = 0.002687. In this param-
eter regime, model solutions are oscillatory. The two 
surfaces shown in Fig. 7 correspond to the maxima and 
minima of the solutions. Additional response curves for 
mTORC1 and mTORC2 are shown in Figs. 3S and 4S.

Fig. 5  Effect of SIRT1 inhibition on AMPK and mTORC dynamics. A1--A3, V_IR = 0.1, which corresponds to high nutrient levels, the model predicts a 
time-independent steady-state solution. B1--B3, V_IR = 0.005, damped oscillations. C1--C3, V_IR = 0.00269, sustained oscillations
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Inhibition of mTORC2, which corresponds to high V_
pmTORC2 values, inhibits mTORC1 via AKT deactiva-
tion. Under nutritional deprivation, the competing effects 
on the two mTOR complexes yield an overall reduction 
in total phosphorylation of mTORC1 and mTORC2; 
see Fig.  7A. This trend is observed for the range of 
AMPK abundance considered. However, that comes 
with the potentially detrimental effect of enhancing cell 

proliferation, as evinced by the increasing pmTORC1/
pmTORC2 ratio as V_pmTORC2 increases (Fig.  7B) for 
a fixed AMPK. As such, to simultaneously suppress both 
cell proliferation (mTORC1) and survival (mTORC2), one 
may combine a mTORC2 inhibitor with an AMPK activa-
tor. At sufficiently high V_pmTORC2 and AMPK values, 
both the sum and ratio of phosphorylated mTORC1 and 
mTORC2 attain their minima (Fig. 7B).

Fig. 6  The shift between cell proliferation (pmTORC1) and cell survival (pmTORC2) as one moves around the DEPTOR and AMPK parameter space. 
A, V_IR = 0.002687. B, V_IR = 0.01. Insets show ratios of pmTORC1/pmTORC2 as functions of AMPK, at specific DEPTOR values. Inset in A shows that 
oscillations are predicted for V_IR = 0.002687, DEPTOR = 0, and low AMPK values

Fig. 7  The effect of mTORC2 inhibition and AMPK abundance on cell proliferation and survival. The two surfaces represent the envelope of an 
oscillatory quantity
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Discussion
As a cellular energy sensor, AMPK is activated in 
response to conditions that deplete cellular energy levels, 
such as nutrient starvation (especially glucose), hypoxia, 
and exposure to toxins that inhibit the mitochondrial 
respiratory chain complex [50]. Thus, AMPK plays a key 
role in coordinating metabolic pathways and in balanc-
ing nutrient supply with energy demand. Because of the 
favorable physiological outcomes of AMPK activation 
on metabolism, AMPK is believed to have therapeutic 
importance for treating obesity, type 2 diabetes, non-
alcoholic fatty liver disease, and cardiovascular disease 
[51].

A number of roles have been hypothesized for AMPK 
in tumorigenesis, both as a promoter and a suppressor. A 
potential role for AMPK in limiting tumorigenesis is sup-
ported by its activation at low ATP by LKB1 [20], which 
is a tumor suppressor gene that is mutationally inacti-
vated in a number of cancers. Administration of AMPK 
activators has demonstrated anti-tumorigenesis effects in 
culture and mice, and in some genetic contexts [52–54]. 
Activated AMPK phosphorylates downstream targets 
that activate catabolic pathways, while switching off ana-
bolic pathways and other ATP-consuming processes. As 
a result, AMPK not only promotes ATP synthesis but 
also restricts cell growth and proliferation in an attempt 
to restore energy homeostasis and maintain cell viabil-
ity. However, a conflicting role for AMPK emerges as it is 
found to promote cell survival under nutrient-poor con-
ditions. This effect is particularly relevant for cancer cells, 
which are often challenged with insufficient nutrients 
in the microenvironments to support their needs. Thus, 
AMPK is also hypothesized to play a pro-tumorigenic 
role and its presence may be essential to sustain the rapid 
growth of some cancer populations. Indeed, findings in 
cancer cell lines and orthotopic xenografts [27] suggest 
that AMPK is required for some tumor cells to survive 
under metabolic stress [45, 55].

Is AMPK beneficial or malevolent in cancer? More spe-
cifically, does AMPK promote or limit cancer cell pro-
liferation and survival? This question is challenging to 
answer due to the complexity of the signalling pathways 
that regulate cell growth, which involve many positive 
and negative feedback loops. To attain insights into the 
synergy among these processes, and to unravel the effect 
of activating or inhibiting AMPK under different cellular 
microenvironments, we have developed the present com-
putational model. To interrogate the effect of AMPK acti-
vation on cancer cell population, we applied the model 
to assess the effect on mTORC1, the activation of which 
promotes cell proliferation, and mTORC2, the activa-
tion of which favors cell survival [29]. Model simulations 
(Fig.  4) suggest that under nutrient-poor conditions, 

AMPK activation may have an overall pro-tumorigenic 
role by facilitating cellular survival and hence the growth 
of cancer. In contrast, with sufficient nutrient avail-
ability, the anti-proliferation effect of AMPK dominates, 
and AMPK acts as a tumor suppressor. Taken together, 
whether AMPK is pro- or anti-tumorigenic depends, in 
part, on the nutrient level of the microenvironments of 
the cancer cells.

Model prediction is consistent with findings in a study 
by Saito et al. [56], which investigated the extent to which 
AMPK is critical in achieving metabolic homeostasis in 
leukemia-initiating cells. They observed that AMPK dele-
tion caused a drastic loss in leukemia cells in the bone 
marrow, a nutrient-poor environment, but that effect is 
substantially attenuated in leukemia cells in the spleen, 
where nutrients are relatively plentiful [56]. These find-
ings have potentially groundbreaking implications in 
cancer therapies. Before the onset of cancer, there was 
clearly no concern regarding the effect of AMPK on can-
cer cell survival. Hence, the health impacts of AMPK 
activators such as metformin are clearly positive. But in 
established cancers, AMPK can be a double-edged sword 
[57]. In most cancers, the affected organs (e.g., spleen) 
are well perfused and cancer cells have access to suffi-
cient nutrients; under these conditions, AMPK opposes 
cancer growth and proliferation. But in some cancers, 
the microenvironments are nutrient-poor (e.g., bone 
marrow leukemia), and cancer cells are more depend-
ent on AMPK activity. In that case, the activation of 
AMPK would increase the viability of the tumor cells and 
thereby potentially decrease survival of the patient. Thus, 
in cancers such as bone marrow leukemia, it would be an 
AMPK inhibitor rather than an activator that might be 
therapeutically useful.

Because AMPK inhibitors are not widely available, we 
conducted simulations to explore alternative approaches 
to reduce cancer cell population. We considered indi-
rect AMPK inhibition via the inhibition of SIRT1, which 
is required for AMPK activation [24]. However, while 
SIRT1 inhibition influences mTORC1 and mTORC2 
activation levels, those effects are insignificant when 
nutrients are scarce (Fig.  5). Given that this is the cell 
microenvironment in which AMPK inhibition may limit 
cancer cell population growth (Fig. 4), what are the alter-
native means of simultaneously suppressing mTORC1 
and mTORC2, if not via SIRT1 inhibition? The predicted 
negligible effect of SIRT1 inhibition may be attribut-
able to the significant but insufficiently large impact 
on AMPK activation. With a 90% reduction in SIRT1 
abundance, the model predicts less than 50% reduction 
in AMPK activation under nutrient deprivation, due to 
the opposing effect from the mTORC1-ULK1-AMPK 
feedback loop (see Fig.  1). In contrast, when AMPK is 



Page 13 of 16Sadria et al. BMC Cancer          (2022) 22:105 	

much more strongly inhibited, the model predicts sig-
nificant changes in mTORC1 and mTORC2 (Fig. 4A). An 
implication of these results is that, if one seeks to com-
bat a cancer whose growth is known to be promoted by 
AMPK activation, indirect inhibition of AMPK may not 
be sufficient due to the many compensatory feedback 
loops in the network. Direct AMPK inhibition may be 
required. Compound C is available as an AMPK inhibi-
tor and has been demonstrated as a tumor suppressor 
for certain cancer types [58]. However, due to its toxicity 
Compound C is currently limited to laboratory applica-
tions. Similarly, the specificity of another AMPK inhibi-
tor SBI-0206965 has been questioned [59]. Hence, cancer 
research may benefit from enhanced effort in the devel-
opment of a clinically usable AMPK inhibitor.

The complexity of AMPK’s role as a target in anti-
cancer therapy is due, in large part, to its activation of 
mTORC2, which enhances cell survival [29]. This fact 
points to the potential of mTORC2 inhibitors in cancer 
treatment. Indeed, selective mTORC2 inhibition has 
shown promise in blocking breast cancer cell growth and 
survival and in slowing the migration and metastasis of 
melanoma cells [60]. However, given the many protein-
protein interactions, inhibition of mTORC2 inevitably 
affects mTORC1 activity, possibly with detrimental out-
comes. Furthermore, excessive inhibition of mTORC2 
may overly suppress AKT, which is essential in the trans-
location of GLUT4, and lead to insulin insensitivity [61]. 
Our simulations indicate that if a mTORC2 inhibitor is 
used in an anti-cancer therapy, its effect in combating 
the progression of cancer will be enhanced by combining 
it with an AMPK activator (Fig. 7).

Another notable protein that modulates mTOR signal-
ling is DEPTOR, which associates with both mTORC1 
and mTORC2 and physically interacts with the FAT 
domain.

mTOR through its PDZ domain [62]. The role of DEP-
TOR as a tumor suppressor is consistent with its low 
expression revealed in a number of human cancers, 
including pancreas [14], esophageal squamous cell car-
cinoma [15], lungs [18], and breast cancer [16]. The role 
of DEPTOR in inhibiting tumor progression may be 
attributed to its ability to repress cell migration, which 
is necessary in metastasis and cancer progression. Sup-
portive evidence is provided by the significantly reduced 
DEPTOR expression reported on the invasive front of 
endometrial cancer tissues. Consistency with the multi-
faceted nature of most aspects of cancer, DEPTOR has 
been reported to be overexpressed in multiple myeloma 
cells [12], which suggests a role of oncogene rather than 
tumor suppressor. Whether and how DEPTOR might 
promote metastasis in specific contexts awaits clarifica-
tion in future studies. Our model simulations suggest 

that the relative effect of DEPTOR on cancer cell prolif-
eration and survival depends on its expression level and 
other factors, including metabolic stress and AMPK acti-
vation level (Fig. 6).

Given the complexity of the signalling network, the 
effect of a single perturbation is often difficult to second 
guess. The cascading effects and feedback response can 
be fully explored using the present model. For example, 
the DEPTOR simulations suggest that with adequate 
nutrients, administering either a DEPTOR activator or 
inhibitor can shift cell fate away from proliferation in 
favor of cell survival; but in nutrient deprivation, DEP-
TOR inhibition may introduce oscillations in mTORC 
(Fig. 6). Another potentially impactful application of the 
model lies in the exploration of drug-drug interactions. 
In the mTORC2 inhibitor and AMPK activator simula-
tions, the model predicts that when co-administered, 
these drugs may effectively limit the  cancer population 
and the effect of both drugs on the system is not additive 
and is difficult to predict without a mathematical model 
(Fig. 7).

Limitations of study
A major limitation of the present study is that while the 
model reproduces cell culture experimental results, its 
predictions may well deviate from in  vivo observations. 
Specific signalling pathways may differ among cell types; 
e.g., whether AKT directly or indirectly phosphorylates 
AMPK appears to depend on cell types [63, 64]. Also, 
molecular alterations involving the mTOR pathway have 
been reported in a number of cancer types [65], which 
may limit the implications of the model’s predictions to 
cancers. Despite its limitations, with appropriate exten-
sions the model may yet prove useful in investigations of 
cell growth and metabolism in mammals, in both health 
and disease. Indeed, the model is applicable to many dis-
eases other than cancer [31]. One example is diabetes. 
One novel anti-hyperglycemic medication is the sodium-
glucose cotransporter 2 (SGLT2) inhibitor, which targets 
the kidney [66]. SGLT2 inhibition in diabetes is known 
to delay the progression toward or of diabetic kidney 
disease and offer cardiovascular protection [67]. An 
additional benefit demonstrated at least in the SGLT2 
inhibitor canagliflozin is its activation of AMPK [68], 
which may have positive effects on kidney metabolism. 
To study how the administration of canagliflozin affects 
renal hemodynamics and bioenergetics in a patient with 
diabetes, one may incorporate the present model into a 
computational model of kidney function and metabolism 
[69–73]. Furthermore, mTOR pathways in conjunction 
with AMPK may be therapeutic targets for controlling 
cell injury, oxidative stress, mitochondrial dysfunction, 
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and the onset of hyperinflammation [74], a significant 
disability associated with COVID-19 [75, 76].

The current set of parameters are fitted for diverse 
physiological settings. Model parameters can be modified 
to study a specific cell type and condition. One important 
variable is sex [77]. For instance, sex-specific models can 
be formulated to investigate the functional implications 
of the differential mTORC1 and mTORC2 activity levels 
reported in male and female mice [78]. Age is another 
worthwhile direction. Depending on the age of the indi-
viduals, mTORC1 in skeletal muscle cells is activated 
under different conditions [79, 80]. The development of 
models that take into account cell or tissue specificity, 
together with sex and age, can help identify therapeutic 
strategies that target metabolic pathways, for individual-
ized treatments.

Conclusions
We have developed a state-of-the-art in silico model for 
investigating the effects of pharmacological maneuvers 
that target key metabolic signalling nodes, with the goal 
of unraveling the controversial roles of AMPK in cancer. 
Major findings include the importance of cellular nutri-
ent level in determining whether AMPK is a cancer sup-
pressor or promoter. Model simulations also indicate that 
SIRT1 inhibition may produce markedly different cellular 
dynamics depending on cellular nutrient levels. Conse-
quently, the simultaneous direct inhibition of mTORC2 
and activation of AMPK may suppress both cell survival 
and proliferation. In sum, simulation results clarify the 
competing effects and the roles of key metabolic signal-
ling pathways in tumorigenesis, which may yield insights 
on innovative therapeutic strategies.
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