
1.  Introduction
China experiences some of the heaviest rainstorms among the countries in East Asia. Flood disasters caused by 
rainstorms occur frequently every few years, and one of the areas affected most severely by floods is the Yangtze–
Huaihe river valley (YHRV), where about 40% of the total flood disasters in China occur (Huang et al., 2021; Wu 
et al., 2021). In particular, flood disasters often occur in the Meiyu season, which usually lasts for two to 3 weeks 
in June and July each year.

A long Meiyu period can lead to flood disasters. In particular, the Meiyu season during 2020 in YHRV was the 
worst since 1961, where it was mainly characterized by the longest duration of precipitation lasting from early-
June to mid-July, with frequent heavy rainstorms that caused severe flooding and deaths in China. According to 
statistics from the Department of Emergency Management, the floods during the record-breaking Meiyu season 
in 2020 affected 54.81 million people, where 158 people were dead or missing, and the affected area of crops was 
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Plain Language Summary  The record-breaking precipitation that occurred in the Meiyu season 
during 2020 significantly affected humans and ecosystems. Can using different land surface model (LSMs) 
schemes affect the accuracy of precipitation simulations in numerical weather prediction models? If this is the 
case, how does their performance affect predictions of critical water and energy processes? In this study, we 
found that simulations using all of the LSMs overestimated the observations, but Simplified Simple Biosphere 
(SSiB) performed relatively better, with the lowest root mean square error and highest correlation. SSiB 
performed better than the multi-model ensemble averaging model with all seven LSMs.
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5.28 million ha, resulting in direct economic losses of 144.43 billion yuan (Xinhua NEWs, 2020). Therefore, it 
is important to accurately predict the start and end time of the Meiyu in YHRV as well as the rainfall amounts to 
facilitate national flood control and disaster reduction.

Many studies have investigated the record-breaking Meiyu in YHRV during 2020 as an example to understand 
its causes and evolution (Chen et al., 2022; Ding et al., 2021; Liu & Ding, 2020; Qiao et al., 2021). The extreme 
Meiyu may have been related to the North Atlantic Oscillation, East Asian monsoon circulation oscillation, and 
the combined effect of Indian Ocean warming and Arctic sea ice anomalies. However, few studies have investi-
gated the accuracy of rainfall simulation using different numerical weather prediction (NWP) models, especially 
in different land surface models (LSMs).

The land surface is an important and complex underlying surface at the lower boundary of the atmosphere. Phys-
ical exchanges such as those of momentum, energy, and water vapor between the land surface and atmosphere 
strongly influence the atmospheric circulation and climate change (Manabe, 1969). LSMs are used to describe 
the detailed surface characteristics and accurate exchange fluxes in order to provide a reasonable lower boundary 
condition for NWP models. Therefore, the accuracy of LSMs is important for the performance of NWP models. 
LSMs have developed in three stages from the first-generation “bucket” model to the third-generation biochemi-
cal model, but they are still affected by some uncertainties due to limitations on observations and cognition (van 
den Hurk et al., 2016).

Two common methods are used to improve the performance of LSMs. The first method involves developing more 
detailed representations of physical land processes. For instance, Friend and Kiang (2005) added descriptions of 
the canopy stomatal conductance and photosynthesis to a LSM, which reduced the precipitation bias by about 
1 mm/day over South America. Yuan et al. (2008) implemented a groundwater dynamic model in the Regional 
Climate Model Version 3 (RegCM3) and found that the simulated precipitation bias was reduced by about 40% 
over semiarid and humid regions. The second commonly used method involves selecting an optimal LSM from 
numerous options. For instance, Constantinidou et al. (2020) assessed the effectiveness of four LSMs at simulat-
ing precipitation at relatively coarse horizontal resolution of 50 km by using the Weather Research and Forecast-
ing (WRF) model over the Middle East–North Africa region, and found that Noah obtained the best performance 
on the overall domain, followed by its augmented version Noah-MP. Attada et al. (2018) and Reddy et al. (2020) 
assessed the effectiveness of three LSMs at simulating the main climatic variables such as precipitation during 
the Indian summer monsoon season. In addition, some uncertainty qualification methods such as parameter opti-
mization (Li et al., 2021; Zhang et al., 2020) and ensemble forecasting (Li et al., 2017; Liu et al., 2016) have been 
used widely to improve the performance of LSMs.

Previous studies demonstrated that the choice of LSM can improve simulations of precipitation. However, some 
issues have not been addressed in previous studies. First, the number of LSMs evaluated was low (usually three 
to four) due to limitations on previous versions of the WRF model or a lack of computing resources (Attada 
et al., 2018; Constantinidou et al., 2020). At present, seven optional LSMs can be used to support simulations in 
the latest WRF (version 4.3). Clearly, including more LSMs in evaluations will be helpful for identifying the best 
at accurately simulating precipitation in the NWP model. Second, the Meiyu season is one of the main causes of 
flood disasters in East Asia. Many studies have evaluated the effectiveness of different LSMs in various simu-
lations of precipitation (García-García et al., 2022; Yan et al., 2021; Zhong et al., 2021), but few have evaluated 
LSMs for simulating precipitation in the record-breaking Meiyu season. In the present study, we assessed seven 
LSMs in the latest WRF model (version 4.3) to determine the LSM that obtained the most reasonable simulations 
of precipitation during the Meiyu event in 2020 over the YHRV region of East China, which was the worst Meiyu 
event since 1961. It is important to recommend the most effective LSM for the NWP model to obtain accurate 
simulations of precipitation in Meiyu events in order to prevent and reduce the effects of flood disasters to main-
tain a healthy and sustainable ecosystem.

2.  Data and Models
2.1.  Precipitation Observations

Precipitation observations were obtained from China's hourly merged precipitation analysis products 
(CHMPA-Hourly, version 1.0), which were combined from more than 30,000 automatic weather stations in China 
and the Climate Precipitation Center Morphing (CMORPH) satellite precipitation remote sensing product at a 
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horizontal resolution of 8 km covering the area between 60°S and 60°N (Shen et al., 2014). The CHMPA precipi-
tation product has a spatial resolution of 0.1° × 0.1° and temporal resolution of 1 hr. Daily precipitation data were 
used to avoid the influence of time deviations.

2.2.  Mesoscale NWP Models and WRF Model

NWP models objectively and quantitatively forecast future weather processes by numerically solving the fluid 
mechanics and thermodynamics equations for processes on land, in the atmosphere, and their interactions (Pu 
& Kalnay, 2018). NWP models are usually implemented with supercomputers. NWP models can be divided 
into global and regional climate models according to differences in their spatial scale. In particular, regional 
climate models can obtain more accurate predictions due to their high-resolution and spatio-temporal solution of 
weather processes. The commonly used mesoscale NWP models mainly include PSU/NCAR mesoscale model 
version 5 (MM5; Chen & Dudhia, 2001), Global/Regional Assimilation and Prediction System (GRAPES; Zhong 
et al., 2019), and WRF (Skamarock et al., 2021). WRF is one of most widely used NWP models in previous 
studies.

WRF model version 4.3 (Skamarock et  al.,  2021; available from http://www2.mmm.ucar.edu./wrf/users) was 
applied to the YHRV region of China. The simulated domain comprised double-layered nested regions (Figure 1). 
Horizontally, the outer layer (D01) had 100 × 82 grid points with a grid spacing of 27 km, and the inner layer 
(D02) had 154 × 85 grid points with a grid spacing of 9 km. The inner layer D02 represented the YHRV region 
(109.4–123.2°E, 28.3–34.6°N). The terrain in this region is dominated by low hills and plains, and most are 
below 80 m above sea level. The land types mainly include paddy land, with some grassland and woodland. The 
land use/land cover data set required by the WRF simulation was obtained by interpolating the land use categories 
from United States Geological Survey 24-category data, which is applicable to all alternative LSMs in WRF. The 
spatial resolutions of the outer and inner layers were 10 and 2 m, respectively. Forty five uniform vertical layers 
were considered from the land surface to the 50 hPa level in the atmosphere. The uniform time step was 90 s. 
The physics options included the WSM 6-class microphysics scheme (Hong & Lim, 2006), Kain–Fritsch Eta 
cumulus scheme (Kain, 2004), Rapid Radiative Transfer Model (RRTM) long-wave radiation scheme (Mlawer 
et  al.,  1997), Dudhia short-wave radiation scheme (Dudhia et  al.,  1999), Yonsei University (YSU) planetary 
boundary layer scheme (Hong, 2010), and the land surface scheme (or LSM) being evaluated. This suite of phys-
ics combinations except for LSM followed the operational setup from the China Meteorological Administration.

Figure 1.  Weather Research and Forecasting simulation domain with double-layered nested grids, where D01 represents the 
outer layer region with a resolution of 27 km and the inner layer region (D02) with a resolution of 9 km. HaN, HB, and HN 
represent Henan, Hubei, and Hunan provinces, respectively, and JS, AH, JX, and ZJ represent Jiangsu, Anhui, Jiangxi, and 
Zhejiang provinces, respectively. The topography (unit: m) is also shown on the map.

https://www2.mmm.ucar.edu/wrf/users/
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The final analysis data (FNL) of the global forecasting system from the National Center for Environmental 
Prediction available at a horizontal resolution of 1° × 1° and 6 hr intervals were used to generate the initial 
and lateral boundary conditions. The simulation period lasted 33 days from 18:00 on June 10 to 00:00 on July 
13 in 2020. The first six hourly simulations were discarded as the spin-up time. Seven numerical experiments 
were performed by using the WRF model with seven different LSMs comprising the 5-layer thermal diffusion 
scheme (Slab; Dudhia, 1996), Noah scheme (Noah; Chen & Dudhia, 2001), LSM in the NOAA Rapid Update 
Cycle (RUC) weather prediction model (referred to as RUC in the LSM options for the WRF model; Smirnova 
et al., 2016), Noah multi-parameterization (MP) scheme (Noah-MP; Niu et al., 2011), Community Land Model 
version 4 scheme (CLM4; Oleson et al., 2010), Pleim-Xiu scheme (Pleim-Xiu; Pleim & Xiu, 1995), and Simpli-
fied Simple Biosphere scheme (SSiB; Xue et al., 1991).

2.3.  LSMs

In this study, we evaluated seven LSMs available in the WRFv4.3 model comprising Slab, Noah, RUC, 
Noah-MP, CLM4, Pleim-Xiu, and SSiB, where their soil and vegetation features are listed in Table 1. Some 
of the most significant differences among these models are summarized as follows. (a) Model complexity: 
Slab is the simplest due to the excessive simplification of physical process descriptions, whereas CLM4 is the 
most complicated because of the complex parameterization formula and multiple parameters. The complexity 
of Noah-MP following CLM4 is due to the use of multiple optional parameterization models for each of main 
physical processes. The other LSMs have moderate complexity. (b) Solutions for soil moisture and tempera-
ture: the soil moisture is a simple function in the Slab model and it is related to the land use type, while the soil 
temperature is derived by using the thermal diffusion equation with the upper boundary of diurnal variation. 
The soil moisture and temperature solutions for the LSMs comprising Noah, Noah-MP, RUC, and CLM4 are 
based on Richard moisture transferring equation and thermal diffusion equation, respectively. In Pleim-Xiu 
and SSiB, the force-restore method is used to solve the soil temperature and soil moisture. The boundary 
conditions are also different. For instance, CLM4 takes the ground water table or gravity discharge as the 
lower boundary, whereas the others use a fixed value or zero flux as the lower boundary. (c) Descriptions of 
vegetation and snow: Slab does not consider the vegetation effect, whereas the other LSMs calculate the effects 
of one or more vegetation types in each calculation cell. The numbers of dominant vegetation types for each 
LSM are shown in Table 1. Snow cover models are considered in all of the LSMs, but their complexities are 
different, where Slab uses the simplest snow cover model with a fixed coverage rate, and the highly complex 
Community Land Model (CLM) considers a five-layer snow cover model to accurately calculate surface water 
and energy fluxes.

2.4.  Bayesian Model Averaging (BMA)

Bayesian Model Averaging (BMA) was originally developed as a statistical post-processing method by combin-
ing multiple statistical models for joint inference and prediction. Raftery et al. (2005) extended BMA to several 
dynamic models. Let 𝐴𝐴 𝐴𝐴 = 𝑓𝑓1,⋯, 𝑓𝑓𝐾𝐾 represent the results of K different numerical models, y represents the 

Table 1 
Main Characteristics of Slab, Noah, Rapid Update Cycle, Noah-MP, Community Land Model Version 4 Scheme, Pleim-
Xiu, and Simplified Simple Biosphere Land Surface Models in the WRF

Scheme Soil level Soil depth (m)
Water/heat transfer 
between soil layers Vegetation type in each cell

Canopy 
processes

Slab 5 0.31 No Explicit vegetation effect not considered No

Noah 4 2 Yes One dominant vegetation type Fixed

RUC 9 3 Yes Specified from USGS data Fixed

Noah-MP 4 2 Yes One dominant vegetation type Dynamic

CLM4 10 4.32 Yes Four dominant vegetation types Dynamic

Pleim-Xiu 2 1 No Specified from USGS data Fixed

SSiB 3 1.5 No One dominant vegetation type Fixed
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predicted quantity, and 𝐴𝐴 𝐴𝐴𝑇𝑇  represents the training data set. The BMA ensemble model can be expressed by the 
weighted averages of multi-model probability distributions, as follows:

𝑝𝑝
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 is the conditional probability density function (PDF) associated with the result of single 

ensemble member fk and 𝐴𝐴 𝐴𝐴𝑘𝑘 is the posterior probability when fk is in its optimal estimation. 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑘𝑘 = 1,⋯, 𝐾𝐾) is 

non-negative and constrained by 𝐴𝐴
𝐾𝐾∑
𝑘𝑘=1

𝑤𝑤𝑘𝑘 = 1 , which reflects the relative contribution of each model member to the 

forecasting skill for the predicted quantity y in the model training stage.

Precipitation is a non-uniform quantity, and thus its PDF is described as follows (Ji et al., 2019):
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 represents the PDF at zero precipitation, which is parameterized as a logistic regression 
model associated with the cube root of 𝐴𝐴 𝐴𝐴𝑘𝑘 , and 𝐴𝐴 𝐴𝐴[⋅] is a general indicative function, with a value of 1 when the 
condition in [ ] is true; otherwise, the value is 0. 𝐴𝐴 p

[
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 is the PDF when precipitation occurs, and 
𝐴𝐴 𝐴𝐴𝑘𝑘

[
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𝑇𝑇
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 is a gamma PDF.

3.  Results
3.1.  Spatial Comparison of Rainfall Simulations

As shown in Figure 2, the daily mean precipitation values for the Meiyu period (from June 11 to July 13 in 
2020) simulated by the WRF model with different LSMs had similar spatial distributions. Overall, the amounts 
of precipitation simulated by all LSM models were higher than the observed values, although the patterns were 
similar to the observation. The four LSMs comprising Noah, RUC, CLM4, and Pleim-Xiu predicted a continuous 
strong rain band (Figures 2d, 2e, 2g, and 2h), whereas three other LSMs (Slab, Noah-MP, and SSiB) produced 
two stronger centers (Figures 2c–2f and 2i), with one in Hunan (HN) province and the other in the central and 
southern parts of Anhui (AH) province. Clearly, these patterns were more similar to the observations.

The biases of the spatial distributions are shown in Figure 3. No significant differences were found among the 
LSMs in the low rainfall areas (<8 mm/day), but significant differences were detected in the rainstorm areas 
(>12 mm/day). Positive bias was dominant, with one in HN province and the other mainly in the central part of 
AH province and the border of Jiangsu (JS) and Zhejiang (ZJ) provinces. The most significant weak bias occurred 
in the WRF simulation with the SSiB LSM, thereby indicating that the SSiB LSM was more advantageous for 
WRF simulations of precipitation during the Meiyu season in YHRV compared with the other LSMs.

Figure 4 compares the observed and simulated daily mean precipitation values for the seven LSMs in the WRF. 
According to the errors, no significant differences were found among Noah, RUC, Noah-MP, and CLM4 because 
their root mean square error (RMSE) values were about 6.8 mm/day and their correlation coefficients (CCs) were 
about 0.67. However, Pleim-Xiu obtained the worse performance (RMSE = 7.71 mm/day). By contrast, the Slab 
and SSiB LSMs performed the best among the seven LSMs, with RMSEs lower than 6 mm/day. In particular, 
SSiB had the lowest RMSE (5.59 mm/day) and highest CC (0.692 mm/day). Overall, the correlations among the 
seven LSMs were basically consistent and the main differences occurred in the error size. SSiB had the lowest 
RMSE and highest CC, and thus it was considered the optimal LSM in the WRF model for simulating the Meiyu 
season in YHRV during 2020.

3.2.  Temporal Comparison of Rainfall Simulations

Figure 5 shows time series of the area-averaged daily precipitation from June 11 to July 13 in 2020 for the differ-
ent LSMs. The variations in the simulated daily precipitation amounts were basically consistent for all seven 
LSMs. However, SSiB performed better than the other LSMs on the days with heavy precipitation compared with 
the observations (June 11, June 17, June 22, July 5, and July 11). On days with light precipitation, the simulation 
results were basically not significantly different. In general, the errors in the daily mean precipitation amounts 
simulated by using RUC, Noah-MP, and CLM4 were close to 5.76 mm/day, and that with Noah was slightly 
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higher at 5.95 mm/day. Pleim-Xiu had the largest error (6.10 mm/day), whereas Slab and SSiB had relatively 
small errors of 5.59 mm/day and 5.31 mm/day, respectively. Therefore, SSiB performed the best at simulating the 
daily precipitation time series.

In addition to the continuous statistical metrics (e.g., RMSE and CC), the threat score (TS) probability statistic 
was used to evaluate the performance of the seven LSMs. Table 2 shows the TS values for the daily precipita-
tion simulations with each of the LSMs, including light rain (daily rainfall greater than 0.1 mm and less than 
10 mm), moderate rain (daily rainfall greater than 10 mm and less than 25 mm), and heavy rain (daily rainfall 
greater than 25 mm and less than 50 mm). It should be noted that the TS values for storm rain (daily rainfall 
greater than 50 mm) were equal to zero on each day during the Meiyu in 2020, and thus, they are not listed in 
Table 2. Table 2 shows that Slab, RUC, and SSiB obtained higher TS values than the other models for light rain, 
and their TS values were basically equal. SSiB obtained significantly higher TS values than the other models for 
moderate rain. Thus, SSiB again performed better at precipitation simulation for the Meiyu event during 2020. 
It should also be noted that the TS value for SSiB was equal to zero for heavy rain, but not equal to zero for the 
other models. However, the TS values were basically close to zero, and only 2–4 of the 33 days had heavy rain TS 

Figure 2.  Spatial distributions of observed and simulated precipitation with different LSMs for the Meiyu period from June 11 to July 13 in 2020: (a) observations, (b) 
Slab, (c) Noah, (d) Rapid Update Cycle, (e) Noah-MP, (f) Community Land Model version 4 scheme, (g) Pleim-Xiu, and (h) Simplified Simple Biosphere.
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values. Therefore, the comparison of the TS values for heavy rain was not representative. In addition, the spatial 
distribution of the precipitation was weak with SSiB, which was closer to the observations.

3.3.  Comparison of Optimal Simulation and Ensemble Average Simulation

Ensemble averaging is another method for reducing model uncertainty. The seven LSMs were treated as ensemble 
members to conduct comprehensive uncertainty qualification analysis for the simulation results using the BMA method. 
Figure  6 compares the precipitation simulations using BMA and the observations. The BMA results were highly 
spatially consistent with the observations, but the optimal LSM comprising SSiB had stronger correlations than BMA.

Further comparisons were also conducted to represent the differences in the LSMs more accurately. Figure 7 shows 
scatter plots of the precipitation simulation with BMA versus the observations and precipitation simulation with 
the optimal LSM versus the observations. BMA obtained relatively good performance compared with the obser-
vations, but SSiB performed better than BMA in terms of RMSE and CC. In particular, the CC for precipitation 
simulation with SSiB was 0.73, which was higher than that for the BMA simulation (0.69). Similarly, the RMSE 

Figure 3.  Spatial distributions of observed precipitation and biases of simulated precipitation (simulation–observation) with different LSMs averaged over the Meiyu 
period from June 11 to July 13 in 2020: (a) observations, (b) Slab, (c) Noah, (d) Rapid Update Cycle, (e) Noah-MP, (f) Community Land Model version 4 scheme, (g) 
Pleim-Xiu, and (h) Simplified Simple Biosphere.
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Figure 4.  Simulated daily mean precipitation values (y-axis, mm/day) versus observed values (x-axis, mm/day): (a) Slab, 
(b) Noah, (c) Rapid Update Cycle, (d) Noah-MP, (e) Community Land Model version 4 scheme, (f) Pleim-Xiu, and (g) 
Simplified Simple Biosphere.

Figure 5.  Time series of area-averaged daily accumulated precipitation amounts in simulations using seven LSMs and 
observations.
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for the precipitation simulation with SSiB was 5.59 mm/day, which was signif-
icantly lower than that for the BMA simulation (6.0 mm/day). In addition, the 
improvement in the precipitation simulation results with BMA for each LSM 
ranged from 10.3% for RUC to 22.2% for Pleim-Xiu. Clearly, BMA integrated 
the advantages of each ensemble member to help obtain greater performance 
than each separate LSM to effectively reduce the uncertainties associated with 
each model and between the models.

4.  Discussion
4.1.  Comparisons With Similar Studies

Many studies have evaluated the differences in the performance of LSMs in 
terms of precipitation, and they mainly used Noah, Noah-MP, CLM4, and 
Pleim-Xiu. For instance, Zhong et al. (2021) found that Noah-MP obtained 
the optimal simulation of precipitation compared with CLM4 and Pleim-Xiu 
in the Tibetan Plateau region. After analyzing the mechanism responsible 

Table 2 
Threat Score (TS) Statistics for Daily Precipitation Simulations Using 
Different LSMs Over the Meiyu Event in Yangtze–Huai River Valley During 
2020

Light rain (mm/
day) [0.1, 10)

Moderate rain(mm/
day) [10, 25)

Heavy rain (mm/
day) [25, 50)

Slab 0.1156 0.0901 0.0101

Noah 0.0966 0.0970 0.0115

RUC 0.1188 0.0883 0.0120

Noah-MP 0.1019 0.0810 0.0208

CLM4 0.1019 0.0941 0.0115

Pleim-Xiu 0.0759 0.0919 0.0208

SSiB 0.1150 0.1015 0

Figure 6.  Comparison of precipitation simulations using Bayesian Model Averaging with the seven LSMs and the optimal 
LSM comprising Simplified Simple Biosphere.
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for the differences, they found that the drier soil moisture conditions and 
lower latent heat flux produced by Noah-MP constrained the wet bias in 
the precipitation simulation, so the results were closer to the observations 
compared with the other two LSMs. Similar conclusions were obtained 
based on precipitation simulations over North America by Chen et al. (2014) 
and García-García et al.  (2022). Zhuo et al.  (2019) found that three LSMs 
comprising Noah, Noah-MP, and CLM4 basically obtained consistent perfor-
mance in Northern Italy, and we also produced similar results in our study. 
In addition, Slab performed better than other LSMs comprising Noah, RUC, 
and Pleim-Xiu in simulations of storms in the YHRV region over China 
(Wang et  al.,  2016; Zeng et  al.,  2012). These differences in performance 
may be related to the different surface energy flux distributions produced 
by different LSMs. Thus, the decreased latent heat flux with Slab could 
have resulted in a low contribution of evapotranspiration (ET) to precipita-
tion, which reduced the occurrence of high precipitation situations in LSM 
simulation. We found that Noah-MP and Slab performed well at simulating 
precipitation, but SSiB performed the best in the YHRV region of China. In 
previous studies, SSiB also performed better in precipitation simulations over 
East Asia (Li et al., 2016) and South Asia (Lu & Zuo, 2021), although these 
studies focused on low resolution climate simulations (∼50 km) rather than 
Meiyu seasons, and only four LSMs were considered (Noah, CLM, Pleim-
Xiu, and SSiB).

4.2.  Surface Water Vapor Flux

Land surface processes affect precipitation via two routes in terms of the 
water balance (Zeng et al., 2011), that is, by directly affecting the surface ET 
flux to produce precipitation and influencing precipitation by changing the 
low-level wind circulation and moisture flux convergence. Table 3 summa-

rizes the daily area-averaged amounts of ET and precipitation simulated by the seven LSMs for the YHRV region. 
ET accounted for 16%–23% of the rainfall, thereby demonstrating that moisture flux convergence was still the 
dominant factor that affected precipitation. ET increased as the rainfall increased. In addition, the proportion of 
ET relative to rainfall differed among the LSMs. For instance, the ET was smallest with Slab, while that under 
Noah was close to those under Noah-MP and CLM4, and it was largest with Pleim-Xiu. These different propor-
tions demonstrate that precipitation simulations in WRF are sensitive to the choice of LSM.

Table 3 shows that Slab obtained the smallest simulated ET and precipitation amounts among the seven LSMs. 
Compared with Slab, the increases in ET were more than half of the increases in rainfall with five other models 
(Noah, RUC, Noah-MP, CLM4, and Pleim-Xiu). Thus, the differences in rainfall caused by these LSMs were 
mainly due to differences in ET. By contrast, the rainfall simulated by SSiB decreased as the ET increased. Thus, 
SSiB contributed less to water vapor convergence than Slab. Table 3 shows that the percentage of ET relative to 
rainfall was higher under SSiB than Slab, and thus, less moisture flux convergence occurred with SSiB accord-
ing to the water balance principle, and the SSiB results were closer to the observations. Clearly, the ET/rainfall 
of no more than 23% demonstrated that moisture flux convergence was still the dominant factor that affected 
precipitation.

Figure 7.  Scatter plots for precipitation simulation using Bayesian Model 
Averaging versus observations (top) and precipitation simulation with the 
optimal scheme versus observations (bottom).

Table 3 
Daily Area-Averaged Evapotranspiration (ET) and Precipitation Amounts Simulated by the Seven LSMs for the Yangtze–
Huai River Valley Region During the Meiyu Period

Slab Noah RUC Noah-MP CLM4 Pleim-Xiu SSiB

ET (mm/day) 2.44 2.89 3.26 2.98 2.98 3.66 2.83

Rainfall (mm/day) 14.93 15.81 15.31 15.78 15.75 16.10 14.10

ET/Rainfall 16.31% 18.27% 21.31% 18.90% 18.95% 22.74% 20.09%
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4.3.  Surface Energy Flux

The choice of LSM directly affects the simulated surface energy flux. Figure  8 shows the simulated 
area-averaged daily heat fluxes comprising the sensible heat and latent heat fluxes for the WRF model 
with different LSMs over the Meiyu period from June 11 to July 13 in 2020. Both the sensible and latent 
heat fluxes varied under the different LSMs. In general, the sensible heat flux decreased in the order of: 
Slab > CLM4 > SSiB > Noah-MP > Noah > RUC > Pleim-Xiu, whereas the latent heat flux increased accord-
ing to the same sequence. Among the LSMs, the heat fluxes for Slab, Pleim-Xiu, and RUC were significantly 
different from those with the other LSMs. For example, the sensible heat flux was the smallest with Pleim-Xiu 
and the latent heat flux was the largest, with a difference of up to 92 W/m 2, and the difference with RUC was 
up to 70 W/m 2. Slab obtained the lowest difference of 40 W/m 2. The sensible heat fluxes with Noah, Noah-MP, 
CLM4, and SSiB were 23–25 W/m 2, and latent sensible heat fluxes were 80–84 W/m 2, and thus the difference 
in the two fluxes were about 60 W/m 2. The approximate flux simulation results may have been responsible for 
the consistent differences in the precipitation simulation results (Figure 4). In addition, with all of the LSMs, 
the simulated sensible heat fluxes ranged from 11.37 W/m 2 to 30.74 W/m 2 and the simulated latent heat fluxes 
ranged from 60.09 W/m 2 to 103.86 W/m 2. These findings also demonstrate that selecting different LSMs will 
lead to large differences in the simulated surface energy flux allocations.

The latent heat flux is significantly affected by ET and soil moisture. Zhong et al. (2021) found that higher soil 
moisture increased the latent heat flux, and thus the atmospheric water content and moist static energy were 
greater in the planetary boundary layer to ultimately increase the frequency and intensity of precipitation. We also 
found that the latent heat flux was basically consistent with the average simulated rainfall. For instance, the latent 
heat fluxes were relatively small with Slab and SSiB (Figure 8b), thereby resulting in relatively small simulated 
precipitation and ET amounts with all seven LSMs (Figure 2 and Table 3), and thus, the simulated results were 
closer to the observations.

Figure 9 shows the spatial distributions of the simulated latent heat flux averaged over the Meiyu period with 
the different LSMs. Except for Slab, the latent heat fluxes simulated by the other LSMs tended to increase from 
north to south, which was consistent with the observed precipitation pattern. Overall, Slab obtained the smallest 
heat flux. Noah, Noah-MP, and CLM4 produced similar latent heat flux distributions, and their precipitation 
errors were also similar (Figure 4), thereby indicating that Noah, Noah-MP, and CLM4 simulate precipitation 

Figure 8.  Time series of area-averaged daily heat fluxes obtained from simulations using the seven LSMs: (a) sensible heat 
flux and (b) latent heat flux.
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with a similar mechanism. In addition, the simulated latent heat flux distributions were stronger with RUC and 
Pleim-Xiu than SSiB, which corresponded to their different precipitation distributions. Therefore, the difference 
in the latent heat flux (or ET) was one of the major causes of the different precipitation spatial distributions in 
the Meiyu event.

4.4.  850 hPa Geopotential Height Fields, Wind, and Moisture Flux Convergence

The 850 hPa geopotential height field can reflect the water vapor convergence and divergence, and thus, it was 
analyzed as an indicator of precipitation forecasts (Shirvani et al., 2019). Figure 10 shows the simulations of the 
850 hPa geopotential heights for the seven LSMs. The simulated low-pressure center in the west of the 850 hPa 
geopotential height field differed significantly among the LSMs, which corresponded well with their simu-
lated heavy precipitation centers (Figure 2). For instance, the low-pressure centers with Noah, RUC, Noah-MP, 
and Pleim-Xiu stretched from the southwest to northeast and formed a continuous rain band. However, the 
low-pressure (1,440 gpm) center zones with Slab and SSiB were in the southwest, forming a southwest precipi-
tation center, which corresponded well with the observed precipitation center.

Figure 9.  Spatial distributions of the simulated latent heat fluxes averaged over the Meiyu period from June 11 to July 13 in 2020: (a) Slab, (b) Noah, (c) Rapid Update 
Cycle, (d) Noah-MP, (e) Community Land Model version 4 scheme, (f) Pleim-Xiu, and (g) Simplified Simple Biosphere.
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Under the influence of the summer monsoon, the prevailing southwest wind brings abundant warm and moist 
water vapor to the area simulated in this study. The water vapor convergence area mainly formed in the south-
west corner of the simulated area and the central and southern part of Anhui province. Figure 10 illustrates the 
integrated moisture flux convergence (Tsuji et al., 2021). Compared with the spatial rainfall diagram (Figure 2), 
the area with stronger moisture flux convergence (>2 mm/day) corresponded to the stronger rainfall area, thereby 
indicating that the precipitation in this area was contributed mainly by moisture flux convergence. In addition, 
the moisture flux convergence was smallest with SSiB, which corresponded to the low rainfall distribution 
(Figure 2h), and Table 3 also shows that the increased ET with SSiB led to decreased precipitation.

4.5.  Critical LSMs Parameters That Affected Precipitation Simulations

The parameter settings are the main factors that affect the simulation results obtained by different LSMs. In 
order to ensure objectivity and fairness, the default parameters were used for each of the LSMs evaluated in this 
study without artificial parameter adjustment. Similarly, for the Noah-MP model with alternative multi-schemes, 
the default parameterization option was adopted for each physics. The critical LSM parameters that affected 

Figure 10.  Fields of daily mean geopotential height (unit: gpm, blue contour lines), wind (unit: m/s, gray vectors), and temperature (unit: °C, pink contour lines) at 
850 hPa, and integrated moisture flux convergence (unit: mm/day, contour shade) over the Meiyu period from June 11 to July 13 in 2020: (a) Slab, (b) Noah, (c) Rapid 
Update Cycle, (d) Noah-MP, (e) Community Land Model version 4 scheme, (f) Pleim-Xiu, and (g) Simplified Simple Biosphere.
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the precipitation simulation performance are summarized as follows. (a) The soil hydraulic conductivity 
affects  the  conduction velocity of soil water between the soil upper and lower layers. When the soil hydraulic 
conductivity increases, soil water will be transferred faster in the soil layer. The rainfall amount is affected when 
more soil water is transferred to the ground surface to participate in surface evapotranspiration. (b) The soil 
thermal conductivity determines the soil heat conduction velocity between the upper and lower layers in a simi-
lar  manner to the soil hydraulic conductivity. Finally, the surface soil temperature is affected by the soil thermal 
conductivity to influence the surface evapotranspiration and further affect the rainfall amount. (c) The scale factor 
between actual and potential ET determines how well the simulated ET agrees with the observed value. The scale 
factor is a power function for the soil moisture in CLM4 and SSiB and a linear function for the soil moisture in 
Noah and Noah-MP. Xiao et al. (2017) found that the power parameterization in CLM and SSiB performed better 
than the linear parameterization in Noah. (d) Other parameters. For example, soil parameters such as the number 
of soil layers and soil depth, snow cover parameters such as the number of snow layers, snow albedo, and snow 
duration, and vegetation parameters such as the vegetation fraction, minimum stomatal resistance, and roughness 
length can also affect the performance of different LSMs to some extent.

4.6.  Effects of Different LSM Rainfall Accuracies on Public Health Evaluations

The relationships between the improved LSM configuration and public health evaluations were analyzed in addi-
tion to quantifying the optimal LSM and explaining the possible associated mechanisms. Using the China Water 
Statistical Yearbook for 2008−2017, data sets for the annual rainfall amounts (unit: mm), direct gross domestic 
product (GDP) loss caused by flood disasters, including floods (Tarabochia-Gast et al., 2022), landslides (Pollock 
& Wartman, 2020), and debris flows (unit: billion yuan), and flood-affected areas caused by flood disasters, 
including floods, landslides, and debris flows (unit: 10 3 ha) were collected for the YHRV region. These data sets 
were then used to determine the relationship between the annual rainfall and flood-affected GDP loss, and the 
relationship between the annual rainfall and flood-affected area. Finally, the effects of the precipitation simula-
tion accuracies of different LSMs on the estimated GDP losses and flood-affected areas in the YHRV during the 
Meiyu in 2020 were evaluated by establishing appropriate relationships.

Figure 11a shows a scatter plot of the annual rainfall versus the GDP loss for the YHRV region from 2008 to 
2017 as well as a fitted straight line. The fitted equation indicates that the GDP loss caused by flood disasters 
increased by about 51.33 billion yuan when the annual rainfall increased by 100 mm. Similarly, Figure 11b shows 
a scatter plot of the annual rainfall versus the flood-affected area for the YHRV region from 2008 to 2017 as well 
as a fitted straight line. When the annual rainfall increased by 100 mm, the flood-affected area increased by about 
107.47 thousand hectares. Based on these proportional relationships, the errors in the GDP loss (flood-affected 
area) estimates among different LSMs for the Meiyu in YHRV during 2020 were solved and the results are shown 
in Figures 11c and 11d. The GDP loss overestimation ranged from 19.1 billion yuan with SSiB to 48.38 billion 
yuan with Pleim-Xiu, and the flood-affected area overestimation ranged from 19.10 thousand hectares with SSiB 
to 101.38 thousand hectares with Pleim-Xiu. Clearly, the flood disaster loss estimations differed greatly when 
different LSMs were used. Therefore, employing an accurate LSM can obtain more accurate precipitation fore-
casts and also reduce the uncertainties in flood disaster loss estimations.

5.  Conclusions and Prospective
This study assessed the effectiveness of seven LSMs in WRFv4.3 precipitation simulations of the record-breaking 
Meiyu event in the YHRV region during 2020. The simulated period lasted 33 days from June 11 to July 13. A 
two-grid horizontally nested domain was used to simulate the Meiyu event in the YHRV region. The outer layer 
was the East China area with a spatial resolution of 27 km, and the inner layer was the YHRV region with a spatial 
resolution of 9 km. The uniform time step was 60 s.

Compared with the observations, the SSiB model obtained the best simulated daily precipitation results among 
the seven LSMs, followed by the Slab model and Pleim-Xiu. Evenly, it outperformed BMA result with seven 
LSMs.The proportion of ET relative to rainfall, surface heat flux, 850 hPa fields for the geopotential height and 
wind, and the moisture flux convergence were possible causes of the differences in the results simulated with the 
different LSMs. In addition, BMA was compared with the optimal scheme to demonstrate the superiority of the 
optimal LSM selected. Finally, the effects of the precipitation simulation accuracies of different LSMs on flood 
disaster loss estimation were also discussed to further demonstrate the superiority of the optimal LSM selected.
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Many studies have evaluated the performance of different LSMs in WRF weather or climate simulations, but 
we considered some new LSMs and weather or climate events in a more comprehensive evaluation of the 
performance of LSMs in the WRF model. (a) We evaluated more LSMs by running the latest version of the 
WRF model. For example, all seven LSMs in WRF v4.3 were evaluated in this study and the results showed 
that the SSiB model performed best at precipitation simulation over the YHRV region in China. Most previous 
studies focused on evaluating the three LSMs comprising Noah, Noah-MP, and CLM4 in different regions 
throughout the world, but the SSiB model has not been considered widely despite its excellent performance. In 
addition, Pleim-Xiu and RUC have rarely been evaluated, and thus our findings may promote the use of these 
LSMs in future studies of land–atmosphere interactions. (b) We considered a representative precipitation event 
comprising the Meiyu season, which is a unique weather event in the East Asian monsoon region characterized 
by continuous precipitation. Many studies have investigated the formation and development of Meiyu events, 
and its relationship with tropical ocean signal, but few have assessed the effectiveness of different LSMs at 
simulating Meiyu events, especially the record-breaking Meiyu that occurred in June and July during 2020 in 
China.

However, it should be noted that selecting an optimal LSM can significantly reduce the simulation bias but model 
uncertainty still exists, and thus the constructed model may be defective and the parameters could be inaccu-
rate in the current state. Therefore, future studies should focus on model development by refining the physical 
process descriptions (Zhou et al., 2018) as well as selecting and optimizing the critical physical parameters (Di 
et al., 2018, 2019; Duan et al., 2017) for the optimal LSM.
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Figure 11.  Relationships between rainfall amounts and flood disaster losses in the Yangtze–Huai river valley region. (a) Scatter plot of annual rainfall versus the GDP 
loss from 2008 to 2017 as well as a fitted straight line. (b) Scatter plot of annual rainfall versus the flood-affected area from 2008 to 2017 as well as a fitted straight line. 
(c) Overestimated GDP losses corresponding to overestimated rainfall amounts among different LSMs for the Meiyu in 2020. (d) Overestimated flood-affected areas 
corresponding to overestimated rainfall amounts among different LSMs for the Meiyu in 2020.
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Data Availability Statement
The precipitation data sets used in our study can be freely accessed at https://www.ckcest.cn/default/es3/
detail/4004/dw_dataset/C92AF495DE300001E327C1BD56401982. The data sets for the direct gross domes-
tic product (GDP) losses and flood-affected areas can be obtained from the China Water Statistical Yearbook 
(https://sltjnj.digiwater.cn/index.htm?locale=zh_CN).
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