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Innate immunity constitutes the first line of defense, fundamental for the recognition and the initiation of an inflammatory response
against microorganisms. The innate immune response relies on the sensing of microbial-associated molecular patterns through
specialized structures such as toll-like receptors (TLRs) and the nucleotide oligomerization domain- (NOD-) like receptors (NLRs).
In the gut, these tasks are performed by the epithelial barrier and the presence of adaptive and innate immune mechanisms. TLRs
and NLRs are distributed throughout the gastrointestinal mucosa, being more expressed in the epithelium, and in lamina propria
immune and nonimmune cells. These innate immunity receptors exhibit complementary biological functions, with evidence for
pathways overlapping. However, as tolerance is the predominant physiological response in the gastrointestinal mucosa, it appears
that the TLRs are relatively downregulated, while NLRs play a critical role in mucosal defense in the gut. Over the past two decades,
genetic polymorphisms have been associatedwith several diseases including inflammatory bowel disease. Special emphasis has been
given to the susceptibility to Crohn’s disease, in association with abnormalities in the NOD2 and in the NLRP3/inflammasome.
Nevertheless, the mechanisms underlying innate immune receptors dysfunction that result in the persistent inflammation in
inflammatory bowel disease remain to be clarified.

1. Introduction

In the gastrointestinal system, homeostasis represents a
rather complex and dynamic process, with a critical role for
mucosal immunity. In physiological conditions, it is expected
that the host identifies and responds appropriately to the
luminal contents of the gastrointestinal tract. In this regard,
the epithelium, constituted by a single cell lining, plays an
important role separating an essentially sterile internalmilieu
from a formidable burden of microbes that populate the gas-
trointestinal tract [1]. In conjunction with the epithelium, the
intestinal immune system also has a critical challenge of dis-
tinguishing commensal from pathogenic microorganisms, in
a complex and yet incompletely understood mechanism [2].

The interaction between the gut and the microorganisms
that constitute the residentmicrobiota is tightly regulated and

has evolved in the course of several million years [3]. In fact,
this mutualistic relationship between host and microbiota is
thought to be essential for the immune homeostasis and is
well balanced in normal conditions [4, 5]. However, its dise-
quilibriumhas been implicated in the development of various
diseases, including inflammatory bowel disease (IBD) and its
two major forms, Crohn’s disease (CD) and ulcerative colitis
(UC) [6–8]. In this paper, we are going to present an overview
of the basic mechanisms of the innate immunity and the
defects associated with the development of IBD.

2. Innate Immunity in the Intestine

The innate immune system represents the first line of defense
against invading microorganisms and is critically important
in the early recognition and subsequent initiation of an
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Figure 1: The mechanism of intestinal response against MAMPs and DAMPs in normal conditions. The epithelial barrier recognizes
microbial-associated molecular patterns (MAMPs) by the presence of transmembrane TLRs and intracellular microbes and damage-
associated molecular patterns (DAMPs), by the cytosolic NLRs. When invading the lamina propria, microorganisms can be recognized
through the same mechanisms, by other cells such as dendritic cells, macrophages, lymphocytes, innate lymphoid cells, and stromal cells.
The result of the activation of immune cells in the lamina propria and the degree of cell damage, caused by chemokines and cytokines,
determine the feedback of the system. TLRs and NLRs drive the immune response and contribute to the maintenance of homeostasis.

inflammatory response [9]. In contrast to the adaptive immu-
nity, the response mounted by the innate immune system
has been regarded as relatively nonspecific, being mediated
primarily by macrophages, dendritic cells, and granulocytes,
basically functioning as phagocytes and antigen presenting
cells [10]. The innate immune response depends on the
recognition of evolutionarily conserved structures expressed
on microbes, the microbial-associated molecular patterns
(MAMPs), through special cell receptors.

In order to control the number and composition ofmicro-
bial populations and also to identify potential pathogens, the
host needs to maintain surveillance over the microbiota. In
the gastrointestinal tract, these tasks are performed by the
epithelial barrier and the presence of adaptive and innate
immune mechanisms [11, 12] (Figure 1).

Interactions of the epithelium and other innate immunity
cells with microbes are mediated by the presence of trans-
membrane or cytosolic receptors, called pattern recognition
receptors (PRRs), capable of sensing and recognizing specific
microbial compounds known as MAMPs [13]. In fact, not
only whole microbes, but also diffusible components can
interact with the PRRs. These signaling receptors comprise
at least three distinct families: toll-like receptors (TLRs), the
nucleotide oligomerization domain (NOD-) like receptors
(NLRs), and retinoic acid inducible gene I- (RIG-I-) like
receptors (RLRs) [14]. Among these receptors, the NOD-
like receptors (NLRs) protect the intracellular cytosolic
compartment, while the transmembrane toll-like receptors

(TLRs) survey the extracellular space [14]. Upon MAMPs
recognition, these innate receptors recruit adaptor proteins
and cellular kinases, which in turn trigger distinct intracel-
lular signaling cascades, culminating in the activation of the
MAPK and NF-kappa B pathways [14, 15] (Figure 2).

3. Toll-Like Receptors in the Intestine

Currently, the TLR family is the best characterized in mam-
mals and is composed of 13 receptors [11]. MAMPs sensing
and specificity associated with TLRs are achieved through
the arrangement and sequence variation in the conserved
leucine-rich repeat (LRR) domains. TLRs are localized in the
cell membrane and/or endosomal membrane components
and are able to recognize extracellular and endocytosed
ligands. For example, lipopolysaccharide internalization was
shown to be required for chemokine induction, supporting
the idea that NF-kappa B activation might depend upon
intracellular TLR4 signaling within the epithelium [16].

In the human gastrointestinal tract, most TLRs have been
shown to be present, with some particularities in terms of
distribution and function [17]. TLR5 is basically expressed
in the colonic epithelium and recognizes invasive flagellated
bacteria, while TLR2 andTLR4 are present in low levels in the
intestinal epithelium, more abundantly in the colonic crypts
[18]. On the other hand, TLR3 appears to be predominantly
expressed in mature enterocytes in both the small bowel
and the colon [14, 19]. Interestingly, in regard to TLR9 in
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Figure 2: TLR andNLRpathways.TheTLRpathway is composed of the conserved domain toll-IL-1-resistence (TIR), which sensesmicrobial-
associated molecular pattern (MAMPs) and interacts with the myeloid differentiation primary-response protein 88 (MyD88). MyD88 drives
signaling through NF-kappa B, by interacting with the IL-1R-associated kinases 1, 2, and 4 (IRAK1, 2, and 4), TNF receptor-associated factor
6 (TRAF6), TGF-𝛽 activated kinase 1 (TAK1), and the inhibitor of kappa B (IKKa, b, and y), promoting the activation of proinflammatory
cytokines (left).TheNLRpathway can be activated by bacterialmuramyl dipeptide (MDP), interactingwith the leucine-rich repeat-containing
protein (LRR) present in NOD1 and NOD2 structures. Both NOD1 and NOD2 can interact with the adaptor molecule RICK (RIP2) via
caspase recruitment domains (CARD-CARD) and stimulate TRAF6, which drives the activation of other elements of NF-kappa B and
MAPK pathways, with the consequent production of proinflammatory cytokines (right). Additionally, NOD2 can interact with ATG16L1
and stimulate the formation of the autophagosome.

the intestinal epithelium, it has been demonstrated that acti-
vation through the apical membrane determines tolerance,
while through the basalmembrane it induces activation of the
canonical NF-kappa B pathway [20]. The differential spatial
distribution of TLR in the epithelial cells reinforces the role
of PRR signaling in innate immunity and may constitute
a critical regulatory mechanism to distinguish commensal
microbiota from pathogens.

4. NOD-Like Receptors and Inflammasome
in the Intestine

The NLRs have been shown to play a key role in the defense
against intracellular microbes, being capable of recognizing a
broad range of exogenous bacterial components and toxins,

as well as certain endogenous damage-associated molecular
patterns (DAMPs) [21].TheNLR family comprisesmore than
twenty cytosolic receptors in mammals, divided in different
groups based on the N-terminal activation domains involved
in signal transduction [14]. All these domains have been
implicated in the triggering of alternative signaling pathways,
including caspase and NF-kappa B activation, leading to the
expression of inflammatory mediators and defensins, and the
regulation of apoptotic signals [22].

Among the NLRs that recognize microbial molecules
derived from peptidoglycan metabolism, only the NOD1
and NOD2 functions have been well characterized in the
gastrointestinal tract. While NOD1 senses the dipeptide g-
D-glutamyl-meso-diaminopimelic acid (iE-DAP) [23, 24]
originated from most Gram-negative and also specific
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Figure 3: The inflammasome pathway. Depending on the type of stimulus and the type of cell or tissue, signaling through NLR proteins
can activate different inflammasomes. Inflammasome is a multiprotein complex composed of NACHT LRR protein (NLRP) and apoptosis-
associated speck-like protein containing CARD (ASC), which cleaves procaspase-1 (pro-casp-1) in caspase-1. Once activated, caspase-1
catalyzes the cleavage of pro-IL-18 and pro-IL-1𝛽 into IL-18 and IL-1𝛽, respectively, promoting the inflammatory response.

Gram-positive bacteria [25], NOD2 recognizes muramyl
dipeptide (MDP), a ubiquitous component of all types of
peptidoglycans [24].

In regard to tissue distribution, NOD1 receptors are
constitutively expressed in a wide range of cells of both
the hematopoietic and nonhematopoietic lineage, including
intestinal epithelial cells [26–28]. On the other hand, NOD2
expression has been reported primarily in hematopoietic
cells, particularly in APC. Notably, in the epithelial com-
partment, NOD2 appears to be restricted to Paneth cells in
the small bowel [29]. Nevertheless, upon exposure to inflam-
matory stimuli, such as TNF-alpha and IFN-gamma, NOD2
expression has been shown to become upregulated [30].

Although the exact biological role of NOD1 and NOD2
in the intestinal innate immunity is yet to be determined, it
has been suggested that TLR and NOD1 or NOD2 may act
in a complimentary fashion in regard to specific microbes.
Because TLR signaling is downregulated within the intestine,
in order to avoid continuous inflammation induced by the
commensalmicrobiota, it is reasonable to suppose thatNOD1
and NOD2 would then play a critical role in the host
defense. Of note, both NOD1 and NOD2may perform highly
specialized and essential antimicrobial functions, such as
regulation of antimicrobial peptides, therefore being critically
important at mucosal surfaces [31, 32].

In contrast to NOD1 and NOD2 stimulation, which are
involved primarily in activation of inflammatory pathways,

signaling through other NLR proteins results in activation
of caspases. As a consequence of this NLR signaling, pro-
caspase-1 is recruited to a multiprotein complex known as
inflammasome [33], composed of an NLR family member,
such as NLRC4 (previously known as Ipaf, Ice protease-acti-
vating factor), NLRP (NAcht LRR protein) 1, or NLRP3/
Cryopyrin, and the adaptor ASC (apoptosis-associated
speck-like protein containing a CARD) [33, 34]. Oligomer-
ization of these subunits throughmultiple complexmolecular
interactions results in the activation of caspase-1, which in
turn catalyzes the cleavage of inactive IL-1 beta precursor,
accumulated in the cytosol, determining the maturation of
the inflammatory cytokines IL-1 beta and IL-18 [33, 35, 36].

Specific inflammasome subtypes have been described,
according to their respective NLR, each recognizing distinct
MAMPs or other danger signals [37]. For instance, NLRP1
and NLRP3 have been shown to trigger caspase-1 activation
in response to bacterial MDP [38, 39]. On the other hand,
additional roles have been described for NLRP3, which also
recognizes viral RNA [40] and bacterial DNA [41], and also
potential DAMPs, such asATP [34] and uric acid crystals [42]
(Figure 3).

5. Defective Innate Immunity in IBD

The pathogenesis of IBD has been regarded as multifacto-
rial in origin, encompassing genetic susceptibility, epithelial
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barrier dysfunction, and an abnormal immune response to
luminal contents, however, with an increasingly recognized
role for innate immunity defects in the last ten years [7, 43].

5.1. TLR Abnormalities in IBD Epithelium. Most data on
the role of TLR in the intestinal epithelium have derived
from studies with experimental models and cell lines. In
respect of the role of TLR in the human intestinal epithe-
lium, investigations have yielded considerable heterogeneous
results. In primary human epithelial cells, obtained from
intestinal samples, the expression of TLR-2 and TLR-4 has
been quite variable, being described at the crypts [44, 45],
in low levels [46] or even completely absent [47]. However,
in mucosal samples from patients with IBD, epithelial TLRs
were reported to be absent [47] or overexpressed for TLR-4
[46]. More recently, enhancement of both TLR2 and TLR4
in colonic crypt epithelial cells isolated from mucosal tissue
has been demonstrated in patients with IBD [48]. In regard
to TLR5, it is noticeable that it is not widely expressed
outside the gastrointestinal tract [49]. However, interestingly,
its ligand flagellin is reported as a dominant epitope in sera
from IBD patients [50, 51], whereas it appears to trigger
a cytoprotective effect in the gastrointestinal tract [52, 53].
In experimental animals, TLR5 deficient mice have been
demonstrated to develop spontaneous colitis [54], supporting
the suggested protective role of TLR5 in humans.

Taken together, the findings regarding TLR expression
and function in IBD, so far, suggest that colonic crypt
epithelial cells may have a greater capacity to respond to
stimuli derived from the intestinal microbiota.

5.2. NLR Abnormalities in IBD. After the discovery of
the association of NOD2 polymorphisms with CD, in the
last decade IBD has progressively been positioned right at
the forefront of the new genome-wide association studies
(GWAS) era. A number of GWAS have attempted to find
inherited elements of IBD, with a successful identification
of more than 160 loci [55, 56]. However, these studies fail
to explain most of IBD associated heritability and have been
directed to limited populations [57], while IBD is spreading
all over the world [58].

In regard to NLRs, they are known to display a broad
expression throughout the body, and the altered expression of
these molecules in the intestinal tissues has been shown to be
associated with the pathogenesis of intestinal inflammation,
in both humans and experimental models [59].

5.2.1. NOD2 and IBD. For more than a decade, a defective
NOD2 gene (also termed caspase recruitment domain family,
member 15, CARD15) has been known to constitute the
most common genetic defect associated with CD [60, 61].
Of note, the CD-associated NOD2 gene polymorphisms
determine a loss-of-function in the NOD2 pathway [62].
Although it is well established that NOD2 activation elicits
acute signaling effects, other diverse cellular modifications
also appear to be relevant to the immune response and
the intestinal homeostasis [63]. Typically, stimulation with
MDP induces NOD2 oligomerization through the central
NACHT domain and binding of the RIP2 kinase through

CARD-CARD interactions [64]. The NOD2-RIP2 complex
then initiates a signaling cascade with potentially multiple
outcomes, such as the activation of the IkB kinase (IKK) com-
plex and MAPKs activation, with the consequent expression
of cytokines, chemokines, and antimicrobial peptides [65],
autophagy and resistance to intracellular microorganisms
[66], and the modulation of antigen expression through the
major histocompatibility complex [67] (Figure 2).

Currently, it remains to be elucidated how the loss-of-
function polymorphisms on NOD2 signaling determines
the risk for CD development. Nevertheless, it has been
proposed that decreased NOD2 function results in a defec-
tive interaction between the mucosal immune system and
the intestinal microbiota, with an abnormal response to
pathogens, potential bacterial invasion, and persistent intesti-
nal inflammation [63]. It is intriguing to notice, however, that
downstream NOD2 signaling dysfunction can be detected,
even in the majority of CD patients who do not display
NOD2 polymorphisms. This evidence suggests a relatively
limited participation of NOD2 in CD, but it also indicates an
ambiguous role of the receptor in the pathogenesis of chronic
intestinal inflammation.

As NOD2 signaling emerges as a key regulator of NF-
kappa B activation and the consequent induction of proin-
flammatory cytokines, it also has a critical role in mucosal
protection. On the other hand, the expressions of NOD2 per
se, together with the proinflammatory cytokines, increase
substantially also as a result of inflammatory stimuli [68].
In fact, this complex and bidirectional function of NOD2
appears to be dependent on the stage of the inflammatory
disease [69]. For example, it has been shown that children
with CD display an overexpression and hyperactivity of
NOD2 and RIP2, its obligate caspase-recruitment domain-
containing kinase, in biopsy samples from the intestinal
inflamed mucosa [70]. However, while NOD2-deficient mice
do not develop intestinal inflammation spontaneously, they
were shown to be more susceptible to microbial infection,
particularly through the oral route [31]. Furthermore, in
another IBD experimental model, IL-10-deficient mice did
not develop colitis when NOD2 gene deletion was simulta-
neously introduced into these mice [71].

Other studies addressed additional roles for NOD2,
through the analysis of its interaction with TLRs. For
example, in an experimental study using NOD2-deficient
mice, investigators demonstrated thatNOD2 signaling blocks
the TLR2-mediated NF-kappa B activation. Hence, this
result is consistent with the notion that NOD2 mutations
might be implicated in CD pathogenesis, by leading to an
excessive Th1-type of immune response [72]. In an attempt
to understand NOD2 modulation on responses to PAMPs,
peripheral blood monocytes were exposed to bacterial MDP
components and then stimulated with MDP and LPS. Pre-
treatment with MDP led to a selective tolerance in response
to subsequent NOD2 + TLR4 stimulation, suggesting that
NOD2 and TLR4 signaling pathways probably converge [73].

Currently, it appears that the understanding of NOD2
functions is still incomplete, especially after the identification
of susceptibility variants related to autophagy in CD. In fact,
NOD2 and autophagy genes share various similar functions.
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Because autophagy has been implicated in cellular homeosta-
sis and also in the immune response, through the removal
of cell debris and bacterial elements [74], it is reasonable to
suppose its potential in the pathogenesis of CD. In particular,
ATG16L1 (autophagy-related 16-like 1) gene polymorphisms
have been consistently associated with CD in GWAS [75,
76]. Interestingly, interaction between NOD2 and autophagy
genes has been demonstrated recently. In human epithelial
cells, NOD2 stimulation with MDP was shown to activate
autophagy and microbial elimination, in a ATG16L1- and
NOD2-dependent manner, but the response was impaired by
CD-associated NOD2 variants [77].

5.2.2. NOD1 and IBD. NOD1 (also known as CARD4)
exhibits a similar structure compared with NOD2, except for
the amino-terminal domain, consisting of a single CARD
[24]. Upon exposure to ligands mostly present in Gram-
negative bacteria, NOD1 undergoes a conformational mod-
ification that initiates a signaling cascade that culminates
with the activation of NF-kappa B and MAPK pathways
and inflammatory responses [78] (Figure 2). AlthoughNOD1
receptor has been considered as a candidate factor for sus-
ceptibility to IBD, data on NOD1 gene polymorphisms from
different studies have provided conflicting results [79, 80].

5.2.3. Inflammasome-RelatedNLRs and IBD. Among the four
types of inflammasomes described so far, theNLRP3 has been
the more consistently associated with CD susceptibility [81,
82]. The NLRP3/cryopyrin protein encoded by the NLRP3
gene is part of the NLRP3-inflammasome, which constitutes
a multimeric platform implicated in caspases activation and
the consequent cleavage and secretion of IL-1 beta and IL-18
proinflammatory cytokines [33].

Polymorphisms of the NLRP3 gene have been linked to
CD, but the association has been controversial. For example,
NLRP3 SNPs have been associated with lower expression
of NLRP3 mRNA and low levels of IL-1 beta in peripheral
blood cells and monocytes of CD patients [81]. In a different
population with different genetic background, susceptibility
to CD was also related to a NLRP3 polymorphism. In con-
trast to the previous study, investigators reported a gain-of-
function polymorphism, proposing a different mechanism,
which consists of the induction of caspase-1 activity and
the resultant overproduction of IL-1 beta [82]. However, the
association between NLRP3 gene and susceptibility to IBD
has been questioned, after a GWA study analyzing a different
population [83].

In consonance with the importance of defects of NLRP3
for the development of intestinal inflammation, studies ana-
lyzing its downstreammolecules such as IL-18 confirmed the
association with the increased susceptibility to CD [84]. In
addition, in sites of active intestinal inflammation in CD, IL-
18 [85] and IL-1 beta [86] were shown to be overexpressed.

Despite the controversial results regarding the association
of NLRP3 with IBD, the complex mechanisms involved in
NLRP3-inflammasome began to be clarified in recent years.
For example, pannexin-1, a transmembrane hemichannel
associated with the purinergic receptor P2X7, has been pro-
posed to function upstreamofNLRP3, as it has been shown to

mediate the passage of microbial molecules into the cytosol,
triggering NLRP3-inflammasome activation [87]. Moreover,
as demonstrated by our group, the site-specific expression
and modulation within the gut and gut-associated lymphoid
tissues [88] and the upregulation of the P2X7 receptor in
an inflammatory microenvironment [89], together with the
induction of epithelial cell apoptosis and autophagy by its
ligand ATP [90], point to purinergic signaling as a key
regulator of the innate immune response and of the activation
of the NLRP3-inflammasome.

The NLRC4-inflammasome is predominantly expressed
in myeloid cells and is composed of an N-terminal CARD
domain, which is thought to interact directly with caspase-1
[91], mediating cytokine production and the induction of
cell death [92]. Activation of NLRC4 may have an important
role in the defense against diverse Gram-negative bacteria,
such as Salmonella typhimurium, Shigella flexneri, Legionella
pneumophila, and Pseudomonas aeruginosa [93, 94], but also
Candida albicans [95] and Burkholderia pseudomallei, a flag-
ellated bacterium responsible for a tropical pneumonia [96].
In experimental and in in vitro experiments, macrophages
were shown to sense the cytosolic bacterial flagellin proteins
with resultant caspase-1 activation in a TLR5-independent
fashion [97, 98].

TheNLRP6-inflammasome has also been associated with
intestinal inflammation, basically in experimental studies.
For example, in NLRP6 deficient mice, the exacerbation of
chemically induced colitis has been linked to the inability of
repairing the injured epithelium [99]. Moreover, cohousing
experiments demonstrated that the colitogenic microbiota
could be transferable to wild-type mice [100]. Importantly,
the NLRP6-inflammasome was also suggested to be involved
in colon tumorigenesis. In this respect,NLRP6-deficientmice
were shown to develop more tumors, following chemical
induction with azoxymethane-dextran sodium sulfate [101].

The NLRP12 was also shown to play a role in preventing
chemically induced colitis and colon tumor associated with
inflammation [102], by negatively regulating of noncanonical
NF-kappa B signaling [103]. However, in contrast to NLRP6,
the NLRP12 effects do not appear to be associated with
the regulation of the intestinal microbiota, as shown by the
inability of NLRP12 deficient mice to transmit colitogenic
bacteria to wild-type mice after cohousing [100].

Taken together, the results of these studies point to the rel-
evance of the inflammasome, regarding the innate immunity
and the consequent homeostatic intestinal balance. Hence,
the integration of internal and external stimuli, including
stressful signals and microbial components, highlights the
importance of the inflammasome, which appears to consti-
tute a mechanistic background for intestinal inflammation
and the development of inflammation-associated tumorige-
nesis.

6. Conclusion

Recent investigations have provided evidence for a concep-
tual change in respect of the innate immune system. At
first, regarded as nonspecific, the idea of innate immunity
has evolved to constitute an integrative system, connecting
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adaptive and innate immune responses. Therefore, currently,
in addition to early sensing of pathogens and delivering and
immediate response, the innate immune system is implicated
in the regulation and shaping of the adaptive immune res-
ponse.

The hypothesis of a defective innate immunity as the
primary mechanism involved with the development of IBD
has been supported for more than a decade. After the first
evidence indicating the genetic association of CDwithNOD2
polymorphisms, a multitude of studies have been directed
towards innate immunity mechanisms in IBD pathogenesis.
New members of the NLRs and TLRs have been described
and their functions analyzed under the light of intestinal
inflammation. The pathways regulated by NLRs and TLRs
were shown to be mediated by microbial elements, and they
appear to be responsible for bacterial clearance and the
inflammatory response, in a time-dependent fashion. In fact,
most receptors of the innate immunity present ambiguous
functions, according to the dynamics of the inflammatory
process.

Moreover, intracellular cascades triggered by distinct
receptor families may present different levels of integration
and overlapping in the intestinalmucosa, in order to dealwith
the challenge of simultaneously responding appropriately and
protecting sufficiently.

Finally, an abnormal regulation of these signaling path-
ways during both the early and chronic phases of intestinal
inflammation may result in a persistent inflammatory pro-
cess, which may underlie the pathogenesis of IBD and of the
inflammation-associated colorectal cancer.
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