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Abstract: A temperature sensor that uses temperature-sensitive fluorescent dyes is developed. 
The droplet sensor has a diameter of 40 µm and uses 1 g/L of Rhodamine B (RhB) and 0.5 g/L 
of Rhodamine 110 (Rh110), which are fluorescent dyes that are dissolved in an ionic liquid 
(1-ethyl-3-methylimidazolium ethyl sulfate) to function as temperature indicators. This 
ionic liquid is encapsulated using vacuum Parylene film deposition (which is known as the 
Parylene-on-liquid-deposition (PoLD) method). The droplet is sealed by the chemically 
stable and impermeable Parylene film, which prevents the dye from interacting with the 
molecules in the solution and keeps the volume and concentration of the fluorescent material 
fixed. The two fluorescent dyes enable the temperature to be measured ratiometrically such 
that the droplet sensor can be used in various applications, such as the wireless temperature 
measurement of microregions. The sensor can measure the temperature of such microregions 
with an accuracy of 1.9 °C, a precision of 3.7 °C, and a fluorescence intensity change 
sensitivity of 1.0%/K. The sensor can measure temperatures at different sensor depths in water, 
ranging from 0 to 850 µm. The droplet sensor is fabricated using microelectromechanical 
system (MEMS) technology and is highly applicable to lab-on-a-chip devices.  
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1. Introduction 

The temperature control of microfluidic channels is essential for lab-on-a-chip experiments, such as 
capillary electrophoresis [1]. The temperature in these microfluidic channels is typically measured by 
imaging temperature-sensitive materials dissolved in liquids. This method enables the wireless sensing 
of remote temperatures and is thus highly applicable to measuring the temperatures of small fluidic 
channels. Fluorescent dyes (or thermochromic liquid crystals), and more recently quantum dots, have 
been used as temperature-sensitive materials because their photoemission intensities are temperature 
dependent [2–8]. This method is versatile, but also possesses several drawbacks. First, the method is 
sensitive to changes in the material concentration, which causes fluctuations in the photoemission 
intensity, resulting in inaccurate temperature measurements. Second, the material typically becomes 
contaminated in the solution, which can hinder the chemical reaction in the microchannel. Thus, it is 
desirable to develop a method in which the material does not interact with the chemicals in the solution. 

In this paper, we develop a temperature sensor using fluorescent dye droplets that are encapsulated by an 
impermeable polymer thin film. Our group previously developed a method to vacuum seal nonvolatile 
liquids using a Parylene coating, which is known as PoLD (Parylene on liquid deposition) [9,10]. Two 
fluorescent dyes were dissolved in a nonvolatile ionic liquid to enable ratiometric temperature 
measurements. The droplets were patterned on a substrate and then encapsulated by a Parylene film, 
which fixed the volume and concentration of the droplets. The dye could not interact with the chemicals 
in the solution because the droplets were sealed by the chemically stable film. 

2. Sensor Configurations and Sensing Method 

In the developed sensor, the liquid in which the temperature sensitive dyes are dissolved was coated 
with a Parylene thin film (Figure 1(a)). The quantum yield Φ of a fluorescent dye is temperature 
dependent; therefore, a temperature change modulated the fluorescence intensity [11], which decreased with 
increasing temperature (see Figure 1(c)). We used a ratiometric method to determine the temperature from 
the fluorescence intensity using two dyes, Rhodamine B (RhB) and Rhodamine 110 (Rh110) [12]. The 
fluorescence of these two dyes could be measured independently because the dyes have different 
excitation/emission wavelengths. The temperature could also be measured ratiometrically because the 
dyes exhibited different thermal dependences. The ratiometric method is robust to artifacts from optical 
losses by the absorption of medium because any optical loss is cancelled out during the ratiometric 
operation. These dyes were activated as fluorescent materials by dissolution in an ionic liquid; we 
previously confirmed that the dyes behaved similarly in the ionic liquid as in water. The ionic liquid had 
a very low vapor pressure, was nonvolatile, and could be encapsulated using chemical vapor deposition, 
as we reported previously [9,10]. The Parylene-C film coating prevented liquid leakage, enabling the 
application of the sensor to aqueous environments.  
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Figure 1. (a) Schematic of the droplet sensor, (b) fabrication process of the droplet sensor, 
(c) temperature measurement method using fluorescence intensity, and (d) image of fabricated 
droplet sensors. 

 

3. Device Fabrication and Experimental Apparatus 

The droplet sensor was fabricated using microelectromechanical system (MEMS) microfabrication 
technology. The droplets were patterned on a glass substrate (see Figure 1(b)). First, a Cytop (Asahi 
Glass, Tokyo, Japan) hydrophobic layer was coated onto a cover glass. The glass was spun at 3,000 rpm 
for 20 s, followed by sequential baking at 80 °C for 30 min and at 180 °C for 30 min. Next, a thin layer of 
aluminum (Al) was deposited to act as an etching mask, i.e., the Al layer was patterned to create circular 
openings in the Cytop film. The circular openings were produced via oxygen (O2) plasma etching of the 
Cytop layer. Ionic liquids adhere to hydrophilic surfaces (in this case, glass); therefore, the opening 
determined the outer shape of the liquid. In this paper, a diameter of 40 μm was adopted for the circular 
opening. The 1-ethyl-3-methylimidazolium ethyl sulfate ionic liquid containing the dissolved RhB and 
Rh110 fluorescent dyes was manually dropped onto the openings. In the subsequent experiments, the 
concentrations of the dyes were maintained at 1 g/L (RhB) and 0.5 g/L (Rh110). The droplets were then 
encapsulated with Parylene C via chemical vapor deposition (CVD) (using a monomer weight of 0.5 g, 
which corresponded to a 1-µm-thick Parylene layer). The Parylene C was directly deposited onto the 
liquid surface to form a polymer film because the ionic liquid does not evaporate, even in a vacuum 
chamber. In the experiments described below, the droplet sensor outputs were compared with the 
temperature measured by a conventional thermocouple. A thermocouple was placed near the droplet 
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sensor by embedding the thermocouple in a polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning, 
Midland, MI, USA) elastomer with the fabricated droplets. A thermocouple was also used for the 
temperature feedback control in the experiments. Figure 1(d) shows an image of a fabricated array of 
highly uniform encapsulated droplets. 

The experimental apparatus consisted of an inverted fluorescent microscope (Axiovert 200,  
Carl Zeiss Group, Oberkochen, Germany). The sensor substrate was illuminated by a bandpass-filtered 
mercury (Hg) lamp. The emission light was collected with an objective lens (LUCPL FLN ×40, N.A. 
0.6, Olympus Corporation, Tokyo, Japan) and measured using a charge-coupled device (CCD) camera 
(ORCA-ER, Hamamatsu, Shizuoka, Japan). The filter sets were changed manually to measure the dye 
fluorescence. A silicon rubber heater was attached to the top of the sensor such that the heater did not 
interfere with the optical path. The temperature of the sensor was controlled by a thermo-control unit 
(E5BS, OMRON, Kyoto, Japan) using the output of the embedded thermocouple. 

4. Experiments and Results 

4.1. Data Collection Method 

The peak wavelengths of the emission spectrum of RhB and Rh110 have been reported to be 592 nm 
and 538 nm, respectively. For RhB, an excitation filter passing wavelengths from 550 to 580 nm and an 
emission filter passing wavelengths from 590 nm to 650 nm were used. For Rh110, an excitation filter 
passing wavelengths from 475 to 495 nm and an emission filter passing wavelengths from 515 nm to  
565 nm were used. There was little overlap between the excitation and emission spectra of the two dyes; 
therefore, there was negligible incorporation of fluorescence between the two dyes. Thus, the 
experimental data were analyzed assuming that the fluorescence of the two dyes was completely 
separable. Figure 2 presents color fluorescence images for each dye and the intensity distribution from 
the CCD plots. The wafer surface had a background fluorescence level in the absence of droplets. The 
sensor fluorescence intensity was defined as the difference between the maximum and minimum gray 
values, which weredenoted by IRhB for RhB and IRh110 for Rh110 (see Figure 2). The background 
fluorescence level was extracted from the experimental data.  

Figure 2. Data acquisition scheme. 
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4.2. Sensor Characteristics: Photobleaching and Dispersion of Droplets 

Fluorescent dyes may be photobleached by continuous illumination by exciting light. To inhibit the 
photobleaching effect, pulse illuminations were used for the droplet sensor. The duration of a  
single pulse was 0.75 s, which was adequate for the temperature measurements. Figure 3 shows the 
fluorescence intensity of each dye versus the pulse count. The fluorescence intensity was normalized by 
the initial intensity for each dye. The fluorescence intensities of RhB and Rh110 after 20 pulses were 
101% and 98% of the initial dye intensities, respectively. Thus, almost no photobleaching occurred 
using pulse excitation for several tens of pulses. Consequently, pulse excitation was used in the 
temperature measurements. The uniformity of the fabricated temperature sensors was also evaluated. 
The fluorescence intensities of RhB and Rh110 were measured for 25 droplets, and the ratio of the two 
intensities was calculated for each droplet (see Figure 4). The intensity of each droplet was normalized 
by that of the first droplet, which was selected arbitrarily. Although the individual droplet intensities of 
the RhB and Rh110 exhibited relatively large fluctuations of up to 30% of the initial droplet intensity, 
the variation in the ratio of the RhB and Rh110 intensities was as small as 6%. 

Figure 3. Plot showing stable dye intensities over multiple pulse excitations. 

 

Figure 4. Variation in the fluorescence intensity of the sensor with the droplet number. 
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4.3. Measurement of the Liquid Temperature 

The relationship between the temperature and fluorescence intensity was investigated for each dye. 
The temperature was varied by heating the sensor with a silicon rubber heater. The sensor was heated 
from 25 °C to 68 °C (and then cooled from 68 °C to 25 °C) using the heater, and the fluorescence 
intensity of the droplet was simultaneously measured. Figure 5(a) shows plots of the intensities of each 
dye. The fluorescence intensity of each dye was normalized by its fluorescence intensity at 25 °C. The 
fluorescence intensity for both dyes decreased with increasing temperature. We performed intensity 
measurements in ascending steps (increasing temperature) and descending steps (decreasing temperature). 
The hysteresis was sufficiently small that it was neglected. A linear fit to the temperature data was obtained 
using the least-mean-squares method, resulting in temperature dependences of the RhB and Rh110 
intensities of −1.2%/K and −0.27%/K, respectively. Figure 5(b) shows a plot of the IRhB/IRh110 ratio, 
where IRhB and IRh110 denote the fluorescence intensities of RhB and Rh110, respectively. The 
temperature dependency of the ratio was −1.0%/K. Assuming that the fits were accurate, the sensor 
accuracy was defined as the difference between the measured fluorescence intensity and the 
fluorescence intensity calculated from the linear fit. A mean accuracy of 1.9 °C was obtained by 
calculating the accuracy of each measured point in the ascending direction in Figure 5(b). The 
temperature precision was determined to be 3.7 °C, which corresponded to the largest standard deviation 
of the sensor output (i.e., the error bars) observed in the ratiometric data. 

Figure 5. Sensor response to temperature changes: (a) measurements for individual dyes 
and (b) ratiometric measurement. 
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Figure 6. Variation in sensor output for different optical path lengths. 

 

Finally, the temperature was measured when the sensor was immersed in water to determine whether 
the sensor could function effectively in water and to measure a constant temperature value independent 
of the optical path between the droplet and objective lens. The inset in Figure 6 shows the experimental 
apparatus. The water temperature was held constant, and the sensor was inclined at an angle such that the 
water depth (and thus the optical path) was different for each droplet. The temperature determined from 
the fluorescence intensity of the droplet sensor was compared with the reference temperature measured 
with a thermocouple. The intensities of 17 sensor droplets were measured at different depths d, ranging 
from 0 µm (initial depth) to approximately 850 µm (see the inset of Figure 6). The water temperature 
was 15 °C, and the measured temperature at different depths was distributed around approximately  
15 °C. Although there were some errors in the measured temperature, the sensor precision was 3.7 °C 
(the temperature precision of the droplet sensor) over the entire depth. Therefore, the temperature was 
not affected by the sensor depth. Our sensor can thus be used for temperature measurements that involve 
variations in the optical path between the objective lens and droplet. 

5. Conclusions 

We have developed a microdroplet temperature sensor that is encapsulated using the PoLD method. 
The droplet sensor has a diameter of 40 µm and uses Rhodamine B and Rhodamine 110 fluorescent dyes 
dissolved in an ionic liquid (1-ethyl-3-methylimidazolium ethyl sulfate) as temperature indicators. The 
droplet sensor measures the temperature using the ratiometric fluorescence intensity with an accuracy of 
1.9 °C, a precision of 3.7 °C, and a sensitivity of 1.0%/K. In addition, the temperature can be measured 
for varying sensor depths in water, ranging from 0 to 850 µm. The concentration of the fluorescent dyes 
and sensor volume are fixed by the PoLD encapsulation, which prevents the chemicals in the solution in 
the microchannel from interacting w ith the temperature indicator dyes. The reported encapsulation was 
verified to be sufficiently stable in a water environment for 40 min [13]. In addition, the fluorescent dye 
Rhodamine B has been reported to show no photobleaching after 30 min of exposure [5]. The sensor can 
thus be applied for measurements lasting as long as 30 min. The sensitivity and accuracy of the 
temperature measurement can be improved by optimizing the dye concentrations and by identifying 
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optimal fluorescent dyes. The droplet position and size can be controlled using MEMS technology, 
making this sensor highly applicable to micro total analysis systems (µ-TASs). 
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