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Abstract

Sensory cortices display a suite of ubiquitous dynamical features, such as ongoing noise 

variability, transient overshoots, and oscillations, that have so far escaped a common, principled 

theoretical account. We developed a unifying model for these phenomena by training a recurrent 

excitatory–inhibitory neural circuit model of a visual cortical hypercolumn to perform sampling-

based probabilistic inference. The optimized network displayed several key biological properties, 

including divisive normalization, as well as stimulus-modulated noise variability, inhibition-

dominated transients at stimulus onset, and strong gamma oscillations. These dynamical features 

had distinct functional roles in speeding up inferences and made predictions that we confirmed in 

novel analyses of awake monkey recordings. Our results suggest that the basic motifs of cortical 

dynamics emerge as a consequence of the efficient implementation of the same computational 

function—fast sampling-based inference—and predict further properties of these motifs that can 

be tested in future experiments.
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The dynamics of sensory cortices exhibit a set of ubiquitous features across species and 

experimental conditions. Responses vary over time and across trials even when the same 

static stimulus is presented1, and these intrinsic variations have both systematic and 

seemingly random components (so-called noise variability). The most prominent systematic 

patterns of neural activity are strong, inhibition-dominated transients at stimulus onset2 (or, 

equivalently, strong adaptation following stimulus onset), and stimulusdependent population 

oscillations in the gamma band (20–80 Hz)3,4. The extent and pattern of noise variability is 

also stimulus-dependent: variability is quenched at stimulus onset1, decreasing gradually 

with stimulus contrast in the primary visual cortex (V1)5, and is further modulated by the 

content of the stimulus, e.g. the orientation or direction of drifting gratings for cells in V1 or 

in the middle temporal visual area (MT)6.

While the mechanisms giving rise to these dynamical phenomena are increasingly well 

understood6,7, their functional significance remains largely unknown and controversial. For 

example, cortical gamma oscillations have been suggested to be a substrate for binding 

different sources of information about a feature (known as binding by synchrony8), to 

mediate information routing (communication by synchrony9), or to enable a temporal code 

of spikes relative to the oscillation phase10. Transient overshoots have been proposed to 

carry novelty or prediction error signals11. Noise variability, when considered to be useful at 

all, has been argued to bear signatures of probabilistic computations5,12,13. However, it is 

unclear whether these explanations can be reconciled, as each of them only accounts for 

select aspects of the data, and has been challenged by alternative accounts3,14–16.

Here, we present a unifying model in which all of these dynamical phenomena emerge as a 

consequence of the efficient implementation of the same computational function: 

probabilistic inference. Probabilistic inference provides a principled solution to forming 

percepts by fusing partial and noisy information from multiple sources (including multiple 

sensory cues, modalities, and forms of memory)17. Formally, this fusion results in a 

posterior distribution expressing the probability that relevant features in the environment that 

are not directly accessible to the brain (e.g. the three-dimensional shapes of objects) may 

take any particular configuration given information that is directly available to our senses 

(e.g. photons absorbed in the retina). Behavioral evidence in several domains, including 

near-optimal performance in multi-sensory integration, decision making, motor control, and 

learning suggests that the brain represents posterior distributions at least approximately18. 

There have also been several proposals for how the neural responses of sensory cortical 

populations may implement these probabilistic representations5,12,19. While these models 

successfully explained important aspects of stationary response distributions (e.g. tuning 

curves, Fano factors, noise correlations), they have so far fallen short of accounting for the 

rich intrinsic dynamics of sensory cortical areas.

To bring together dynamics (cortical-like activity patterns) and function (representing 

posterior distributions) in a principled manner, we optimized a biologically constrained 

recurrent neural network for performing sampling-based probabilistic inference5,13,20,21. 

Specifically, the network’s objective was to dynamically produce responses whose 

distribution matched a Bayesian ideal observer’s posterior distribution for each stimulus. 

The optimized neural circuit exhibited a number of appealing computational and dynamical 
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features. Computationally, after training on a reduced stimulus set, the network exhibited 

strong forms of generalization by producing near-optimal response distributions to novel 

inputs which required qualitatively different responses. Furthermore, the network discovered 

out-of-equilibrium dynamics, a strategy currently employed by modern machine learning 

algorithms to produce samples that become statistically independent on short timescales22.

Biologically, the optimized circuit achieved divisive normalization of its outputs and 

displayed marked transients at stimulus onset, as well as strong gamma oscillations. Both the 

magnitude of transients and the frequency of gamma oscillations scaled with stimulus 

contrast. Crucially, these dynamical phenomena did not emerge in control networks 

optimized for related objectives that did not require sampling. Further analyses of transients 

and oscillations in the optimized network revealed distinct functional roles for them. These 

analyses predicted novel properties of cortical dynamics: onset transients should be tuned to 

stimuli, which we confirmed by new analyses of published V1 recordings in the awake 

monkey23. In addition, our model also made specific predictions about the stimulus tuning 

of excitatory–inhibitory lags and the distribution of gamma power across the different modes 

of network dynamics. Both can be readily tested in future experiments.

In summary, we constructed the first biologically constrained recurrent neural network 

performing sampling-based probabilistic inference that explained a plethora of 

electrophysiological observations in sensory cortices. Our model thus provides a unifying 

theoretical account of the basic motifs of sensory cortical dynamics.

Results

Optimizing a recurrent neural circuit for probabilistic inference

To study neural circuit dynamics implementing probabilistic inference, we used a novel 

combination of two well-established, though hitherto unrelated computational approaches: 

Bayesian ideal observers and the training of recurrent neural networks (Methods). First, we 

used a Bayesian ideal observer model to specify the computational goal of perceptual 

inference in a simplified visual task. Performing inference requires an internal model that 

encapsulates one’s assumptions about how the inputs to be processed have been generated 

by the environment. For this, we adopted the Gaussian scale mixture (GSM) model (Fig. 1a), 

a generative model that has been shown to capture the statistics of natural image patches24. 

Conversely, inference under the GSM model has been shown to account for behavioral and 

neural data (for stationary responses) in visual perception5,25,26. The GSM model assumes 

that an image patch is generated as a linear combination of oriented Gabor filter-like visual 

features (“projective fields”), each present with a different intensity (the latent variables of 

the model). The image patch is further scaled by a single global “contrast” variable. Here, 

we focused on modeling a single hypercolumn, by choosing the projective fields of the GSM 

latent variables to only differ in their orientation so that they formed a ring topology (Fig. 

1a, Extended Data Fig. 1a-b). The ideal observer was obtained by a Bayesian inversion of 

this model. Thus, for every image patch taken as sensory input, the ideal observer yielded a 

highdimensional posterior distribution quantifying the probability that any particular joint 

combination of feature intensities may have generated the input (Fig. 1b).
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Second, to model cortical circuit dynamics, we used a canonical, rate-based stochastic 

recurrent neural network model, the stochastic variant of the stabilized supralinear network 

(SSN)6,27. The network was constrained to exhibit some basic biological features previously 

shown to be fundamental for cortical dynamics: separate but interconnected excitatory (E) 

and inhibitory (I) populations of neurons (Fig. 1c), supralinear (expansive) input/output 

functions27,28, and finite and stimulus-independent process noise6,29 incorporating intrinsic 

and extrinsic forms of neural variability.

We trained this network to perform samplingbased inference under the GSM. For this, we 

assumed a one-to-one mapping between latent variables and excitatory cells, such that the 

response (membrane potential) of each E cell represented the intensity of a different feature 

in the GSM model. Inhibitory neurons were treated as auxiliary units not explicitly 

constrained by the computational objective. The network was optimized to produce 

distributions of excitatory neural activities that matched the posteriors computed by the 

GSM-based ideal observer up to second-order statistics. For each stimulus in a small training 

set, the network was required to use its stochastic dynamics to visit different parts of state 

space over time with a frequency proportional to the posterior distribution corresponding to 

the same stimulus (Fig. 1d). Critically, as process noise in the network was stimulus-

independent, the network had to use its recurrent dynamics to shape this variability 

appropriately for matching the target posteriors for each input. The training objective also 

included terms encouraging fast circuit dynamics. In summary, the network had to generate 

fast fluctuations with the correct stimulus-dependent patterns of across-trial mean and 

covariance.

Optimizing our network was challenging because modulating response variability (to match 

the stimulus-dependent posterior covariances of the ideal observer model) requires strong 

and nonlinear recurrent interactions, but networks of strongly connected excitatory neurons 

– especially with supralinear input/output functions – are prone to becoming unstable6,30. In 

such networks, it is non-trivial to find parameter regimes in which stability is preserved and 

thus optimization can proceed6. We therefore resorted to a reduced “ring” (hypercolumn) 

parametrization in which recurrent connection strength between any two cells (and the 

covariability of their process noise) only depended on the angular distance between their 

preferred stimuliand their respective cell types (E or I; Extended Data Fig. 1d). The 

feedforward receptive fields of the cells were fixed and identical to the projective fields of 

the corresponding latent variables of the ring-structured GSM (Extended Data Fig. 1a).

Inference and generalization in the optimized network

In line with neural recordings, activity in the optimized network was highly variable across 

time and trials, for both low-contrast (Fig. 2a, top) and high-contrast stimuli (Fig. 2a, 

bottom). Critically, the distributions of neural responses at the five training stimuli (the same 

image patch at five different contrast levels; Fig. 2b left) closely matched the corresponding 

GSM posteriors (Fig. 2b–d, compare red to green). Specifically, the mean activity of neurons 

increased while the variability of their responses decreased with contrast as well as with the 

match between stimulus orientation and their preferred orientation. This was consistent with 
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the behavior of the moments of the GSM posterior (Fig. 2c, and circles in Fig. 3a). Thus, the 

network had been trained successfully to perform sampling-based inference on these stimuli.

We also tested the capacity of the network to represent the appropriate posterior distributions 

for novel stimuli. First, we confirmed that the mean and variability of network responses 

smoothly interpolated between the corresponding target moments for intermediate contrast 

levels, closely following the behavior of the GSM posterior (Fig. 3a, solid curves between 

circles). Next, we presented the network with 500 entirely novel image patches randomly 

generated from the GSM (Extended Data Fig. 1c). Overall, both the means (Fig. 3b, top) and 

covariances of network responses (Fig. 3b, bottom) matched those of the target posteriors. 

This match was similarly good for test stimuli (Fig. 3b, orange) as for training stimuli(Fig. 

3b, lavender). Critically, while the inputs of the training set included a single dominant 

orientation, many test stimuli had a more complex structure, with more than one dominant 

orientation (Fig. 3c, first column). Consequently, the corresponding GSM posteriors that the 

network was required to match became qualitatively different. Specifically, both the mean 

activity profiles across the population (Fig. 3c, 2nd column) and the principal components 

(PCs) of the noise covariances (Fig. 3c, remaining columns) became multimodal and highly 

dependent on the stimulus (Fig. 3c, green; compare across rows). The network was able to 

match the required GSM posteriors with high accuracy even in these challenging cases (Fig. 

3c, red). Thus, the optimized network performed approximate Bayesian inference over a 

wide array of stimuli by always sampling (approximately) from the appropriate, 

stimulusdependent high-dimensional posterior distribution of the ideal observer.

The optimized network performs fast sampling

Under sampling-based inference, the time it takes to accurately represent a posterior 

distribution by collecting successive samples is directly proportional to the timescale over 

which these samples are correlated31. In our optimized network, noise variability generated 

new, independent samples every few tens of milliseconds across all contrast levels. This was 

evident in the fast fall-off of response autocorrelations (Fig. 4a, colored curves), similar to 

that observed in sensory cortices13,32. In fact, our network was even faster than a 

disconnected network with the same membrane and input time constants (Fig. 4a, dashed 

curve), and close to the theoretical limit of a network of infinitely fast neurons in which 

sampling speed is solely limited by the input time constant (Fig. 4a, dotted curve).

To understand how the optimized network achieved fast sampling, we compared its 

dynamics to an algorithm known as Langevin sampling, a form of directed random walk 

(Methods). Sampling by Langevin dynamics was a relevant comparison for our network for 

two reasons. First, Langevin sampling is a popular, general-purpose algorithm in machine 

learning useful for benchmarking the performance of our network. Second, previous work 

suggested that sampling in stochastic recurrent neural networks (without respecting Dale’s 

principle) may be implemented by Langevin-like dynamics33–35.

We found that for each input, Langevin dynamics was consistently an order of magnitude 

slower than our network (Fig. 4a, gray curves). The slowness of Langevin dynamics is 

known to arise from one of its critical features: time-reversible dynamics—i.e. that any time 

series of responses is as probable as its time-reversed counterpart36. This was indeed 
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reflected in temporally symmetric cross-correlograms (Fig. 4b, top). In contrast, our 

optimized network displayed a marked departure from time-reversibility, as evidenced by 

strong asymmetric components in its crosscorrelograms (Fig. 4b, bottom). This dynamical 

irreversibility implied sequentiality in the activation of particular pairs of neurons. In 

particular, we found that I cells typically lagged behind E cells. Moreover, for any cell, its 

total inhibitory input tended to also lag behind its overall excitatory input (Fig. 4c), 

consistent with known electro-physiology37. Interestingly, this lag was smaller for cells that 

were most strongly driven by the stimulus, and this modulation became stronger with 

increasing contrast. These form testable predictions of our model.

Cortical-like dynamics in the optimized circuit

Having established that our network represented posterior distributions via sampling, we 

compared its responses with known physiological properties of V1. First, firing rates in the 

model had a physiologically realistic dynamic range and were tuned to stimulus orientation, 

similarly to neurons in macaque V1 (Fig. 5a, left-middle; Ref. 6, analysis of data recorded 

by Ref. 23). We also computed spike count statistics in the network from firing rates, 

assuming a doubly stochastic spike generation process (Methods). The quenching of 

membrane potential variability with increasing contrast (Fig. 2d, bottom) gave rise to 

quenching of spike count variability (quantified by the Fano factor), strongest at the cell’s 

preferred orientation (Fig. 5b, middle). These effects qualitatively matched V1 data, but 

were somewhat weaker (Fig. 5b, left). Moreover, stationary responses in the network 

exhibited clear signatures of divisive normalization (Extended Data Fig. 2a-b)38. All these 

results were expected for a network whose stationary membrane potential response 

distributions represent GSM posteriors5.

Although our optimization procedure only constrained the network’s stationary response 

distributions, without prescribing any specific dynamics, we found that the optimized 

network exhibited realistic, cortical-like dynamics. Specifically, strong gamma oscillations 

emerged, with a peak frequency increasing with contrast, consistent with V1 recordings in 

the awake monkey3,4 (Fig. 5c, left-middle). Moreover, selective clamping of either the E or I 

population abolished gamma oscillations (or stability altogether) (Extended Data Fig. 2c-d), 

suggesting gamma oscillations arose from dynamical interactions between E and I cells 

(“PING” mechanism16). The network also showed strong transient responses such that 

average population rates had marked contrast-dependent overshoots at stimulus onset, 

consistent with recordings in V1 3 (Fig. 5d, leftmiddle). Finally, using a conductance-based 

approximation of our current-based model (Methods), we found that inhibition transiently 

dominated over excitation during stimulus presentation, as in V1 of the awake mouse2 (Fig. 

5e, left-middle).

Control networks do not show cortical-like dynamics

We next sought to establish whether these dynamical properties arose simply due to the 

biological and architectural constraints imposed on our network – or specifically due to 

optimizing for sampling-based inference. For this, we used a series of ‘control’ networks in 

which single cell parameters (time constants and firing rate nonlinearities), overall network 
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architecture, and receptive fields were all identical to those used in the original network. 

Thus, these networks only differed in the objective for which they were optimized.

First, we confirmed that the dynamics characteristic of the originally optimized network did 

not emerge in randomly parametrized networks without optimization, but robustly emerged 

after optimization starting from different random initial conditions (Extended Data Figs. 3 

and 4). Next, we optimized a control network that differed from the original network in only 

one critical aspect: it was only required to match the means of the posterior distributions, but 

neither variances nor covariances. Despite clear stimulusdependent modulations in mean 

responses (as required by training; Fig. 5a, right), this network exhibited only minimal 

modulations of both membrane potential variability (Extended Data Fig. 5a-g) and Fano 

factors (Fig. 5b, right; Extended Data Fig. 6). Thus, the modulations of response variability 

seen in the original network, which are a hallmark of sampling-based inference5, were not 

simply a by-product of non-linear E–I dynamics. Moreover, neither gamma oscillations nor 

marked inhibition-dominated transients emerged in the control network (Fig. 5c-e, right). In 

fact, matching both means and variances, but not covariances (necessary for full inference), 

still abolished these dynamical features (Extended Data Fig. 5h-n, and 6). Finally, 

oscillations were also absent in another control network specifically optimized to modulate 

its mean firing rates as before, while keeping its Fano factors constant (Extended Data Figs. 

6 and 7), as would be required by other, non sampling-based probabilistic representations12.

These results suggest that the dynamical features observed in the original network emerged 

as a consequence of the specific computation for which it was optimized. Conversely, 

training the network on the original cost function but without enforcing Dale’s principle 

resulted in substantially poorer performance and a lack of oscillations and transients 

(Extended Data Figs. 4, 6 and 8). Thus, achieving competent sampling performance and 

exhibiting realistic dynamics again appeared to be coupled.

Oscillations improve mixing time

To study the potential functional benefits of oscillations, one would ideally like to “knock-

out” oscillations from the network while leaving all other features of the dynamics intact. 

The complex and high dimensional dynamics of our network made this unfeasible. 

Therefore, we first studied the response of a single neuron to obtain an analytical 

understanding of the general role of oscillations in sampling (Fig. 6a-b). We next 

generalized this analysis to oscillations in network-wide activity patterns rather than single 

neurons, thus providing insights into the high-dimensional dynamics of the full network 

(Fig. 6c-d).

Assuming that the response of a neuron is statistically stationary and approximately 

normally distributed, it is fully characterized by its mean, variance, and autocorrelogram. As 

long as this neuron is part of a sampling-optimized network, the mean and variance of its 

response will have to match those prescribed by the target distribution sampled by the 

network (Fig. 2b-d). Although the autocorrelogram is not constrained by the target moments, 

it still contributes critically to the performance of the network. Specifically, it can be shown 

mathematically that the total area under the autocorrelogram directly scales “mixing time”: 

the time it takes for the dynamics to represent the target distribution to a given precision 
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(Supplementary Math Note). Therefore, to understand the specific role of oscillations, we 

compared idealized (stationary and normally distributed) neuronal responses, constructed to 

have the same mean and variance as responses in our network but different autocorrelation 

functions (Methods).

We compared response autocorrelograms with different degrees of “oscillatoriness” (Fig. 6a, 

blue, orange, red), but the same envelope as that of the full network (Fig. 6a, inset, black 

dotted; see also Fig. 4). These oscillations substantially reduced the area under the 

autocorrelogram (Fig. 6a, inset) and thus accelerated the convergence of the empirical 

distribution of responses to the target distribution (Fig. 6b; Supplementary Math Note). 

Importantly, oscillations will only decrease the area under the autocorrelogram if at least one 

oscillation cycle fits under the envelope, i.e. if the oscillation period is sufficiently shorter 

than the width of the envelope (approximately 35 ms). This implied oscillation frequencies 

higher than 30 Hz, just as observed in the optimized network (Fig. 5c, middle).

We next studied the organization of gamma oscillations in the multidimensional responses of 

the full network. We were able to show that maximal sampling speed is achieved specifically 

when smaller response variance is associated with higher oscillation frequency 

(Supplementary Math Note). In turn, as we showed above, variability is quenched with 

increasing contrast both in our network and in the cortex (Fig. 2b-c, Fig. 3a, Fig. 5b). This 

explains why the frequency of gamma oscillations increased with contrast in our network 

after optimization. These results suggest that contrast-modulated gamma oscillations 

observed in the cortex3,4 may reflect a speed-optimized sampling strategy (Fig. 5c).

Our mathematical analyses also predicted that oscillations in an efficiently sampling network 

should be predominantly expressed where they matter most: in the (stimulus-dependent) 

network-wide activity patterns capturing most of the overall response variability. Namely, 

for each stimulus, we expected the strongest oscillations along the top PCs of the 

corresponding stationary covariance (Supplementary Math Note). This was indeed apparent 

in the power spectra of our network associated with the top 10 PCs (Fig. 6c), and the 

corresponding autocorrelograms that even showed negative-going lobes (Fig. 6c, inset). 

Specifically, there was a positive relationship between oscillatoriness along successive PCs 

and the fraction of variance explained. This meant that the network oscillated more in the 

directions along which its responses had the largest variance (Fig. 6d). (Note that our 

measure of oscillatoriness was based on autocorrelograms, and therefore had no a priori 
dependence on response variance; Methods.) In sum, the network used non-trivial temporal 

dynamics, in the form of contrast-dependent, pattern-selective gamma oscillations, to ensure 

that even short segments of its activity were sufficiently representative of the posterior 

distribution it represented for each stimulus.

Transients support continual inference

The foregoing results showed that oscillations increase mixing speed in the stationary 

regime, i.e. once network responses have become representative of the target distribution. 

Complementing this, we found that transients in our network mitigate the other main 

temporal constraint of sampling: the “burn-in” time it takes for responses to become 

representative in the first place31. We observed that, in line with experimental data, during 
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stimulus onset, neural responses tended to overshoot the corresponding stationary response 

levels (Fig. 5d, Fig. 7a). One might naively expect such transients to be detrimental for 

representing a distribution, as they clearly deviate from the target (represented by the steady-

state responses). However, in a realistic setting with a changing environment, distributions 

need to be represented continually, without waiting for the system to achieve steady state.

In order to understand the role of transients in continual inference, we considered how a 

moving decoder of neural responses over a finite trailing time window approximated the 

target. As with oscillations, we performed this analysis in two steps. First, to isolate the 

potential functional benefits of transients we once again considered the response of just a 

single idealized neuron that is part of a sampling-optimized network (Methods). For this 

idealized neuron, we fixed the autocorrelogram (thus controlling for oscillations) as well as 

the before- and after-stimulus onset steady-state means and variances to those of an actual, 

representative neuron in our network (Extended Data Fig. 9a). We then compared three ways 

in which this neuron could transition between these two steady states (Fig. 7a): 1. as an 

upper bound on performance, instantaneously switching between the two steady-states (Fig. 

7a, gray dashed); 2. exponentially approaching the new steady state with the characteristic 

time constant of the cells in the network, thus lacking overshoots (Fig. 7a, black dashed); 

and 3. undergoing overshoots as seen in our optimized network (Fig. 7a, red).

We found that overshoots performed close to the upper bound, provided by instantaneous 

switching. In particular, they generated samples that allowed a substantially more accurate 

estimate of the target mean than that afforded by approaching the new steady-state 

exponentially without overshoots (Fig. 7a–b). (These results extended qualitatively to the 

case when the match in the full distributions was considered, Extended Data Fig. 9b.) This 

was because without overshoots at stimulus onset, responses were still sampling from the 

distribution corresponding to the baseline input. Thus, including them in the estimation of 

the new stimulus-related mean inevitably biased the estimate downwards. The overshoot 

largely compensated for this bias. Indeed, we were able to show analytically that optimal 

compensation requires transient overshoots at stimulus onset (Supplementary Math Note). 

This is because continual averaging of responses formally corresponds to a temporal 

convolution, and so the optimal response is the deconvolution of the target with the 

averaging kernel. Under basic smoothness constraints, the deconvolution of a step function 

with such an averaging kernel yields transients like those we observed in the network 

(Extended Data Fig. 9c).

The hypothesis of increased sampling accuracy by transient compensation made a distinct 

prediction (Supplementary Math Note): transient overshoots should scale with the change in 

steady state responses. Indeed, our network exhibited this effect in both membrane potentials 

and firing rates (Fig. 7c-d, top). Importantly, transient overshoots thus inherited the 

orientation tuning of stationary responses (Fig. 7c-d, bottom). While stimulus-onset 

transients have been widely observed3,4, their stimulus-tuning has not been analyzed. 

Therefore, we analyzed a previously published dataset of V1 responses in the awake 

monkey23. In line with the predictions of the model, overshoot sizes were orientation tuned 

(Fig. 7e, bottom) and, more generally, they scaled with the change in stationary responses 
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(Fig. 7e, top; these results were robust to excluding the outliers with high firing rates, e.g. 

above 60 Hz, Extended Data Fig. 9d-e).

Discussion

We have shown that a canonical neural network model6,27 produces cortical-like dynamics 

when optimized for sampling-based inference, but not when optimized for non-probabilistic 

objectives, or non sampling-based probabilistic objectives. Further controls demonstrated 

that these dynamics were not mere side products of the particular biological constraints or 

optimization approach we adopted. Instead, they played well-defined functional roles in 

performing inference.

The Gaussian scale mixture model and the stochastic stabilized supralinear network

We used a canonical model of neural network dynamics (the stochastic SSN) to embody a 

set of biologically relevant constraints for cortical circuits. It was not trivial a priori that this 

model would be able to modulate its responses as necessary for successful sampling-based 

inference under a canonical generative model of visual image patches (the GSM). A hint that 

this might indeed be possible came from previous studies showing that both in the SSN6,27 

and the GSM5,39, a range of parameters exists for which the average response or posterior 

mean monotonically increases while the variance decreases with increasing stimulus 

strength. Empirically, we found a good quantitative match that went beyond this coarse, 

qualitative trend, with the SSN also capturing much of the detailed structure of the GSM 

posteriors. However, this match was not perfect: for example, the GSM posteriors 

systematically showed negative correlations of larger magnitude than what the network was 

able to express (Fig. 2d and Fig. 3b-c). It might be possible to achieve a more accurate 

match by allowing negative input correlations, and in general a more flexible 

parameterization of the SSN. Indeed, once the optimization of larger-scale, more flexibly 

parameterized SSNs becomes feasible, we also expect them to be able to sample from richer, 

deeper generative models.

Function-optimized neural networks

Our approach is complementary to classical approaches for training neural network models. 

Previous work showed how various steady-state properties of cortical responses (such as 

receptive fields, or trial-averaged activities) emerge from optimizing neural networks for 

some computationally well-defined objective30,40–44. Notably, our sampling-based 

computational objective required our network to modulate not only the mean but also the 

variability of its responses in a stimulus-dependent manner. This made the training of 

networks significantly more challenging than conventional approaches training networks for 

deterministic targets without explicitly requiring them to modulate their variability40,43,45. In 

return, the dynamics of our network exhibited rich, stimulus-modulated patterns of 

variability. These responses captured a variety of ubiquitous features of the trial-by-trial 

behavior of cortical responses (noise variability, transients, and oscillations) beyond the 

steady-state or trial-average properties that could be addressed by previous work.
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Typically, previous network optimization approaches aimed to determine the types of 

dynamics that arise when a task is executed under minimal mechanistic constraints, using a 

neural network as a universal function approximator. As a result, they yielded fundamental 

insights about the macroscopic organization of network dynamics (e.g. the presence of line 

attractors45) but did not attempt to incorporate some of the most salient constraints on the 

detailed organization of cortical circuits. Specifically, they used networks that were either 

purely feedforward40, utilized neuronal transfer functions that lacked the expansive 

nonlinearities characteristic of cortical neurons40,42,44,45, had no separation of E and I 

cells40,44,45, or had noiseless dynamics43.

In contrast, our goal was to study the emergence of (probabilistic) computations through 

dynamics and to connect these dynamics to experimental data at (or near) single cell 

resolution (e.g. the neuron- and stimulus-specific reduction of variability, or the lag between 

total inhibitory and excitatory inputs in individual cells). This required respecting all the 

aforementioned biological constraints. Nevertheless, this additional realism came at the cost 

of having to limit the number of optimized parameters to be far lower than standard 

approaches with feedforward networks or recurrent networks for which dynamical stability 

is more easily achieved. While this reduced parametrization made it easier to find stable 

solutions, it was still sufficiently expressive. In particular, we found that our results could 

not have been obtained without optimization (Extended Data Figs. 3 and 4), or with the 

optimization of other objective functions (Fig. 5 and Extended Data Figs. 5–7). Indeed, this 

parametrization still included networks that were unstable, or showed a decrease in mean 

responses and/or increase in variability with increasing stimulus strength (i.e. the opposite of 

what was required for matching the GSM), or were modulated in a non-monotonic way or 

only minimally altogether Extended Data Fig. 3).

Neural representations of uncertainty

Our approach markedly differed from previous work on the neural bases of probabilistic 

inference. Previous models were typically derived using a top-down approach (but see Ref. 

43), using hand-designed network dynamics that explicitly mimicked specific existing 

approximate inference algorithms from machine learning based on sampling33–36,46 or other 

representations12,19,33,47. As a result, these models came with strong theoretical guarantees 

for their performance but often offered only a mostly phenomenological match to neural 

circuit dynamics. In particular, they did not respect some basic biological constraints (e.g. 

Dale’s principle33,35,47), or had to assume an unrealistically rapid and direct influence of 

stimulion network parameters (e.g. synaptic weights35,46). In contrast, we used a more 

bottom-up approach, starting from known constraints of cortical circuit organization, and 

then optimizing the parameters of networks under such constraints to achieve efficient 

sampling-based probabilistic inference – without pre-specifying the details of the dynamics 

that needed to be implemented. While this approach cannot provide formal guarantees on 

performance, our optimized network “discovered” novel algorithmic motifs (oscillations and 

transients) for speeding up probabilistic inference. Although some of these motifs have been 

observed in previous work46, their function remained unclear as they were built-in by design 

rather than obtained as a result of optimization, or appeared purely epiphenomenal. In 

contrast, these motifs served computationally well-defined functions in our network.
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The dynamics of our network may also provide useful clues for constructing novel machine 

learning algorithms. In general, the kind of time-irreversible, out-of-equilibrium dynamics 

we demonstrate for our network have only recently been appreciated in machine 

learning22,36. At the same time, sampling-based inference algorithms using second-order 

dynamics with so-called “momentum” variables, such as Hamiltonian Monte Carlo, have 

long been known to improve sampling speed31. Indeed, it might be interesting to explore 

how much the dynamics of our network can be interpreted as a neural implementation of 

Hamiltonian Monte Carlo46. Nevertheless, despite such second-order dynamical systems 

often exhibiting oscillations and transient overshoots, their sampling efficiency has usually 

been analyzed only in the more generic terms of the suppression of random walk-like 

behavior. In contrast, our analyses revealed specific roles for oscillations and transients. In 

fact, the setting of continual inference that we used to demonstrate the benefits of transients 

has not been considered in machine learning applications so far, although we expect it to be 

highly relevant for both biological and artificial cognition.

Cortical variability, transients, and oscillations

Our work suggests a novel unifying function for three ubiquitous properties of sensory 

cortical responses: stimulus-modulated variability, transient overshoots, and gamma 

oscillations. In previous work, these phenomena have traditionally been studied in isolation 

and ascribed separate functional roles that have been difficult to reconcile. In particular, they 

have not been derived normatively, i.e. by starting from some functional objective and then 

optimizing that objective in a principled manner (but see e.g. Ref. 47). For example, cortical 

variability has most often been considered a nuisance, diminishing the accuracy of neural 

codes23. Theories postulating a functional role of variability in probabilistic computations 

have only considered the steady-state distribution of responses without making specific 

predictions about their dynamical features5,12. Conversely, transient responses prominently 

feature as central ingredients of models of predictive coding, where they signal novelty or 

deviations between predicted and observed states47. However, these theories did not address 

response variability.

Our work accounts for both transients and variability starting from a single principle, using 

only the equivalent of “internal representation neurons”48 of predictive coding but without 

invoking specific prediction error-coding neurons. In particular, our model correctly 

predicted a specific scaling relationship between transients and steady-state responses which 

we tested by novel analyses of experimental data (Fig. 7). Furthermore, our mathematical 

analysis suggested that prediction-error-like signals (more formally, responses that scale 

with the magnitude of change in the target distribution; Extended Data Fig. 9c) are a generic 

signature of continual inference using sampling-based dynamics, and will thus not only 

appear at stimulus onsets but in any situation when predictions change temporally. A 

conclusive test of whether prediction-error-like responses in the cortex are due to this 

mechanism or classical predictive coding mechanisms will require more specific 

manipulations of prior expectations.

Gamma oscillations have also been proposed as a substrate for a number of functional roles 

in the past, related to how information is encoded, combined, or routed in the brain8–10,49. 
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These putative functions need not be mutually exclusive to that played in our network. 

Nevertheless, some of these functions seem difficult to reconcile with specific experimental 

findings3,14,15,50. More generally, theories of gamma oscillations do not typically address 

transients.

Predictive coding models naturally account for transients, and can also account for gamma 

oscillations11. However, it is unclear whether these theories would also account for 

properties beyond the mere existence of gamma oscillations. These would include the 

frequency modulation by contrast3,4 that our model reproduced (Fig. 5), or indeed any 

aspect of the ubiquitous variability of cortical responses, and its modulation by stimuli, 

which our model also reproduced as a core feature (Figs. 2, 3 and 5). In contrast, our results 

show that variability, transients, and gamma oscillations can all emerge from the same 

functional objective: that neural circuits use an efficient sampling-based representation of 

uncertainty under time constraints.

The mechanism by which gamma oscillations are generated in the brain, particularly 

whether it involves interactions between E and I cells (‘PING’ mechanism) or among I cells 

only (‘ING’ mechanism), is a subject of current debate16. In our model, voltage-clamping of 

E cells eliminated gamma oscillations (Extended Data Fig. 2c-d), pointing to the ‘PING’ 

mechanism. However, our network only included a single inhibitory cell type, and heavily 

constrained connectivity, therefore it remains for future work to study how the precise 

mechanism of gamma generation depends on such architectural constraints. Studying more 

hierarchical or spatially extended versions of our model may also allow us to study longer-

range aspects of gamma oscillations, such as gamma synchronization 49.

Methods

Ideal observer model

Following Refs. 5,25, we adopted the Gaussian scale mixture model (GSM)24 as the 

generative model of natural image patches under which the primary visual cortex (V1) 

performs inference. Thus, an image patch x ∈ ℝNx was assumed to be constructed by 

linearly combining a set of local features, the columns of A ∈ ℝNx×Ny, weighted by a set of 

image patch-specific feature coefficients, y ∈ ℝNy and scaled by a single global (at the scale 

of the image patch) contrast variable, z ∈ ℝ, plus additive white Gaussian noise, resulting in 

the following likelihood for the feature coefficients y:

x ∣ y, z ∼ N zA y, σx2I (1)

where the feature coefficients were assumed to be drawn from a multivariate Gaussian prior 

distribution:

y ∼ N(0, C) (2)

and z was assumed to be drawn from a Gamma prior: z ~ Γ(Κ,ϑ) (Table S1, see also Ref. 

39).
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To model inferences in a V1 hypercolumn, we chose the columns of A (the so-called 

projective fields of the latent variables) to be oriented Gabor filters that only differed by their 

orientation (evenly spaced between –90° and 90°, four examples are shown in Fig. 1a, see 

also Extended Data Fig. 1a). The prior covariance matrix C was a circulant matrix whose 

elements varied smoothly as a function of the angular distance between the orientations of 

the projective fields of the corresponding latent variables, from positive (for similarly 

oriented projective fields) to negative (for orthogonally oriented projective fields) (Extended 

Data Fig. 1b).

The ideal observer’s posterior over latent feature coefficients y under the GSM for a given 

image patch, x, and a known contrast z, can be written as5:

PGSM(y ∣ x, z) = N y; μGSM , ∑GSM (3)

with μGSM = z
σx2

∑GSMA⊤x (4)

and ∑GSM = C−1 + z2

σx2
A⊤A

−1
(5)

In general, z would also need to be inferred. However, as z is just a single scalar of which 

the inference pools information across all pixels in the input, we approximated the posterior 

over z with a delta distribution at z*, the true value of z that was used to generate the input39. 

Thus, the final posterior over y, after marginalizing out the unknown z, was approximated by 

substituting z* into Eq. 3:

PGSM(y ∣ x) ≃ PGSM y ∣ x, z∗ (6)

Following Ref. 5, membrane potentials, u, were taken to represent a weakly non-linear 

function of visual feature activations y (Supplementary Math Note):

ui yi = αnl yi + βnl
γnl (7)

where ⌊·⌋ is the threshold-linear function, and α nl, β nl, and γ nl are respectively the scaling, 

baseline, and power of the transformation (Table S1, Fig. S1a).

Network dynamics and architecture

Our nonlinear, stochastic E/I network consisted of N E excitatory and N I inhibitory neurons. 

Following Ref. 6, we modeled the dynamics of each neuron i as:

τi
dui
dt = − ui(t) + ℎi(t) + ∑jW ijrj(t) + ηi(t) (8)
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where ui represented the membrane potential of neuron i, τi was its membrane time constant, 

hi its feedforward input, ηi was process noise (incorporating intrinsic and extrinsic forms of 

neural variability), and Wij was the weight of the synapse connecting neuron j to neuron i. 
Firing rates ri were given by a supralinear transformation of membrane potentials:

ri(t) = k ui t n (9)

where k and n were respectively the scale and exponent of the firing rate nonlinearity (Table 

S1).

We reasoned that any network performing accurate sampling-based inference under our ring-

structured GSM would need to exhibit the same circular symmetry. We therefore 

parametrized the recurrent connectivity of the network to be rotationally symmetric, such 

that neurons were arranged into pairs of E and I cells around a “ring” according to their 

preferred orientations (Fig. 1c) and the connectivity of the network (as well as the process 

noise covariance, see below) was a smoothly decaying (circular Gaussian) function of the 

tuning difference between two cells. Specifically, each quadrant of the weight matrix (E → 
E, E → I, I → E, and I → I) was defined as:

WXY(θi, θj) = aXY exp cos 2 θi − θj − 1

dXY
2 (10)

where X, Y ∈ {E; I} and θi = π i/N E/I was the orientation represented by the i th E/I neuron. 

Thus, we did not optimize all elements of the weight matrix, but only the eight free 

parameters a XY and d XY. We also constrained the a XY amplitudes to be positive for Y = E 

and negative for Y = I, such that the network obeyed Dale’s principle. This circulant 

parametrization implied that training the network on one particular stimulus-posterior pair in 

effect trained the network on all possible rotations of this pair. This reduced the size of the 

training set necessary to achieve good generalization, and therefore sped up training.

The stimulus-independent process noise (last term in Eq. 8) was spatially and temporally 

correlated zero-mean Gaussian (e.g. modeling inputs from other brain areas, or intrinsic 

variability in the network):

η(t) = 0, η(t) η(t + s)⊤ = ∑η exp −s/τη (11)

where τη was the timescale of the process noise (Table S1) and Σ η was the stationary 

(zerolag) covariance matrix parametrized block-wise as:

∑EE/
η (θi, θj) = σE/I

2 exp cos 2 θi − θj − 1

dσ2
(12)

∑EI
η (θi, θj) = ρ σEσI exp cos 2 θi − θj − 1

dσ2
(13)

which introduced four additional free parameters: σ E > 0, σ l > 0, ρ, dσ.
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As in standard models of V1 simple cells51, the stimulus-dependent input to each neuron 

was obtained by applying a linear filter W ff to the stimulus followed by a static 

nonlinearity:

ℎi(t) = αh βh + ∑jWij
ffxj(t)

γh (14)

where x(t) was the stimulus (input image patch) received at time t, and α h, β h, and γ h were 

respectively the scale, baseline, and exponent of the input nonlinearity (Table S1, Extended 

Data Fig. 1e). Given the one-to-one correspondence between the latent variables of the GSM 

and excitatory-inhibitory neuron pairs of the network model (Fig. 1a and c), we determined 

the external input to each neuron via an input receptive field that was identical (up to a 

constant factor) to the projective field of the corresponding GSM latent variable, as this was 

suggested to be optimal for sampling by previous work30: W ff = [A A]T/15, where A was 

the same matrix as in the generative model (Eq. 1), and [A A] denotes concatenating A with 

itself column-wise.

In summary, we optimized a total of 15 parameters: 8 describing the weight matrix W (Eq. 

10), 4 describing Σ η (Eqs. 12 and 13), and 3 specifying the mapping from stimuli to 

network inputs (Eq. 14).

Computing the moments of neural responses

For every time t relative to stimulus onset, we denote the across-trial moments of neural 

responses by

μ (t) = u(t) (15)

∑(t, Δ t) = (u(t) − μ (t))(u(t + Δ t) − μ (t + Δ t))⊤
(16)

where 〈·〉 denotes trial-averaging. To compute these moments, we employed two different 

Methods. The first approach, which we refer to as the “stochastic method”, consisted of 

approximating the averages via sampling, i.e. simulating stochastic network dynamics in a 

set of trials using the same stimulus (Eqs. 8, 9 and 14) and computing the across-trial sample 

mean and sample covariance at each time step. We used this approach in the first phase of 

network training and for obtaining results from the network once it was trained (see below).

The second approach, which we refer to as “assumed density filtering” (ADF), used 

deterministic equations of motion for computing the across-trial moments. This approach 

was only used in the last phase of network training (see below). Based on Ref. 52, the 

following exact differential equations were used to describe the evolution of μ(t) and Σ(t, ·):

d μ (t)
dt = T−1[ − μ (t) + h(t) + W ν (t)] (17)
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d∑(t, 0)
dt = [T−1∑*(t)] + T−1∑*(t) ⊤ +

+J(t)∑(t, 0) + ∑(t, 0)J(t)⊤
(18)

d∑*(t)
dt = − 1

τn
∑*(t) + ∑nT−1 + ∑*(t)J(t)⊤

(19)

d∑(t, Δ t)
d Δ t = e−Δt/τη T−1∑*(t) ⊤ +

+∑(t, Δ t) J(t + Δ t)⊤ ∀ Δ t > 0
(20)

where T is the diagonal matrix of membrane time constants (Table S1), ν = 〈r〉 is the 

average firing rate of neurons, Σ(t, -Δ t) = Σ T(t, Δ t) is the time-lagged cross-covariance of 

membrane potentials in the network, Σ* = 〈η (u - μ)T〉 is the instantaneous cross-covariance 

between membrane potentials and temporally correlated process noise with instantaneous 

covariance Σ η (Eq. 11), and

J = T−1 −I + W diag ∂ ν
∂ μ (21)

is the Jacobian of Eq. 17 w.r.t. μ. Integrating Eqs. 17-20 in turn required evaluating some 

nonlinear moments of u, namely covariances between membrane potentials, u, and firing 

rates, r. For the SSN, these moments can be obtained in closed form, assuming the full joint 

(space-time) distribution of membrane potentials is Gaussian52. Thus, in contrast to the first 

(stochatic) method, which leads to unbiased, but potentially high-variance, estimation of the 

moments, the ADF method leads to zero-variance, but potentially biased estimates. To train 

the network, as described below, we combined the strengths of these two approaches.

Training and test stimuli and target moments

The training set (Fig. 2b) consisted of five image patches:

xα = zαAy (22)

with α = 1,…,5 and zα ∈ {0,0.125,0.25,0.5,1.0}. Therefore, these stimuli had the same 

content ȳ – a 27°-wide Gaussian function centered around 0° (i.e. a single dominant 

orientation) –, and differed only in their contrast (Fig. 2b). As the parametrization of our 

network was rotationally invariant (see above), such a stimulus was in fact representative of 

all image patches that could be obtained by rotating this patch around the center. For each 

training stimulus x α, we computed the corresponding posterior distributions over u under 

the GSM (Eqs. 6 and 7). We called these distributions the “target distributions”, and their 

corresponding means μtgtα  and covariances ∑tgt
α , the “target moments” (Fig. 2c,d):

μtgtα = ∫ u(y)PGSM(y ∣ xα)dy (23)
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∑tgt
α = ∫ u(y)u⊤(y)PGSM(y ∣ xα)dy − μtgtα μtgtα ⊤ (24)

To test generalization in the network, we generated a set of 500 novel image patches with the 

GSM, which were thus not constrained to have a single dominant orientation (as the prior 

allowed multiple elements of y with different projective fields to be non-zero, Eq. 2). To be 

consistent with the training set, we did not include additive noise in x, and added a contrast-

dependent baseline to y so that its mean was modulated by contrast in the same way as in the 

training set. For each image patch in the test set, we also computed the corresponding 

posterior moments (Eqs. 23 and 24) to evaluate the network’s test performance.

Network training

The cost function ℱ which we minimized during network training consisted of four terms 

for each input stimulus α in the training set:

ℱ = ∑
α

ϵmean ϕmean
α + ϵvar ϕvar

α +

+ϵcov ϕcov
α + ϵslow ϕslow

α
(25)

The first three terms of Eq. 25 penalized differences between the (across trial) moments of 

the network’s response distribution (Eqs. 15 and 16) averaged over a finite time window 

ending at T max = 500 ms after stimulus onset, and the respective target moments of the ideal 

observer’s corresponding posterior distributions (Eqs. 23 and 24):

ϕmean
α = ∫Tmin

Tmax
μα(t) − μtgtα

F
2dt (26)

ϕvar
α = ∫Tmin

Tmax
σα(t) − σtgtα

F
2dt (27)

ϕcov
α = ∫Tmin

Tmax
∑α(t, 0) − ∑tgt

α
F
2dt (28)

where σ α(t) = diag(Σ α(t,0)) and ∑α(t, 0) and σtgtα = diag ∑tgt
α  are the response and target 

variances, respectively. The last term of Eq. 25 was an additional slowness cost, penalizing 

the total lagged neural response autocorrelation, given by the diagonal of C(τ) = corr(u(t), 
u(t + τ)), within a τ max = 100 ms time window:

ϕslow
α = ∫

0

τmax
diag Cα(τ) F

2dτ (29)
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The coefficients ϵ controlled the relative importance of these terms (Table S1). In the first 

control network (Fig. 5, right column; Extended Data Fig. 5a-g, and 6), we set ϵ var = ϵ cov = 

ϵ slow = 0, but kept all other meta-parameters and target means the same. In the second 

control network (Extended Data Fig. 5h-n, and 6), we set only ϵ cov = ϵ slow = 0, but left ϵ var 

and other meta-parameters the same as in the original network. In the third control network 

(Extended Data Figs. 6 and 7, right), all eϵ parameters were the same as for the optimization 

of the original network, but the target covariances were modified to induce 

contrastindependent Fano factors (see below).

Optimization involved back-propagation through time53, for which we used automatic 

differentiation. We trained the network in two stages. During the first stage, we employed a 

stochastic gradient method using N trial = 50 trials for each training stimulus to estimate the 

corresponding moments of network responses (see above), and performed 250 iterations of 

the ADAM optimizer54. Both the network’s initial conditions and the process noise were re-

sampled for each trial and iteration. Initial conditions were drawn from a Gaussian 

distribution N μ0, ∑0  (Table S1). Moreover, across iterations, the beginning of the 

averaging time window, T min in Eqs. 26-28, was systematically changed (“annealed”) from 

T min = 0 ms (stimulus onset) to T max – 50 ms. The finite length of the averaging window, 

and in particular including samples immediately or shortly following stimulus onset, 

encouraged fast sampling. Thus, setting the explicit slowness cost ϵ slow = 0 did not 

qualitatively affect our results (Extended Data Figs. 6 and 10).

In the second stage, we continued optimization using the L-BFGS-B optimizer55, now using 

the ADF method to (deterministically) compute the moments of the network’s response 

distribution (see above). We kept the cost-integration time window at its minimum (T max – 

T min = 50 ms, as reached by the end of the first phase). The slowness penalty cost in Eq. 29 

was only applied during ADF-based optimization and, for simplicity, it was approximated 

using stationary lagged correlations predicted by the ADF-method (Eq. 20) in the limit of 

temporally white process noise52.

As the cost function that we used (Eq. 25) was non-convex, we checked the robustness of 

our findings by performing 10 further optimization attempts from random initial conditions. 

No solutions achieved substantially lower costs, and those whose final cost was at least 

approximately as low as the network presented in the main text behaved qualitatively 

similarly (in particular, they showed contrast-dependent oscillations and transients, Extended 

Data Fig. 4). Nevertheless, our results should not be taken to represent a global optimum of 

our cost function.

Langevin sampling

As a comparison (Fig. 4), we also implemented Langevin dynamics31 to sample from the 

same target posteriors as those used to train the optimized network. As the GSM target 

posteriors were Gaussian (Eqs. 3 and 6), the resultant Langevin dynamics was isomorphic to 

that of a generic stochastic linear recurrent neural network:

τEu. = WLu + h + η (30)
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where, for a fair comparison, τ E and η were respectively the same time constant and process 

noise as in our optimized network (Eqs. 8 and 11-13). Without loss of generality, we set the 

input to the network h = 0, as it would be completely determined by the requirement to 

match the response mean to the target mean, μ tgt, but would not affect the autocorrelogram 

of the system, which was the focus of our investigation here. As variability in a linear 

network does not depend on the input (unlike in our nonlinear circuit model), we used a 

different W L to match each target covariance, Σ tgt:

WL = 1
γL

I− I+γL
2∑η∑tgt

−1
(31)

where γ L = 2τη/τE.

Numerical experiments after training

To obtain a reliable estimate of the stationary moments of neural responses to a fixed input 

(Figs. 2 and 3), a total of 20,000 independent samples (taken 200 ms apart) were drawn from 

the network, not including transients, as neural activity evolved according to Eq. 8. Neural 

activities in Fig. 2a show 1 s of simulated network activity, convolved with a 20 ms sliding 

window to match the effects of spike binning to compute average rates in experiments. 

Neural trajectories in Fig. 2b correspond to the neural activity of two cells in the network 

with preferred orientations 42° (ui) and 16° (uj), over a post-transient period of 500 ms. To 

illustrate both the degree of modulation of the posterior covariances and the match between 

posterior and network covariances in Fig. 3c, the top three PCs of each posterior covariance 

were computed. Neural activity was then projected onto each PC, and the amount of 

variance along each direction was computed. The middle plots of Fig. 3c present these 

posterior PCs scaled by either the square root of the total variance along that direction in the 

GSM (in green) or in the network (in red).

Autocorrelograms in Fig. 4a were computed in 500 non-overlapping windows of 2 s of 

simulated neural activity each (subsampled at 0.4 ms) after stimulus onset (excluding 

transients), and then averaged across these windows. Autocorrelograms were first computed 

for individual cells’ membrane potentials and then averaged across all cells. Cross-

correlograms and E–I lags in Fig. 4b–c were computed from a single 400 s-long simulation 

after stimulus onset, excluding transients (without subsampling). The E–I lag for each cell 

was determined as the location of the maximum in the anti-symmetric component of the 

cross-correlogram between its total E and I input. Langevin samplers in Fig. 4a-b 

corresponded to neural networks with linear, time-reversible dynamics, not respecting Dale’s 

principle, as defined by Eqs. 30 and 31. Autocorrelograms and cross-correlograms for the 

Langevin sampler were computed as for the original network.

Average firing rates in Fig. 5a were computed from the same neural traces used in Fig. 2 to 

compute u moments (here taking the average of r instead of u). To compute Fano factors in 

Fig. 5b, we used an inhomogeneous Gamma process with the time-varying rate given by ri(t) 
for each neuron i, and the shape of the interspike interval distribution controlled by an 

additional parameter, K ISI (Table S1). We computed spikecounts in a 100 ms window over 

500, 000 independent trials. Our results were qualitatively robust to the choice of K ISI, 
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which primarily determined the overall magnitude of Fano factors – in particular K ISI > 1 

was needed to achieve Fano factors < 1 at high contrast – but not their modulation by 

stimuli.

Power spectra in Fig. 5c were based on simulated local field potentials (LFPs), computed as 

the (across-cell) average neural activity (membrane potentials), following standard 

approaches6, using the same samples as the autocorrelograms of Fig. 4a (see above). Gamma 

peak frequency was identified as the location of the local maximum (within the gamma 

band, 20–80 Hz) of the power spectrum. Transients in Fig. 5d were computed from average 

firing rates across E cells and trials (n = 100), further averaged over a sliding 10-ms time 

window to mimic the resolution of experimental data. To account for the response delays 

observed in experimental data, we used a random delay time (truncated Gaussian, with 45 

ms mean and 5 ms s.d.) for the feedforward input of each E–I cell pair in the network.

To estimate input conductances (Fig. 5e), we equated the total (excitatory or inhibitory) 

input current in our model to the (excitatory or inhibitory) current in a canonical 

conductancebased model51. This gave the following expression:

giE/I(t) ≈ Cm∑j ∈ E/IWijrj(t)

τi V E/I − (ui(t) + V rest)
(32)

where C m is the membrane capacitance, V E/I denote the reversal potentials for E/I currents, 

and Vrest is a baseline (resting) potential added to the membrane potentials of our model. We 

chose C m = 20.0 pF, V E = 0 mV, V I = –80 mV, and V res t = –65 mV. Conductances in Fig. 

5e are shown relative to their steady-state values during spontaneous activity, and averaged 

across 20 trials for a single neuron with preferred orientation aligned to that of the stimulus.

Autocorrelograms and power spectra of Fig. 6c were computed as in Fig. 4a and Fig. 5c, but 

for the directions in the space of neural responses that corresponded to the first ten principal 

components (PCs) of neural variability. To quantify oscillatoriness in neural responses along 

some direction in state space (PC, Fig. 6d; or LFP, Extended Data Fig. 4b), we computed the 

corresponding projection of neural responses, and then fitted the following parametric 

function to its autocorrelogram:

Cχ( Δ t) = [(1 − χ) + χ cos(2πf Δ t)] ⋅

⋅ τ
τ − τη

e− Δt
/τ − τη

τ − τη
e− Δt

τη
(33)

where τ  and τη are two time constant parameters, χ ∈ [0,1] quantifies the degree of 

oscillatoriness, and f represents the dominant oscillation frequency. Fits of Eq. 33 to 

simulated network activity were performed using Tensorflow. The form of Eq. 33 was 

motivated by noting that, for χ = 0, it reduces to

C0( Δ t) = τ
τ − τη

e− Δt
τ − τη

τ − τη
e− Δt

τη (34)

Echeveste et al. Page 21

Nat Neurosci. Author manuscript; available in PMC 2021 March 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



which is the autocorrelation function of the fluctuations in a single (isolated, and thus not 

oscillating) neuron with membrane time constant τ  receiving noisy inputs with correlation 

time τ  η (this can be seen by integrating Eqs. 18-20). More generally, for χ > 0, C 0(Δ t) (Eq. 

34) determines the envelope of C x(Δ t) (Eq. 33):

(1 − 2χ)C0( Δ t) ≤ Cχ( Δ t) ≤ C0( Δ t) (35)

Overshoots in Fig. 7c and d were obtained using the same stimulus that was used to train the 

network at 0.7 contrast, and computed as the maximal across-trial average (n = 100) 

response of each E cell (membrane potential for c, firing rate for d), minus its stationary 

mean response, further averaged over 1000 delay configurations in our network (as for Fig. 

5d, see above). Steadystate differences denote the magnitude of mean evoked responses of 

each cell with respect to its mean pre-stimulus response. Results in the bottom plot of Fig. 

7d were computed by averaging stimulipresented at each neuron’s preferred orientation 

(±30°) or orthogonal to its preferred orientation (±30°).

Analyses with Gaussian processes

For Fig. 6a-b, we considered a stationary, moment-matched Gaussian process (GP56) with an 

autocorrelation function that was in the same parametric form as that fitted to network 

responses, Cχ(Δt) (Eq. 33), by setting both time constants to their values characterizing the 

network τη = τ = τE = τη = 20ms . This yielded the following form:

CGP( Δ t) = [(1 − χ) + χ cos(2πf Δ t )] ⋅

⋅ 1 + Δ t
τE

e− Δt
τE

(36)

We used χ ∈ {0,0.2,0.7} (where χ = 0 corre· sponds to an isolated single neuron) at f = 40 

Hz. We set the mean and variance of the GP to μ GP = 3 and σGP
2 = 4, respectively, without 

loss of generality (Supplementary Math Note).

For Fig. 7a and b, and Extended Data Fig. 9, we used GPs whose stationary distributions all 

matched the same target distribution (see below) before stimulus onset (time t < 0), and 

converged to the same new target distribution after stimulus onset (for t ≫ 0). These GPs 

differed only in their transient behavior. The GP that most faithfully captured our optimized 

network was constructed by taking the temporal evolution of the mean and variance of an 

actual neuron in the full network around stimulus onset, including overshoots (“with 

overshoots” in Fig. 7a, and Extended Data Fig. 9a, red). For this, we chose the neuron whose 

preferred orientation matched that of the presented stimulus. Moreover, the autocorrelogram 

of this GP was also set to match that neuron’s autocorrelogram (inset of Extended Data Fig. 

9a, right). Two additional GPs were constructed with the same autocorrelogram as the first 

GP, but different mean and variance time courses. In one, the mean and variance converged 

exponentially with a time constant of τ E (“exponential” in Fig. 7a, and Extended Data Fig. 

9a, dashed black). In the other, the mean and variance immediately jumped at stimulus onset 

to their new stationary values (“instantaneous” in Fig. 7a, and Extended Data Fig. 9a, dashed 
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gray). While such an instantaneous process is not realisable by any continuous dynamical 

system, it provides a useful lower bound on sampling error.

In Fig. 6b and Extended Data Fig. 9b, we used the average symmetrized Kullback-Leibler 

divergence between the GSM target distribution, , and the distribution sampled by the GP, 

T over some finite time window T to measure the performance of these systems:

DSKL P QT = 1
4 ℰ2(T ) σP

−2 + σQ
−2(T ) +

+ σQ
2 (T ) σP

−2 + σQ
−2(T ) σP

2 − 2
(37)

where 〈·〉 denotes trial-averaging (as above), Ɛ(T) = μ (T) – μ , and μ , μ (T), σP
2 , and 

σQ
2 (T ) are the means and variances of  and T, respectively (Supplementary Math Note). 

Fig. 7bonly shows the term of DSKL that depends on the sample mean, μQ(T) (via Ɛ 2(T)):

DSKL
μ = 1

4 ℰ2(T ) σP
−2 + σQ

−2(T ) (38)

In Fig. 6b, we used a single target distribution (matching the stationary moments of the GP, 

see above) and averaged over n=100,000 trials of sampling from the GP for an increasing 

amount of time, T (x-axis), as we also varied χ (lines). GPs were sampled at a dt=0.5 ms 

time resolution. In Fig. 7b and Extended Data Fig. 9b, the target distribution was changed 

instantaneously at stimulus onset (t=0) from a response distribution corresponding to a 0-

contrast stimulus (spontaneous activity) to that corresponding to a high contrast stimulus 

(training image at contrast level 0.7; Fig. 7a and Extended Data Fig. 9b, green lines). 

Response distributions were obtained from the E cell in the original network that was tuned 

to the dominant orientation of the stimulus. At each time point t (x-axis), DSKL orDSKL
u  was 

computed between the momentary target distribution and the distribution of GP samples 

collected in a 100 ms-long sliding time window ending at t, averaging over n=10,000 trials, 

for each of the three transition profiles (lines). GPs were sampled at a dt=1 ms time 

resolution.

Experimental data analysis

Fig. 7e shows novel analyses of experimental recordings from awake macaque V1 during the 

presentation of moving gratings of different orientations23. Following the same procedure as 

in Ref. 6, only cells that were significantly tuned (orientation tuning index greater than 0.75) 

and had an average evoked rate above 1 spike per second were included in the analysis. For 

each cell and each stimulus, a time-dependent firing rate trace was first obtained by 

averaging spikes across trials in a 50 ms sliding square window. From these traces, the 

steady-state difference and overshoot size (dots in Fig. 7e top) were then computed 

respectively as the average evoked response excluding transients (t > 160 ms after stimulus 

onset) and the maximum of the response trace during the transient (t < 160 ms after stimulus 

onset), minus the average baseline response (computed from the 300 ms prior to stimulus 

presentation). Results in the bottom plot of Fig. 7e were computed in the same way as for 

model neurons (see above).
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Statistics

Sample sizes (number of trials) were chosen with the following criteria. First, when studying 

properties of the network, a large enough n was selected (> 10.000 independent samples) 

such that standard errors would be smaller than line widths in the corresponding plots. 

Second, when comparing the network’s behaviour to experimental results, the same order of 

magnitude for n was selected as in the original experiments.

Linear regressions in Fig. 7e (top) and Extended Data Fig. 9d were performed using SciPy’s 

‘linregress’ function, which reports a two-sided p-value using a Wald test with a t-

distribution of the test statistic.

In Fig. 7e (bottom) we tested for significance in overshoot tuning using a two-sided paired t-

test using SciPy’s ‘ttest_rel’ function. Data distribution was assumed to be normal but this 

was not formally tested.

Echeveste et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2021 March 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data

Extended Data Fig. 1. GSM and network parameters.
a, Filters: projective fields of the GSM and receptive fields of the network. Each filter image 

shows the projective field of a latent variable (columns of A; Eq. 1), which was the same as 

the receptive field of the corresponding E-I cell pair in the network (rows of W ff = 
[AA]T/15; Eq. 14; cf. Fig. 1a and c). b, Prior covariance in the GSM (C in Eq. 2). c, Sample 

stimuli generated by the GSM, also used for testing the network’s generalization in Fig. 3b-

c. d-e, Parameters of the optimized network. d, Recurrent weights (top: raw weights; 

middle: normalized absolute values) and process noise covariance (bottom) after training. 

Weights and covariances are shown for only one row (of each quadrant) of W (Eq. 8) and Ση 

(Eq. 11), respectively, as they are circulant. Thus, each line shows the weights connecting, or 
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the covariance between, cells of different types (see legend) as a function of the difference in 

their preferred stimuli. As the figure shows, the connectivity profile of either E or I cells in 

the optimized network was largely independent of whether the postsynaptic cell was 

excitatory or inhibitory (top). Overall, recurrent E and I connections had similar tuning 

widths, with E connections being slightly more broadly tuned than I ones (middle). 

Nevertheless, the net E input to any one cell in the network was still more narrowly tuned 

than the net I input, due to the responses of presynaptic E cells being more narrowly tuned 

than those of I cells (not shown). The optimized network also retained a substantial amount 

of process noise that was larger in E than in I cells, and highly correlated both between the E 

and I cell of a pair and between cells with different tuning (up to a ~ 30° tuning difference; 

bottom). e, Input nonlinearity (Eq. 14), converting feedforward receptive field activations 

(W ff x) i into network inputs hj (black). For comparison, the distribution of inputs across all 

cells for the training set is presented in gray. As the figure shows, the optimized input 

transformation, capturing the nonlinear effects of upstream preprocessing of visual stimuli, 

had a threshold that was just below the distribution of receptive field outputs, ensuring that 

all stimulus-related information was transmitted in the input signal, and an exponent close to 

two, remarkably similar to that used by the cells of the network (cf. Eq. 9 and table S1).

Extended Data Fig. 2. Divisive normalization and the mechanism underlying oscillations in the 
optimized network.
a-b, Divisive normalization, or sublinear summation of neural responses, has been proposed 

as a canonical computation in cortical circuits38. In turn, the stabilized supralinear network 

(SSN), which formed the substrate of our optimized network, has been proposed to provide 

the dynamical mechanism underlying divisive normalization27. We thus wondered whether 

our optimized network also exhibited it. a, In accordance with divisive normalization, the 

network’s response to the sum of two stimuli (solid purple) was smaller than the sum of its 

responses to the individual stimuli (solid red/blue), and lay between the average (dotted 

purple) and the sum (dashed purple). Inset shows stimuli used in this example. b, Generic 

divisive normalization in the optimized network. We fitted a standard phenomenological 

model of divisive normalization (adapted from Ref. 38) to the (across-trial) mean firing-rate 

responses of E cells in the optimized network, (r E), as a function of the feedforward input h 
to the network (i.e. without regard to its recurrent dynamics; Eq. 14): 

r i
(β) = b2 + ℎi

(β) + b1 ℳh(β)
i + s2 −1

, where ℎi
(β) and r i

β  were the feedforward input and 
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the average firing rate of cell i in response to stimulus β, respectively, and b 1, b 2 and s were 

constant parameters. The parameter matrix M was responsible for normalization, by 

dividing the input hi by a mixture of competing inputs to other neurons. M was 

parameterized as a symmetric circulant matrix to respect the rotational symmetry of the 

trained network (Extended Data Fig. 1). In total, our model of divisive normalization had 3 + 
(N E /2) + 1 = 29 free parameters. Model fitting was performed via minimization of the 

average squared difference between network and model rates, plus an elastic energy 

regularizer for neighbouring elements of M. Shown here is a scatter plot of neural responses 

to a set of 500 random stimuli (generated as the generalization dataset, Methods), predicted 

by the phenomenological model vs. produced by the actual network. Each dot corresponds 

to a stimulus-neuron pair. Inset shows three representative average response profiles across 

the network (dots) and the phenomenological model’s fit (lines). Note the near perfect 

overlap between the network and the phenomenological model in all three cases. The 

divisive normalization model also outperformed both a linear model and a model of 

subtractive inhibition (not shown). These results show comprehensively that, in line with 

empirical data, our trained network performed divisive normalization of its inputs under 

general conditions. c-d, Using voltage-clamp to study the mechanisms underlying 

oscillations in the optimized network. To determine whether oscillations in our network 

resulted from the interaction of E and I cells, or whether they arose within either of these 

populations alone, we conducted two simulated experiments. In each simulation, either of 

the two populations (E or I) was voltage-clamped to its (temporal) mean, as calculated from 

the original network, for each input in the training set. Thus, recurrent input from the 

clamped population was effectively held constant to its normal mean, but did not react to 

changes in the other population. As expected for a network in the inhibition-stabilized 

regime, clamping of the I cells resulted in unstable runaway dynamics, precluding further 

analysis of oscillations (not shown). c, Illustration of the E-clamping experiment in the 

optimized network (cf. Fig. 1b). For each stimulus, each E cell’s voltage was clamped to its 

mean voltage, μ E, obtained when the network was presented with the same stimulus without 

voltage clamp. d, LFP power spectra in the network after voltage-clamping of the E 

population at different contrast levels (colors as in Fig. 2). The network remained stable, but 

the peak in its LFP power spectrum characteristic of gamma oscillations was no longer 

present (cf. Fig. 5c, inset). This shows that gamma oscillations in the original network 

required interactions between E and I cells (i.e. they were generated by the so-called “PING” 

mechanism16).
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Extended Data Fig. 3. Random networks.
The parametrization of our network was highly constrained (e.g. ring topology with circulant 

and symmetric weight and process noise covariance structure, 1:1 E:I ratio, fixed receptive 

fields). To test whether these constraints alone, without any optimization, were sufficient to 

generate the results we obtained in the optimized network, we sampled weight matrices at 

random, by drawing each of the 8 hyperparameters of the weight matrix (Eq. 10) from an 

exponential distribution truncated between 0.1 and 10 times the values originally found by 

optimization. We discarded matrices that were either unstable or converged to a trivial 

solution (all mean rates equal 0). Less than 20% of the generated matrices satisfied these 

criteria, further confirming that optimization was non-trivial. Results for six such example 

random networks are shown (columns). a, Recurrent weights as a function of the difference 

in the preferred stimuli of two cells (cf. Extended Data Fig. 1d, top). Different lines are for 

weights connecting cells of different types (legend). b-c, Mean (b) and standard deviation of 

membrane potential responses (c), averaged over the population, as a function of contrast 
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(cf. Fig. 3a). Gray dots on x-axis indicate training contrast levels. Note the wide array of 

behaviors displayed by these networks. For example, the standard deviation of responses 

could go up, down, or even be non-monotonic with contrast, while the range of mean rates 

also varied wildly. d-e, Mean firing rate (d) and Fano factor (e) of neurons as a function of 

stimulus orientation (relative to their preferred orientation) during spontaneous (dark red) 

and evoked activity (light orange; cf. Fig. 5a-b). The peak mean rate of example 3 exceeded 

50 Hz and is thus shown as clipped in this figure. Note that mean rate tuning curves (during 

evoked activity) were very narrow for most networks (all but example 5), resulting in 0 Hz 

rates and thus undefined Fano factors for stimuli further away from the preferred orientation. 

f, LFP power spectra at different contrast levels (colors as in Fig. 2). Note the absence of 

gamma peaks (cf. Fig. 5c, inset). g, Average rate response around stimulus onset at different 

contrast levels (colors as in Fig. 2). Black bars show stimulus period. Note the absence of 

transients (cf. Fig. 5d). To estimate network moments in b-d, n = 20,000 independent 

samples (taken 200 ms apart) were used. Population averages (n=50 cells) were computed 

for b and c. Mean firing rates in panel g were computed over n = 100 trials.
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Extended Data Fig. 4. Comparison of random and optimized networks: cost achieved and 
dynamical features.
Networks are ranked in all panels in order of decreasing total cost achieved by them (shown 

in a). Random networks are those shown in Extended Data Fig. 3. The originally optimized 

network presented in the main text is indicated with *, and the network optimized without 

enforcing Dale’s principle (Extended Data Fig. 8) is marked with †. Other optimized 

networks were studied to confirm that well-optimized networks reliably showed similar 

behavior. This was important because our cost function was highly non-convex. Therefore, 
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any minimum our optimizer found, such as that corresponding to the originally optimized 

network, had no guarantee of being the global minimum. Therefore, we trained 10 further 

networks on the original cost function (Methods), starting from random initial conditions, 

and show here those whose final cost was at least approximately as low as that of the 

original network (9 out of 10). a, Total cost (Eq. 25) computed for each of the random 

networks and (left) for networks that were optimized for the original cost (right). Colors 

indicate different components of the cost function (legend, see Eqs. 26-29 for mathematical 

definitions). The inset shows the optimized networks only (note different y-scale). Note that 

the cost achieved by the random networks was 1-3 orders of magnitude higher than that 

achieved by the optimized networks. Furthermore, none of the optimized networks achieved 

substantially lower costs than the one we presented in the main text. b-c, Oscillatoriness (b) 

and transient overshoot size (c) for each network in a. Oscillatoriness was computed by 

numerical fits of Eq. 33 to the autocorrelogram of the LFP generated by the network 

(Methods). Transients in population-average firing rates were quantified as the size of the 

overshoot normalized by the change in the steady state mean (see also Fig. 7a). Note that 

compared to the optimized networks – including the one presented in the main text –, 

oscillations and transients were almost entirely absent from random networks. Furthermore, 

all optimized networks had substantial oscillatoriness and transient overshoots (Extended 

Data Fig. 4b-c). This suggests that the results we obtained for the originally optimized 

network were representative of the best achievable minima of the cost function.
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Extended Data Fig. 5. Control networks without full variability modulation.
Variability modulations are a hallmark of sampling-based inference5. To see whether they 

were also critical for our results, we optimized networks with modified cost functions, either 

setting both ϵ cov = 0 and ϵ cov = 0 (Eq. 25), requiring only response means to be matched 

(a-g; see also Fig. 5, right column), or setting only Ɛcov = 0, requiring the matching of 

response means and variances but not of covariances (h-n; see also Methods). a-b, h-i, 
Network parameters as in Extended Data Fig. 1d-e. Both networks developed weak 

connection weights (a and h, top), with near-identical widths for E and I inputs onto both E 
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and I cells (a and h, middle), and an almost linear input transformation (b and i). c, j, 
Sample population activity as in Fig. 2a. d-e, k-l, Matching moments between the ideal 

observer and the network for training stimuli as in Fig. 2c-d. Extremely weak coupling in the 

first network (a, top) meant an essentially feed-forward architecture. Thus, its response 

covariance simply reflected its process noise covariance (compare e and a, bottom). High 

input correlations in the second network (h, bottom) resulted in a single, global mode of 

output fluctuations (l). f-g, m-n, Generalization to test stimuli as in Fig. 3a-b. Insets in g 
show GSM posterior and network response means for example test stimuli as in Fig. 3c. 

Response moments in n are shown only for training stimuli, not for test stimuli, but by 

distinguishing variances (blue, bottom) and covariances (lavender, bottom). Both networks 

completely failed to fit moments that they were not explicitly required to match. Thus, firing 

rate tuning curves were preserved in both networks, but Fano factors were barely modulated 

in the first network (Extended Data Fig. 6a-b). Critically, neither of these networks showed 

discernible oscillations or transient overshoots Extended Data Fig. 6c-e). Response moments 

in d-g and k-n were estimated from n = 20,000 independent samples (taken 200 ms apart). 

Population mean moments in f and m were further averaged across n=50 E cells. 

Correlations in e and l are Pearson’s correlations.

Extended Data Fig. 6. Comparison of neural dynamics between the originally optimized network 
and the control networks.
a-e, Dynamics of optimized networks as in Fig. 5a-e. The originally optimized network of 

the main paper (left) is compared to various control networks, from left to right: without 
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slowness penalty (Extended Data Fig. 10), without covariance modulation (matching means 

and variances; Extended Data Fig. 5h-n), without covariance and variance modulation 

(matching means only; Extended Data Fig. 5a-g), enforcing constant Fano factors (Extended 

Data Fig. 7), and with Dale’s principle not enforced (Extended Data Fig. 8). For ease of 

comparison, only stimulus-dependent power spectra are shown for the optimized network of 

the main paper, without showing the dependence of gamma peak frequency on contrast (cf. 

Fig. 5c, middle), as most control networks had no discernible gamma peaks. For more 

details on control networks, see the captions of the corresponding figures (Extended Data 

Figs. 5, 7, 8 and 10). Response moments in a were estimated from n = 20,000 independent 

samples (taken 200 ms apart). Mean firing rates in d were computed over n = 100 trials. 

Panel e shows mean ± s.e.m. (n = 20 trials).

Extended Data Fig. 7. Control network: enforcing constant Fano factors.
Fano factors need to be specifically stimulusindependent for a class of models, (linear) 

probabilistic population codes (PPCs12), that provide a conceptually very different link 

between neural variability and the representation of uncertainty than that provided by 

sampling5,18, which we pursue here. Therefore, we used our optimization-based approach to 

directly compare the circuit dynamics required by PPCs to those of our originally optimized 

network implementing sampling. For this, we trained a further control network whose goal 

was to match the mean modulation of the control network (resulting in realistic tuning 

curves), while keeping Fano factors constant. We achieved this by devising a set of target 

covariances that would result (together with the target mean responses used by all other 

networks) in constant Fano factors - assuming Poisson spiking and an exponentially 

decaying autocorrelation function (using analytic results in Ref. 52). Training then 
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proceeded exactly as for the other networks, with the same e parameters in the cost function 

as for the originally optimized network, only employing the new covariance targets. a-b, 
Network parameters as in Extended Data Fig. 1d-e. The network made use of strong 

inhibitory connections (a, top), large shared process noise (a, bottom), and strongly 

modulated inputs (b). c, Sample population activity as in Fig. 2a. d-e, Matching moments 

between the ideal observer and the network for training stimuli as in Fig. 2c-d. f-g, 
Generalization to test stimuli as in Fig. 3a-b. Insets in g show GSM posterior and network 

response means for example test stimuli as in Fig. 3c. The network was able to match mean 

responses in the training set and to generalize to novel stimuli (d, f-g), while keeping Fano 

factors relatively constant as required (Extended Data Fig. 6b). For consistency with 

previous results, we obtained Fano factors by numerically simulating the same type of 

inhomogeneous Gamma process as in the other networks (Methods), thus violating the 

Poisson spiking assumptions under which we computed the target covariances of the 

network (see above) - hence the remaining small modulations of Fano factors. Critically, 

although the training procedure was identical to that used for the original network, only 

differing in the required variability modulation provided by the targets (see above), this 

control network displayed no gamma-band oscillations (Extended Data Fig. 6c). Inhibition-

dominated transients did emerge, but were weaker than in the original network (Extended 

Data Fig. 6d and e). Response moments in d-g were estimated from n = 20,000 independent 

samples (taken 200 ms apart). Population mean moments in f were further averaged across 

n=50 E cells. Correlations in e are Pearson’s correlations.

Extended Data Fig. 8. Control network: Dale’s principle not enforced.
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In order to see how much the biological constraints we used for the optimized network, and 

in particular enforcing Dale’s principle, were necessary to achieve the performance and 

dynamical behavior of the original network, we optimized a network with the same cost 

function as for the original network (Eq. 25) but without enforcing Dale’s principle. This 

meant that the signs of synaptic weights in each quadrant of the weight matrix (the a XY 

coefficients in Eq. 10) were not constrained. Otherwise, optimization proceeded in the same 

way as before (Methods). The training of this network proved to be much more difficult and 

prone to result in unstable networks, which we avoided by early stopping. a-b, Network 

parameters as in Extended Data Fig. 1d-e. As Dale’s principle was not enforced, only 

notional cell types can be shown (legend). Nevertheless, interestingly, the network still 

obeyed Dale’s principle after optimization (top): all outgoing synapses of any one cell had 

the same sign. Note that the outgoing weights of the cells whose moments were constrained 

(E cells, whose activity is shown and analysed in c-g) were actually negative. Therefore, in 

effect, these cells became inhibitory during training. c, Sample population activity as in Fig. 

2a. d-e, Matching moments between the ideal observer and the network for training stimuli 

as in Fig. 2c-d. f, Generalization to test stimuli as in Fig. 3a. g, Matching moments between 

the ideal observer and the network for training stimuli as in Fig. 3b (lavender). Note that 

here, unlike in Fig. 3, response moments are shown only for training stimuli, not for test 

stimuli, but by distinguishing variances (blue, bottom) and covariances (lavender, bottom). 

Overall, the stationary behavior of this network was broadly similar to that of the originally 

optimized network (cf. Figs. 2 and 3). Therefore, it achieved a performance that was far 

better than the random networks’ (Extended Data Fig. 4a). However, it still performed 

substantially worse than networks optimized with Dale’s principle enforced (Extended Data 

Fig. 4a), and its dynamics were also qualitatively different: oscillations and transient 

overshoots were largely absent from it (Extended Data Fig. 4b-c, Extended Data Fig. 6). 

Response moments in d-g were estimated from n = 20,000 independent samples (taken 200 

ms apart). Population mean moments in f were further averaged across n=50 Ẽ cells. 

Correlations in e are Pearson’s correlations.
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Extended Data Fig. 9. Further analyses of the role of transients in supporting continual 
inference.
a-b, Analysis of transients in the response of a single neuron. (Left panel in a is reproduced 

from Fig. 7a.) a, Temporal evolution of the mean (left) membrane potential (uE), and the 

membrane potential standard deviation (right) in three different neural responses (thick 

lines) with identical autocorrelations (matched to neural autocorrelations in the full network, 

inset, cf. Fig. 4a) but different timedependent means (left) and standard deviations (right). 

Thin green line shows the time-varying target mean (left) and standard deviation (right). b, 
Total divergence (Eq. 37, Methods) between the target distribution at a given point in time 

and the distribution represented by the neural activity sampled in the preceding 100 ms, for 

each of the three responses (colors as in a). In comparison, note that Fig. 7b only shows the 

mean-dependent term of the divergence (Eq. 38,Methods). Black bars in a-b show stimulus 

period. Mean and divergence computed as an average over multiple trials (n =10,000). c, 
Optimal response trajectories (red lines) for continual estimation of the mean of a target 

distribution (thin green lines). Different shades of red indicate optimal trajectories 

corresponding to three different target levels (5,10, and 20 mV, emulating different contrast 

levels). We optimized neural response trajectories (Eq. S39, Supplementary Math Note) so 

that the distance between their temporal average, computed using a prospective box-car filter 

(k(t) = 1/T for t ∈ [0, T] and 0 otherwise, with T =20 ms), and the corresponding Heaviside 

step target signal would be minimized under a smoothness constraint (∈ smooth = 1; Eq. S37, 

Supplementary Math Note). Note the transient overshoot in the optimal response very 

closely resembling those observed in the optimized network (Fig. 5d, Fig. 7c-d): its 

magnitude scales with the value of the target mean, and it is followed by damped 

oscillations. Similar results (with less ringing following the overshoot) were obtained also 

for an exponentially decaying, “leaky” kernel (not shown). d-e, Relationship between 

overshoot magnitude and steady state difference: analysis of experimental recordings from 
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awake macaque V1 23. d, Overshoot magnitude versus steady state difference: same as Fig. 

7e, but restricting the analysis to steady state differences below 60 Hz (to exclude outliers). 

Red line shows linear regression (±95% confidence bands). The correlation between 

overshoot size and steady state difference is still significant: two-sided Wald test p =1 × 

10−89 (n = 1263 cell-stimulus pairs R 2 ⋍ 0.27). e, Systematically changing the maximal 

steady state difference (x-axis) used for restricting the analysis of the correlation between 

overshoot size and steady state difference (d and Fig. 7e) reveals that the correlation is 

robust (black line ±95% confidence intervals) and remains highly significant (blue line, 

showing corresponding p-values; note logarithmic scale) for all but the smallest threshold 

(and thus smallest sample size). Horizontal dotted lines show R = 0 correlation (black) and p 
= 0.05 significance level (blue) for reference. As the maximal steady state difference 

increases, the number of points n considered also increases from n = 4 to n = 1279. 

Correlations in a are Pearson’s correlations. Pearson’s R values and corresponding p-values 

in e were obtained by linear regression performed as in d.

Extended Data Fig. 10. Control network: no explicit slowness penalty.
To test whether the explicit slowness penalty in our cost function (Eq. 29) was necessary for 

obtaining the dynamical behaviour exhibited by the optimized network of the main text, we 

set єslow = 0 in Eq. 25. a-b, Network parameters as in Extended Data Fig. 1d-e. c, Sample 

population activity as in Fig. 2a. d-e, Matching moments between the ideal observer and the 

network for training stimuli as in Fig. 2c-d. f, Generalization to test stimuli as in Fig. 3a. g, 
Matching moments between the ideal observer and the network for training stimuli as in Fig. 

3b (lavender). Note that here, unlike in Fig. 3, response moments are shown only for training 
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stimuli, not for test stimuli, but by distinguishing variances (blue, bottom) and covariances 

(lavender, bottom). Note that this network behaved largely identically to the originally 

optimized network (see also Extended Data Fig. 6). This could be attributed to the fact that 

our optimization implicitly encouraged fast sampling by default, simply by using a finite 

averaging window for computing average moments of network responses, and in particular 

by including samples immediately or shortly following stimulus onset (Methods). Response 

moments in d-g were estimated from n = 20,000 independent samples (taken 200 ms apart). 

Population mean moments in f were further averaged across n=50 E cells. Correlations in e 
are Pearson’s correlations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The statistical generative model, and the corresponding neural circuit implementing 
sampling-based probabilistic inference.
a, Sketch of the Gaussian scale mixture (GSM) generative model. An image patch is 

constructed as a linear combination of a fixed set of localized, oriented, Gabor filter-like 

features (projective fields, differing only in their orientations, uniformly spread between 

−90° and 90°), with stimulus-specific feature intensities (latent variables) drawn from a 

multivariate Gaussian distribution. The resulting image patch is scaled by a global contrast 

variable and corrupted by noise (not shown). (Stimulus shown is for illustration only: the 
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GSM model employed here was not sufficiently complex to generate photorealistic images. 

For a sample of generated image patches see Fig. 3c and Extended Data Fig. 1c.) b, 2-

dimensional projection of the posterior distribution over latent variables given a visual 

stimulus, computed by the Bayesian ideal observer under the generative model. c, An 

excitatory–inhibitory (E–I) neural network receiving an image patch as an input, filtered by 

feedforward receptive fields identical to the projective fields of the generative model in a. 

The activity of each E cell represents the value of one latent variable in the generative 

model. As an illustration of the ring topology of the network, the outgoing connections of 

one E-I cell pair are shown (connection strength is indicated by line width and “synapse” 

size, see details in text). d, Responses of the two E cells corresponding to the latent variables 

shown in b. The response trajectory samples from the corresponding posterior distribution 

over time given the same stimulus.
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Fig. 2. Inference and responses in the optimized network.
a, Sample population activity of excitatory (E) cell membrane potentials u E (color) at zero 

(top) and high (bottom) contrast. The high contrast stimulus has a dominant orientation at 0° 

(arrow). Neurons are ordered by preferred orientation. b, Left: stimuli in the training set 

(shade of frame color indicates contrast level, split green and red indicates that the same 

stimuli were used as input to the ideal observer and the neural network). Right: covariance 

ellipses (2 standard deviations) of the ideal observer’s posterior distributions (green) and of 

the network’s corresponding response distributions (red). Red trajectories show sample 500 

ms-sequences of activities in the network. Projections for two representative latent 

variables / E cells are shown, with projective fields / receptive fields at preferred orientations 

42° and 16° (insets at the end of axes). c, Mean (top) and standard deviation (bottom) of 

latent variables under the ideal observer’s posterior distribution (left, green) and of E cell 

membrane potentials u E under the network’s stationary distribution (right, red), ordered by 
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their preferred orientation, for each stimulus in the training set. d, Correlation matrices of 

the ideal observer’s posterior distributions (left, green) and the network’s stationary response 

distributions (right, red). Line colors in c and frame colors in d correspond to different 

contrast levels, same colors as stimulus frames in b. Response moments in c and d were 

estimated from n = 20,000 independent samples (taken 200 ms apart). Correlations in d are 

Pearson’s correlations.
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Fig. 3. Generalization in the optimized network.
a, Mean and standard deviation of latent variables (green) and stationary network responses 

(red) averaged over the population, as a function of contrast. Circles, and gray dots on x-axis 

indicate training contrast levels. The network correctly generalizes to untrained contrast 

levels (segments between circles). b, Stationary mean (top) and covariance (bottom) during 

network activity (y-axis) versus under the posterior (x-axis). Each dot corresponds to the 

response of an individual cell (top) or cell-pair (bottom) to one of the trained stimuli 

(lavender) or one of the novel, untrained stimuli in the test set (orange). c, Examples of 
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generalization in the network. Each row corresponds to a different stimulus, and shows the 

corresponding statistical moments of latent variables under the GSM posterior (green) and 

stationary responses in the network (red). As a reference, the top row shows one of the 

training stimuli. The bottom five rows show generalization to novel test stimuli. Left: 

example stimuli. Middle: GSM (green) and network means (red), and the first three principal 

components of the GSM covariance, scaled by the square root of the variance they explain of 

the GSM posterior (green) and of the network covariance (red). Right: Correlation matrices 

of the ideal observer’s posterior distributions (left, green frames) and the network’s response 

distributions (right, red frames). Response moments in all panels were estimated from n = 

20,000 independent samples (taken 200 ms apart). Population mean moments in a were 

further averaged across n=50 E cells. Correlations in c are Pearson’s correlations.
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Fig. 4. Temporal correlations in the optimized network.
a, Membrane potential auto-correlations (population average) in the network for increasing 

levels of stimulus contrast (from dark to pale red; same colors as in Fig. 2b–d). The auto-

correlation of a purely feedforward network (with the same process noise) is shown for 

comparison (dashed black line), together with those of the process noise (dotted black line), 

and a collection of networks implementing Langevin sampling at each contrast level (from 

dark to light gray). b, Lagged cross-correlation (left) in the Langevin sampler (top) and in 

the optimized E–I network (bottom), decomposed into temporally symmetric (middle) and 

anti-symmetric components (right). Each line corresponds to a different cell pair (3 

representative pairs shown), color encodes identity of participating cells (E or I, note that 

there is no separation of E and I cells in the Langevin networks). c, Lag between total E and 

I inputs to each E cell, as a function of stimulus orientation (relative to preferred orientation) 

at different contrast levels (colors).
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Fig. 5. Cortical-like dynamics in the optimized network.
Left: experimental data; middle: optimized network; right: control network trained to 

modulate its mean responses but not its variability, a-b, Mean firing rate (a) and Fano factor 

(b) of neurons as a function of stimulus orientation (relative to preferred orientation) during 

spontaneous (dark red) and evoked activity (light orange). Experimental results show mean 

± s.e.m. (n=99 cells). c, Peak gamma frequency in the local field potential (LFP) power 

spectrum as a function of contrast. Inset for the optimized network and main panel for the 

control network show LFP power spectra at different contrast levels (colors as in Figs. 2 and 
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4). Note that no dependence of gamma frequency is shown for the control network as there 

were no discernible gamma peaks in its power spectra. Experimental results show mean ± 

s.d. (n=14 sessions). d, Average rate response around stimulus onset at different contrast 

levels (colors). e, Excitatory and inhibitory conductance (mean ± s.e.m., relative to baseline, 

see Methods for details) during a transient stimulus response. Experimental results show 

mean ± s.e.m. (n=8 trials). Numerical results show mean ± s.e.m. (n=20 trials). Black bars in 

d-e show stimulus period. Panels a-b reproduce analyses from Ref. 6 of data from Ref. 23 

(awake macaque V1). Experimental data in c was reproduced from Ref. 4 (awake macaque 

V1), in d reproduced from Ref. 3 (awake macaque V1), and in e reproduced from Ref. 2 

(awake mouse V1).
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Fig. 6. Oscillations improve mixing time.
a-b, Analysis of oscillations in the response of a single neuron. a, Power spectra of three 

different neural responses (colored lines) with identical mean and variance but different 

degrees of oscillatoriness. Inset: autocorrelation functions. Black dotted line represents the 

autocorrelation of the process noise. b, Divergence between the distribution estimated from a 

finite sampling time (x-axis) and the true stationary distribution for the three systems (colors 

as in a). c-d, Analysis of oscillations in the full network. c, Power spectra of the network’s 

neural activity along the directions of the principal components (PCs) of its stationary 

response distribution, ordered by PC rank (colors). Inset: autocorrelation of neural activity 

along the directions of the 1st and 10th PCs (colors as in main plot). d, Oscillatoriness of the 

autocorrelogram along each principal component (colors as in c) as a function of the fraction 
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of the total variance of responses they capture. Note that our measure of oscillatoriness is 

based on the relative contributions of an oscillatory vs. a non-oscillatory component in a 

parametric fit to the autocorrelogram, and as such it is invariant to the overall magnitude of 

fluctuations (which is factored out by using the autocorrelation rather than the 

autocovariance of responses. Methods). Error bars show mean s.e.m. (n=50 stimuli).
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Fig. 7. Transients support continual inference.
a-b, Analysis of transients in the response of a single neuron. a, Temporal evolution of the 

mean (left) membrane potential (uE), and its running average (right), in three different neural 

responses (thick lines) with identical autocorrelations (matched to neural autocorrelations in 

the full network, Extended Data Fig. 9a; cf. Fig. 6) but different time-dependent means 

(shown here) and variances (Extended Data Fig. 9a). Thin green line shows the time-varying 

target mean. b, Divergence between the target distribution at a given point in time and the 

distribution represented by the neural activity sampled in the preceding 100 ms, for each of 

the three responses (colors as in a). The mean-dependent term of the divergence is shown 

here, which depends on the difference between the target mean and the running average of 

samples (shown in a, right; see Extended Data Fig. 9b for the full divergence). a-b Black 
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bars show stimulus period. Mean and divergence computed as an average over multiple trials 

(n = 10.000). c, Top: overshoot magnitude versus steady state difference in membrane 

potentials (see a for legend). Each dot corresponds to the response of one cell to one 

particular stimulus. Bottom: overshoot magnitude as a function of stimulus orientation 

(relative to preferred orientation). d, Top: same as c, top, for firing rates. Bottom: average 

rate overshoot across stimuli whose orientation is aligned with the cells preferred orientation 

(0± 30°), or near-orthogonal to it (90 ±30°). e, Analysis of experimental recordings from 

awake macaque V1 23. Top: overshoot magnitude versus steady state difference, as in d, top. 

Black line shows linear regression (±95% confidence bands); ***: two-sided Wald test p = 3 

×5−114 (n = 1280 cell-stimulus pairs, R 2 ⋍ 0.33; see also Extended Data Fig. 9d-e). Bottom: 

each gray dot represents one cell’s average rate overshoot across stimuli whose orientation is 

aligned with the cells preferred orientation (0 ± 30°), or near-orthogonal to it (90 ± 30°), the 

mean of each group (± s.e.m.) is presented in black, as in d; ***: two-sided paired t-test p = 
6 × 10−9 (n = 80 cells, DF = 79). (For a better comparison with d, the y-range is truncated at 

50 Hz, clipping 2 data points. Statistical analyses used all data.)
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