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Abstract

Introduction

Maternal nutrition during pregnancy is linked with birth outcomes including fetal growth, birth

weight, congenital anomalies and long-term health through intra-uterine programming. How-

ever, a woman’s nutritional status before pregnancy is a strong determinant in early

embryo-placental development, and subsequently outcomes for both mother and child.

Therefore, the aim of this study was to investigate the association between dietary macronu-

trient intake in the preconception period with birth weight.

Methods

We studied a group of 1698 women from the Dutch Perined-Lifelines linked birth cohort with

reliable detailed information on preconception dietary macronutrient intake (using a semi

quantitative food frequency questionnaire) and data available on birth weight of the off-

spring. Birth weight was converted into gestational age adjusted z-scores, and macronutri-

ent intake was adjusted for total energy intake using the nutrient residual method.

Preconception BMI was converted into cohort-based quintiles. Multivariable linear regres-

sion was performed, adjusted for other macronutrients and covariates.

Results

Mean maternal age was 29.5 years (SD 3.9), preconception BMI: 24.7 kg/m2 (SD 4.2) and

median daily energy intake was 1812 kcal (IQR 1544–2140). Mean birth weight was 3578

grams (SD 472). When adjusted for covariates, a significant association (adjusted z score

[95% CI], P) between polysaccharides and birth weight was shown (0.08 [0.01–0.15], 0.03).

When linear regression analyses were performed within cohort-based quintiles of maternal

BMI, positive significant associations between total protein, animal protein, fat, total
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carbohydrates, mono-disaccharides and polysaccharides with birth weight were shown in

the lowest quintile of BMI independent of energy intake, intake of other macronutrients and

covariates.

Conclusion

Out of all macronutrients studied, polysaccharides showed the strongest association with

birth weight, independent of energy intake and other covariates. Our study might suggest

that specifically in women with low preconception BMI a larger amount of macronutrient

intake was associated with increased birth weight. We recommend that any dietary assess-

ment and advise during preconception should be customized to preconception weight status

of the women.

Background

It has been widely acknowledged that adequate maternal nutrition, including maternal dietary

intake before and during pregnancy, is a fundamental prerequisite for optimal growth, development

and long term health of the offspring. Previous studies described deleterious effects of severe macro-

nutrient deficiency on pregnancy outcome that depend on the stage of gestation [1, 2]. Worldwide,

many women have a suboptimal nutrient status at the time of conception, which is also related to

the fact that 4 out of 10 pregnancies are reported to be unplanned [3]. These unplanned pregnancies

may have the highest risk of insufficient diets and inadequate nutrient intake.

Although severe under nutrition and extreme low energy intakes are not very common for

pregnant women in the western world today, differences in the contribution of macronutrients

to the total energy intake potentially are. Godfrey et al (1997) examined the effect of maternal

diet during pregnancy on the ponderal index (measure for weight in relation to height) of the

offspring in the Southampton Women Survey [4], (data collection between 1998–2002 [5]).

They showed that high carbohydrate intake in early pregnancy, especially combined with low

dairy protein intake in late pregnancy, was associated with a low ponderal index, meaning that

these infants were thin at birth.

Recent studies suggest that maternal dietary intake in the preconception period can already

play a vital role in early embryonic and placenta development and thus affect pregnancy out-

comes, as various major organs are already formed during the first weeks of pregnancy [6–8].

Therefore, we emphasize that optimal maternal dietary intake is important before, as well as,

during pregnancy. However, to date, very few observational studies have examined preconcep-

tion diet in relation to birth weight. The studies that did, have limited sample sizes and/or

focused on intake of a single macronutrient rather than more complete dietary patterns and

macronutrient composition [9, 10].

Using data from the Perined-Lifelines linked birth cohort [11], we aimed to investigate the

association between intakes of specific dietary macronutrients; i.e. protein, carbohydrate and

fat, and their quality such as plant and animal protein, and mono-di and polysaccharides, with

birth weight, in a well-nourished, representative sample of women of fertile age in a western

Caucasian population, with the majority having a normal BMI according to the WHO defini-

tion [12]. We aimed to investigate this in both the complete cohort, as well as stratified groups

of maternal preconception BMI.

Results from this study may contribute to the generation of more knowledge on the rela-

tionship between nutrition in the preconception period and pregnancy outcomes. With these
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insights, nutritional care for women of childbearing age can be further improved, aiming to

optimize the health of both the women of childbearing age, as well as that of their (future)

offspring.

Materials and methods

This study is part of the Perined-Lifelines linked birth cohort, a cohort linked between the

Dutch national birth registry (Perined) [13] and the Lifelines Cohort study [14].

Overview of the Perined-Lifelines linked birth cohort

The Perined-Lifelines linked birth cohort was created by linking two existing databases; a large

population-based cohort study (The Lifelines Cohort study, [14]) and the national birth regis-

try (Perined, [13]), through a ‘trusted third party’ (‘ZorgTTP’ Houten, The Netherlands), facil-

itated by Mondriaan project (UMCG)/Lygature (Utrecht, The Netherlands) and has been

described previously in detail [11]. Lifelines is a multi-disciplinary prospective population-

based cohort study examining in a unique three-generation design the health and health-

related behaviours of 167,729 persons living in the North of the Netherlands. It employs a

broad range of investigative procedures in assessing the biomedical, socio-demographic, beha-

vioural, physical and psychological factors which contribute to the health and disease of the

general population, with a special focus on multi-morbidity and complex genetics. Female par-

ticipants from the Lifelines Cohort study who indicated in their first or second follow-up ques-

tionnaire to have delivered a child since the previous questionnaire were selected. The

information collected at baseline (e.g. demographical variables, detailed nutrient intake) was

considered as the pre-conceptional information available for that specific pregnancy. Since the

Lifelines Cohort Study does not collect information on pregnancy or pregnancy outcomes, the

female participants from Lifelines were linked with the information on their pregnancy out-

comes available via the national birth registry (Perined). This was done through corresponding

pseudonyms in Lifelines and Perined, created based on three personal linking variables (birth

date and 4-digits ZIP code of the residential address of the female participants from Lifelines,

and birth date of their child). This resulted in a Perined-Lifelines linked birth cohort, contain-

ing information on dietary intake during the period prior to conception as well as pregnancy

outcomes.

Study group

Among the women in the Perined-Lifelines linked birth cohort, the inclusion criteria for the

present analyses were delivery of a live born baby at term (� 37 weeks’ gestational age) and

availability of information on birth weight of their offspring. Women with unreliable data for

dietary intake were excluded from the analyses. Reliability of reported dietary intake was based

on the ratio of reported energy intake and basal metabolic rate [15, 16]; ratio below 0.50 or

above 2.75 was considered as not reliable and excluded from further analysis. Also, intake of

women with less than 500kcal/day was considered as unreliable reported dietary intake [17,

18].

Maternal macronutrient intake

Macronutrient intake (i.e. total protein, animal, and vegetable protein, fat, total carbohydrates,

mono- and disaccharides and polysaccharides) in the period prior to pregnancy was assessed

with a 110 item semi-quantitative, food-frequency questionnaire (FFQ) [19] that women filled

in at enrolment in The Lifelines Cohort study. The FFQ assessed food intake over the previous
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month. The average daily intake of the macronutrients and energy was calculated using the

Dutch 2011 food composition table [20]. Maternal macronutrient intake was adjusted for total

energy (based on reported dietary intake at the FFQ) using the nutrient residual method to

evaluate the effect of maternal macronutrient intake independent of energy intake and to

reduce the magnitude of the measurement error [17]. This approach produces a nutrient mea-

sure not correlated with energy intake. Subsequently, quintiles were generated by use of the

distribution of the study population, whereby quintile 1 contained the 20% with the lowest

consumption of that specific macronutrient, and quintile 5 the 20% highest intake.

Maternal and fetal characteristics

Preconception maternal BMI was calculated based on measured height and weight at the Life-

lines research sites at enrolment (baseline) to Lifelines. Height and body weight were measured

without shoes and heavy clothing with the SECA 222 stadiometer and the SECA 761 scale. For

the description of the cohort it was first grouped using the WHO classification: underweight

(BMI< 18.5 kg/m2), normal weight (BMI 18.5–25.0 kg/m2), overweight (BMI > 25.0 kg/m2).

To understand to what extent possible associations could be attributed to specific groups of

BMI, and which BMI group may potentially benefit most from changes in lifestyle, BMI quin-

tiles were generated by use of the distribution within the study, whereby quintile 1 was defined

as ‘low’ BMI (lowest 20% in this cohort), quintiles 2 to 4 as ‘normal’ BMI (middle 60% of this

cohort and used as the reference) and ‘high’ BMI was based on quintile 5 (20% highest BMI in

this cohort). The maximum possible time between the FFQ and birth of the child is the time

between the FFQ at baseline and the follow-up questionnaire where the women filled in they

delivered a child since the previous questionnaire. Maternal age was age at enrollment/baseline

in Lifelines. Maternal education was assigned in three categories: low (no education, primary

school, lower vocational or lower general secondary education), intermediate (intermediate

vocational training or higher secondary education) and high (higher vocational or university

education) education. Maternal ethnicity was classified as either ‘white/European’ and ‘other’.

Maternal smoking was divided into ‘smoking’ or ‘non-smoking’ as indicated at baseline.

Maternal alcohol use was divided into ‘alcohol use’ (defined as alcohol use at moment of base-

line/FFQ) and ‘no alcohol use’ [14]. Urbanisation level was categorized as ‘very high’, ‘high’,

‘moderate’, ‘low’, ‘rural’ based on the four-digit ZIP-code. Parity was categorized as one, two,

or>/ = three. Birth weight was recorded in grams in Perined, and converted into a gestational

age (GA)- adjusted z-score to adjust for variation in gestational age.

Statistical methods

Continuous variables were summarized by the median and IQR, and comparisons between

groups were made by the Kruskal-Wallis test. Distributions of categorical variables were com-

pared using a Wilcoxon-type test for trend. The associations between preconception maternal

macronutrient intake (exposure) and birth weight (z-scores; adjusted for gestational age) (out-

come) were estimated by linear regression. Adjusted analyses were performed using multivari-

able linear regression, using different multivariable models (different covariates included).

Based on the R-squared and Akaike Information Criteria (AIC), estimators of the relative qual-

ity of statistical models of a given set of data, the best model will be reported (the higher the R-

squared, or the lower the AIC, the better the model). Least Absolute Shrinkage and Selection

Operation (LASSO) regression analyses was performed to examine the strongest predictor of

birth weight out of all the macronutrients and covariates [21]. LASSO identifies the strongest

predictive variables and zeroes out the irrelevant ones by penalizing regression coefficients

using regularization [21].
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Linear regression analyses between macronutrient intake and birth weight were performed

within the complete cohort. To test whether the association of macronutrients intake with

birth weight is modified by maternal BMI, two different sets of analyses were conducted.

Firstly, interaction terms between macronutrients intake and categorical BMI (cohort based

quintiles) were included into the regression model within the complete cohort, and secondly

separately regression models were fitted within each strata of BMI (cohort based quintiles).

Statistical significance was assumed at P < 0.05. Analyses were performed in SPSS version 23

(IBM Corp., Armonk, NJ, USA).

Results

Description of the study population

A total of 2,368 women from The Lifelines Cohort Study could be linked to available data in

Perined. After excluding women who did not have reliable, or missing dietary intake reported

(resp. n = 427 and n = 168), pre-term births (gestational age<37 weeks; n = 110) and

unknown sex of the child (n = 1), 1,698 women remained available for analyses. The character-

istics of the study cohort, presented as three groups of BMI; ‘low’ BMI (quintile 1; n = 329),

‘normal’ BMI (quintiles 2–4; n = 1043), and ‘high’ BMI (quintile 5; n = 326), are summarised

in Table 1. The lower BMI group is relatively higher educated, has a lower urbanisation level

and the percentage of alcohol users is slightly higher compared to the high BMI group. In addi-

tion, the percentage of nulliparous women is higher in the low BMI group (Table 1). The birth

weight also increases over BMI groups (Table 1). Furthermore, the intake of energy showed a

small but consistent decrease over BMI quintiles (Kendalls tau correlation coefficient = -0.079;

p<0.001) (Fig 1). Linear regression analyses between energy intake and BMI showed a (weak)

negative association (β = -0.001, p<0.001), with R-squared = 0.007 and AIC = 4863.

As shown in Table 1, the maximum possible time between FFQ and birth of the child was

not significantly different among the BMI quintiles. When the average pregnancy duration of

9 months was subtracted from this period, it was shown that within the complete cohort,

48.0% of the women filled in the FFQ within 0–3 months before the start of the pregnancy. For

26.4% of the women this maximum period was 4–6 months, for 8.3% of the women between

7–9 months, for 6.5% of the women between 10–12 months, and 10.8% of the women had a

maximum time of more than 12 months between the FFQ and pregnancy.

When characteristics of the cohort were compared between groups of BMI using the WHO

classification, the results were in line with results reported in Table 1.

The study cohort was representative in terms of diet quality in comparison with the com-

plete Lifelines Cohort study [11, 23]. The characteristics of dietary intake with respect to mac-

ronutrients, are summarised in Table 1.

Regression analysis results- complete cohort

A range of linear regression models with different combinations of covariates were considered

to investigate which model showed the best explaining variance of birth weight outcome. The

model with the best goodness of fit (based on the R-squared and AIC) was the model with

adjustment for intake of other macronutrients, maternal BMI, maternal age, smoking, alcohol,

education level, urbanization level, parity, sex of newborn, ethnicity and energy intake (in

kcal) (R-squared = 0.12; AIC = -182.42). Linear regression analysis within this model showed

that increased intake of polysaccharides was associated with increased birth weight (adjusted

z-score = 0.076 [95% CI 0.001 to 0.144, p = 0.03]) (Table 2). In addition, birth weight mainly

increased in the highest quintile of polysaccharides intake (Fig 2G). The results of all other
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Table 1. Characteristics of the cohort according to the quintile of maternal BMI.

Characteristics Low BMI (Q1)1

N = 329 (100%)

Normal BMI (Q2-Q4)1

N = 1043 (100%)

High BMI (Q5)1

N = 326 (100%)

P�

Demographics

Age at enrollment in years 29 (27–32) 29 (27–32) 29 (27–33) 0.36

Ethnicity 0.55

White, East/West European Ethnicity 323 (98.2) 1015 (97.3) 323 (99.1)

Other 6 (1.8) 28 (2.7) 3 (0.9)

Education2 <0.001

Low 12 (3.7) 58 (5.6) 35 (10.9)

Moderate 99 (30.7) 397 (38.4) 141 (43.8)

High 212 (65.6) 578 (56.0) 146 (45.3)

Missing 6 10 4

Urbanization level by category 3 0.002

1 93 (28.5) 249 (24.5) 61 (18.9)

2 23 (7.1) 83 (8.2) 27 (8.4)

3 24 (7.4) 69 (6.8) 25 (7.8)

4 53 (16.3) 111 (10.9) 36 (11.2)

5 133 (40.8) 506 (49.7) 173 (53.7)

Missing 3 25 4

Diet

Energy intake (kcal/day) 1898 (1624–2202) 1802 (1545–2129) 1781 (1482–2072) <0.001

Percentage energy from: 4

Carbohydrates 47.2 (44.4–50.5) 46.4 (43.4–49.8) 46.4 (43.0–49.5) 0.01

Mono and Di saccharides 24.7 (21.5–29.0) 24.5 (21.1–28.5) 24.6 (21.0–28.8) 0.80

Polysaccharides 29.9 (26.8–32.7) 29.1 (26.4–31.8) 28.7 (26.0–31.7) 0.02

Protein 14.1 (13.1–15.4) 14.6 (13.4–16.0) 15.3 (13.8–16.6) <0.001

Animal protein 8.0 (6.6–9.2) 8.5 (7.3–9.9) 9.2 (8.1–10.7) <0.001

Plant protein 6.1 (5.7–6.9) 6.0 (5.4–6.7) 5.9 (5.4–6.5) <0.001

Fat 34.9 (31.7–37.9) 34.8 (31.9–37.8) 34.9 (32.1–38.1) 0.84

Lifestyle

BMI 5 (kg/m2) 20.3 (19.6–20.8) 23.8 (22.6–25.5) 30.5 (28.9–32.9) <0.001

BMI WHO classification <0.001

<18.5 19 (5.8) 0 0

18.5-<25 310 (94.2) 709 (68.0) 0

25-<30 0 334 (32.0) 135 (41.4)

� 30 0 0 191 (58.6)

Alcohol

User percentage (%) 261 (79.3) 830 (79.7) 226 (69.3) 0.001

Median consumption 6 (g/day) 2.3 (0.8–6.1) 2.5 (1.2–5.8) 1.5 (0.6–3.9) <0.001

Missing 0 2 0

Smoker 38 (11.6) 131 (12.6) 43 (13.3) 0.65

Missing 0 1 2

Pregnancy

Maximum time between baseline questionnaire and birth child (in months) 12.0 (11.0–15.0) 13.0 (11.0–16.0) 13.0 (11.0–16.0) 0.27

Sex of the child 0.79

Male 165 (50.2) 520 (49.9) 164 (50.3)

Female 164 (49.8) 523 (50.1) 162 (49.7)

Gravidity 0.02

(Continued)
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variables (i.e. covariates and macronutrients) included in the model can be found in support-

ing information (S1 Table).

Additional analyses were performed with possible outliers of BMI (n = 29) excluded, how-

ever did this not affect the results. Therefore, the results showed here are with these cases

included.

Lasso regression analysis

Lasso regression analysis was performed including all macronutrients, covariates and birth

weight, to check which variables are the strongest predictor for birth weight. No robust statisti-

cal associations were found between macronutrients and birth weight. However, lasso regres-

sion models exhibited a robust statistical association between maternal preconception BMI

(adjusted z-score = 0.095; p<0.001), parity (adjusted z-score = 0.145; p<0.001) and sex of the

child (adjusted z-score = -0.084; p<0.001) with birth weight, with maternal BMI being the

only modifiable factor.

Regression analysis results- in quintiles of BMI

To investigate if the association between preconception macronutrient intake with birth

weight can be attributed to specific groups of BMI, linear regression analyses were performed

Table 1. (Continued)

Characteristics Low BMI (Q1)1

N = 329 (100%)

Normal BMI (Q2-Q4)1

N = 1043 (100%)

High BMI (Q5)1

N = 326 (100%)

P�

1 150 (45.6) 422 (40.5) 120 (36.8)

2 107 (32.4) 352 (33.7) 119 (36.5)

3 46 (14.0) 169 (16.2) 60 (18.4)

�4 26 (7.9) 100 (9.6) 27 (8.3)

Parity 0.002

0 181 (55.0) 494 (47.4) 138 (42.3)

1 109 (33.1) 384 (36.8) 139 (42.6)

�2 39 (11.9) 165 (15.8) 49 (15.0)

Birth weight (in grams) 3410 (3110–3760) 3598 (3280–3890) 3640 (3267–3988) <0.001

Missing 2 1 1

Gestational age (in weeks) 39.0 (39.0–40.0) 39.0 (39.0–40.0) 38.0 (40.0–40.0) 0.36

Apgar-score (after 5 min) 0.06

<10 73 (22.3) 257 (24.6) 92 (28.2)

10 254 (77.7) 786 (75.4) 234 (71.8)

Missing 2

Data are median (IQR) or n (%). Data were complete when there is no missing row presented.
1Q1 = Quintile 1 ranging from from 17.1–21.2 kg/m2, Q2-Q4 = Quintiles 2–4 ranging from 21.3–27.5 kg/m2, Q5 = Quintile 5 ranging from 27.6–47.3 kg/m2.
2Low education: primary school, vocational and lower general secondary education; Moderate education: higher secondary education and intermediate vocational

training; High education: higher vocational education and university education.
3Level of urbanization: 1. Very high > = 2500 addresses per km2; 2: high 1500–2500 addresses per km2; 3: moderate 1000–1500 addresses per km2; 4: low 500–1000

addresses per km2; 5: rural <500 addresses per km2.
4Energy from carbohydrates, protein and fat, relative to the sum of energy from the three macronutrients
5BMI = Body mass index
6Median + IQR among alcohol users. One standard drink contains 10 g alcohol.

�Two sided p value Kruskal Wallis for continuous characteristics or Wilcoxon-type test for trend for categorical characteristics [22].

https://doi.org/10.1371/journal.pone.0243200.t001
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within cohort based BMI quintiles (adjusted for intake of other macronutrients, maternal

BMI, maternal age, smoking, alcohol, education level, urbanization level, parity, sex of new-

born, ethnicity). These analyses showed that within the group of women with the lowest BMI

(min, max BMI: 17.1–21.2), there was a significant positive association between animal pro-

tein, fat, total carbohydrates, mono-and disaccharides and polysaccharides and birth weight

(Table 3). Additional adjustment for energy intake (in kcal) did not change these results. The

interaction terms between each specific macronutrient and BMI in quintiles were not signifi-

cant (Table 3).

Fig 1. Mean energy intake (kcal) in BMI quintiles (95% confidence intervals).

https://doi.org/10.1371/journal.pone.0243200.g001

Table 2. Linear regression analysis of macronutrient intake in relation to birth weight (n = 1698, 100%).

Linear regression analysis1

Analysis Coeff (95% CI)2 P

Total protein 0.020 (-0.056–0.096) 0.61

Animal protein 0.020 (-0.062–0.103) 0.63

Plant protein 0.028 (-0.035–0.090) 0.39

Fat 0.019 (-0.027–0.065) 0.41

Total carbohydrates 0.045 (-0.109–0.20) 0.55

Mono- and disaccharides 0.030 (-0.058–0.12) 0.51

Polysaccharides 0.076 (0.008–0.144) 0.03

1Adjusted for intake of other macronutrients, maternal BMI, maternal age, smoking, alcohol, education level,

urbanization level, parity, sex of newborn, ethnicity, energy intake (in kcal)
2 Coefficients are expressed as z-scores, i.e. the unit for the coefficients is one standard deviation (SD).

https://doi.org/10.1371/journal.pone.0243200.t002
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Birth weight in BMI quintiles

Linear regression analyses within quintiles of BMI showed consistent positive significant asso-

ciations between specific macronutrients intake and birth weight. As shown in Fig 3, BMI

quintile 1 is also the quintile with the lowest mean birth weight of the offspring, different from

the increasing birth weight trend over the remaining BMI quintiles. To investigate whether the

association found in BMI quintile 1 was possible driven by the fact that these are the children

with the lowest birth weight, adjusted linear regression analyses between macronutrient intake

and birth weight, was performed within cohort base birth weight quintiles. No significant asso-

ciation between any of the macronutrients and birth weight in the birth weight quintiles was

found.

Discussion

The aim of this study was to investigate the relationship between maternal macronutrient

intake and birth weight of the offspring in a representative group of women from fertile age in

a western Caucasian population, with the majority having a normal BMI according to the

WHO definition [12].

To the best of our knowledge, this is the first large cohort study to explore the relationship

between maternal dietary macronutrient intake in the preconception period and birth weight

of the offspring. Within this (relatively) healthy, homogenous population, with minimal varia-

tion in adjusted birth weight, we observed that out of all the macronutrients studied,

Fig 2. Mean birth weight (z-scores; adjusted for gestational age) in quintiles of macronutrient intake (95% confidence

intervals). A. Total protein, B. animal protein, C. plant protein, D. fat, E. carbohydrates, F. mono- and disaccharides, G.

polysaccharides.

https://doi.org/10.1371/journal.pone.0243200.g002

Table 3. Linear regression analysis of macronutrient intake in relation to birth weight in quintiles of BMI (n = 1698, 100%).

Coeff (95% CI)1 for birth weight (z-scores)

BMI quintiles2

Q1 (n = 329) Q2 (n = 345) Q3 (n = 347) Q4 (n = 337) Q5 (n = 340) P5

Energy (in kcal)3 5.12E-5 (0.00 to 0.00) 1.68E-5 (0.00 to 0.00) 6.66E-6 (0.00 to 0.00) -2.28E-5 (0.00 to 0.00) -5.36E-5 (0.00 to 0.00) 0.86

Total protein4 0.19 (0.01 to 0.37) -0.13 (-0.29 to 0.02) -0.04 (-0.20 to 0.12) 0.14 (-0.05 to 0.32) 0.04 (-0.16 to 0.24) 0.49

Animal protein4 0.21 (0.01 to 0.40) -0.14 (-0.31 to 0.02) -0.05 (-0.23 to 0.12) 0.15 (-0.05 to 0.35) 0.02 (-0.20 to 0.23) 0.90

Plant protein4 0.08 (-0.05 to 0.22) -0.08 (-0.22 to 0.06) 0.02 (-0.11 to 0.14) 0.08 (-0.09 to 0.25) 0.15 (-0.008 to 0.31) 0.12

Fat4 0.37 (0.03 to 0.72) -0.04 (-0.33 to 0.24) -0.08 (-0.37 to 0.21) 0.33 (-0.06 to 0.72) -0.002 (-0.36 to 0.36) 0.78

Total carbohydrates4 0.47 (0.08 to 0.86) -0.09 (-0.40 to 0.22) -0.17 (-0.49 to 0.15) 0.39 (-0.02 to 0.79) -0.05 (-0.43 to 0.32) 0.45

Mono- and disaccharides4 0.19 (-0.002 to 0.39) -0.09 (-0.29 to 0.11) -0.05 (-0.23 to 0.14) 0.11 (-0.09 to 0.31) -0.03 (-0.25 to 0.19) 0.82

Poly-Saccharides4 0.20 (0.05 to 0.35) 0.01 (-0.15 to 0.17) 0.07 (-0.08 to 0.22) 0.04 (-0.12 to 0.20) 0.05 (-0.11 to 0.21) 0.41

1Coefficients are expressed as z-scores, i.e. the unit for the coefficients is one standard deviation (SD).
2Quintile 1, ranging from 17.1–21.2 kg/m2 (n = 329), Q2 = Quintile 2, ranging from 21.3–22.9 kg/m2 (n = 345), Q3 = Quintile 3, ranging from 23.0–24.8 kg/m2

(n = 347), Q4 = Quintile 4, ranging from 24.9–27.5 kg/m2 (n = 337), Q5 = Quintile 5, ranging from 27.6–47.3 kg/m2 (n = 340).
3Adjusted for maternal BMI, maternal age, smoking, alcohol, education level, urbanization level, parity, sex of newborn, ethnicity.
4Adjusted for intake of other macronutrients�, maternal BMI, maternal age, smoking, alcohol, education level, urbanization level, parity, sex of newborn, ethnicity.
5P for interaction.

�Model for: total protein (adjustment with fat, total carbohydrates), animal protein (adjustment with plant protein, fat, total carbohydrates), plant protein (adjustment

with animal protein, fat, carbohydrates), fat (adjustment with total protein, total carbohydrates), total carbohydrates (adjustment with total protein, fat), mono- and

disaccharides (adjustment with total protein, fat, poly-saccharides), poly-saccharides (adjustment with total protein, fat, mono- and disaccharides).

Associations in bold are significant at p < 0.05.

https://doi.org/10.1371/journal.pone.0243200.t003
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preconception intake of polysaccharides appears to have the strongest association with birth

weight, independent of energy intake and maternal characteristics. However, in line with other

studies, maternal BMI, parity and sex of the child showed a more robust association with birth

weight than maternal intake of macronutrients.

We evaluated the association of maternal macronutrient intake with offspring’s birth

weight for specific groups of BMI and found that within the group of women with a lower pre-

conception BMI, higher macronutrient intake (except for plant protein) was associated with

an increased birth weight, independent of energy intake and maternal characteristics. How-

ever, the interaction term between BMI quintiles and macronutrient intake was not significant.

An association between total energy intake (in kcal) and birth weight was not shown in this

cohort, both when analyses were performed in the complete cohort as in BMI quintiles. There-

fore, the association between an increase of specific macronutrients intake and birth weight

was not explained by total energy intake.

We showed that higher maternal intake of polysaccharides during preconception was asso-

ciated with higher birth weight of the offspring. This finding is in agreement with a study

which investigated this association during pregnancy [24]. Sharma et al. observed that higher

intake of polysaccharides (starch) was associated with increased odds of delivering LGA

infants [24]. Another study compared dietary intake of women with normal pregnancies ver-

sus women with gestational diabetes mellitus (GDM), and found that women who consumed a

carbohydrate-rich diet were likely to have high blood glucose levels, and therefore had an

increased risk of delivery LGA offspring [25]. A possible explanation for these results could be

that higher intake of carbohydrates could lower maternal insulin sensitivity, making higher

levels of free glucose available for placental circulation, subsequently activating fetal glycogene-

sis [26]. Despite the fact that we found an association between polysaccharides and birth

Fig 3. Mean birth weight (z-scores; adjusted for gestational age) in BMI quintiles (95% confidence intervals).

https://doi.org/10.1371/journal.pone.0243200.g003
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weight, we did not find any association between total carbohydrates, mono- and disaccharides

and birth weight. Mono- and disaccharides and polysaccharides may have different metabolic

effects on postprandial blood glucose levels due to their digestibility and structure. To explain

how different kinds of carbohydrate-rich foods directly affect blood sugar, the glycemic index

was developed and is considered an appropriate way of categorizing carbohydrates and its

effect on blood glucose levels. High-glycemic-index foods, which causes powerful spikes in

blood sugar, can lead to an increased risk for type 2 diabetes [27], heart disease [28], and over-

weight [29–31]. In contrast, low-glycemic index diets, which causes slower blood sugar rises,

may offer anti-inflammatory benefits [32]. To elucidate the possible impact of different types

of carbohydrates during preconception, further research of food groups distinguished by gly-

cemic index, and their association with birth weight, needs to be conducted.

We did not find any significant association between maternal intake of the other macronu-

trients and birth weight when we performed analysis within the complete cohort. Our study

participants were adequately nourished [33] and there was minimal variation of the adjusted

birth weight of the offspring. This resulted in a relative narrow distribution of both determi-

nant and outcome, hence this might be the reason we did not notice any effect for other mac-

ronutrients. Despite the fact that we did not see a significant association between protein,

including plant protein, and birth weight, we found an ‘U-shaped’ association with birth

weight. Both low and high intake of plant protein showed slightly lower mean birth weights.

These observations are in line with the study from Switkowski et al. who also reported such

a ‘U-shaped’ association with decreasing birth weight upon increments in protein intake

among a group of pregnant women (n = 1961) [34]. In addition, this ‘U-shaped’ association

has also been previously observed by protein intake during pregnancy by Sloan et al. (2001)

[35]. Women with either high (>85 grams) or low (<50 grams) protein intake had babies with

lower birth weight. These levels of protein intake were not very common in our cohort.

Although studies investigating macronutrient intake during preconception and birth

weight are scarce, several epidemiological studies showed an association between dietary

intake during pregnancy and birth weight. However, contradictory results have been reported.

On the one hand, Haste et al. [36], Godfrey et al. [37] and Cuco et al. [9], found that maternal

nutrition during pregnancy had an important effect on birth weight. For example, the study

from Cuco et al. described a positive association between protein intake during preconception

and birth weight [9]. Yet Mathews et al [38] and Lagiou et al. [39] reported no effects.

In order to investigate which of the variables (macronutrients intake and maternal charac-

teristics) were the strongest predictor of birth weight, we performed LASSO regression analy-

sis. Maternal BMI, parity and sex of the child appeared to be the strongest predictors of birth

weight within our study. This finding is in line with a study from Radesky et al., who investi-

gated the association between nutrients and dietary patterns with the risk of gestational diabe-

tes mellitus, and showed that pre-pregnancy BMI might be of greater importance than the

maternal diet for the development of gestational diabetes [40]. Individually macronutrient

intake on itself is probably less informative than pre-pregnancy BMI as this is a representative

measurement of not only dietary intake, but also dietary/lifestyle behaviour and physical activ-

ity. Out of the three variables found via Lasso regression, maternal BMI is the only modifiable

factor and is subject of several lifestyle intervention studies for women during preconception

and pregnancy [41–45]. Therefore, we performed subsequent analyses in cohort based BMI

quintiles to understand to what extent possible associations could be attributed to specific

groups of BMI, and also which group may potentially benefit the most from changes in diet

and lifestyle. The distribution of maternal BMI is displayed in Table 1. According to the WHO

classification, 60% in our cohort has normal BMI, 27.6% is overweight, 11.2% obese and 1.2%

is underweight. More specifically, in the lowest BMI quintile there are not only women
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included with underweight according to the WHO, but also with a normal BMI. Since we have

adjusted for maternal BMI within linear regression analyses, we do not expect this BMI distri-

bution over BMI quintiles, to have influenced our results.

Adjusted linear regression showed a positive significant association between all the macro-

nutrients (except plant protein) independently and birth weight in the lowest quintile of BMI

(20% lowest BMI within our cohort). Although our results showed that the interaction term

between specific macronutrients intake and birth weight in quintiles of BMI was not signifi-

cant, we do not think this completely invalidates our findings. Other studies have found simi-

lar results, showing stronger associations between fruit and vegetable intake with increased

birth weight among lean pregnant women [46]. The same pattern was reported in an Indian

study [47], showing a stronger association between intake of green leavy vegetables and birth

weight in the leanest women. Neggers et al., found an association between zinc and aspirin

supplementation with birth weight only among women with low pre-pregnant BMI, and not

among normal weight women [48]. They suggest that these associations, within the group of

women with low BMI, may be mediated by a low plasma volume rather than by energy status.

Rosso et al. [49], described that in underweight women, a low plasma volume during early

pregnancy will result in proportionately reduced cardiac output. A lower cardiac output results

in a lower uteroplacental blood flow and therefore decrease in transfer of nutrients to the fetus

and consequently a possible reduction in fetal growth. It is suggested that within this group of

women with low BMI, micro- and macronutrient intake is associated with increased plasma

volume, which may result in increased birth weight.

The fact that we only find and association in the lowest quintile of BMI, and not in the

other quintiles, without the interaction term being significant, could potentially be due to the

fact that women in the lowest quintile differ in terms of demographical information where we

have not (been able to) adjusted for. Characteristics with a yet unknown epidemiological or

biological influence can potentially explain the differences found between the BMI quintiles.

In addition, although less likely, it could be due to the fact that the BMI quintiles are not ran-

domized and so perhaps the lowest BMI quintile has the highest heterogeneity/variation in

variables. Future studies that will focus on dietary intake in the preconception period, should

pay attention to different groups of maternal BMI, also to those having low BMI within the

preconception period.

This study has several strengths. This is a large cohort comprising of 1698 women contain-

ing detailed reliable dietary data from their preconception period and pregnancy outcome of

their offspring. Dietary intake was assessed using a food frequency questionnaire, allowing

detailed information about food types and amounts to be recorded without influencing the

participant’s eating behaviour, decreasing chance of bias. Additionally, in order to minimize

the confounding effect of how maternal intake affects birth weight, we adjusted for maternal

age, preconception BMI, sex of the child, parity, gravidity, smoking, alcohol intake [23, 50–

54]. As presented previously our cohort is representative in terms of dietary intake [33]. The

complete Lifelines Cohort has been examined in terms of representativeness compared to the

Dutch population in the Northern Netherlands, and the Lifelines Cohort showed a good over-

all representativeness [55]. To illustrate, energy intake in this cohort is comparable with the

complete Lifelines population ages between 20–40 years [23]. Although the level of education

was slightly higher in our cohort compared to all women in the Lifelines Cohort (age 20–40

years) [23], we do not expect this to have influenced any of our results, mainly because we

have adjusted for level of education. In this study, only women with reliable dietary intake

were included, as described in the methods section. It was shown previously that there were

some differences in terms of demographic variables between women with reliable versus unre-

liable dietary intake [11]. Women with reliable dietary intake were more often higher
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educated, slightly younger at preconception, percentage of alcohol consumers was higher, and

percentage of smokers was lower. These differences were considered logical and selection bias

is not expected to play a role. In addition, women with reliable dietary intake were more often

nulliparous, and consequently had a slightly lower mean birth weight (3570 vs 3640 grams)

but this is not considered as a clinical relevant difference.

The maximum time between dietary assessment and conception among the women in our

cohort is very short making it less plausible that dietary intake has changed in between these

two time points. Besides this, diet tends to be quite stable over time [56], and changes in die-

tary habits after conception tend to be modest and mostly reflect intake before conception

[57].

There are few limitations, relevant to any study that explores dietary intake. The data in this

cohort were not adjusted for maternal weight gain in pregnancy, since we only have weight of

the mother during the preconception period and not during or after pregnancy. It is known

that weight gain during pregnancy is associated with birth weight, and it may confound the

association with maternal BMI. Therefore, the effect that we have found in this study could be

related, at least in part, to differences in maternal weight gain.

Information on placental weight was unfortunately not available in our cohort. Together

with birth weight it can give valuable information on potential growth restriction or risk for

adverse outcomes for the offspring [58]. In the Dutch famine, dietary restriction during early

gestation decreased the birth weight placental weight (BWPW)-ratio, and resulted in much

greater risk of adult and coronary heart disease and obesity [59]. In future research focusing

on preconception dietary intake, we suggest to investigate its association with the BWPW-

ratio to distinguish newborns with a higher risk of adverse outcomes later in life [58, 59]. In

addition, in future it would be interesting to perform additional analysis within specific sub-

groups (e.g. small for gestational age, appropriate for gestational age, large for gestational age).

These analyses have not been performed as this study is underpowered for this and conse-

quently draw meaningful conclusions. Additionally, in future additional (diagnostic) parame-

ters (e.g. ultrasound measurements) can be included by linking to other existing databases to

describe more adverse pregnancy outcomes including pre-eclampsia and fetal growth

restriction.

Our study included mostly women of Caucasian ethnicity, which limits extrapolation of the

results to other ethnicities. However, the homogeneity of the study population makes the risk

of possible confounding less likely.

When analyses were performed within cohort-based birth weight quintiles, no statistically

significant association was shown between macronutrients intake and birth weight. This could

be due to several reasons. First, from an epidemiologically point of view, maternal BMI is

potentially more informative, and is having a stronger association with macronutrients, rather

than birth weight on its own. From a statistical point of view, the distribution of birth weight is

lower in the birth weight quintiles compared to distribution of birth weight in the BMI quin-

tiles, making it more difficult to find a significant association.

Although we showed a negative association between preconception energy intake and

maternal BMI, we consider this association very weak. The effect size was very low, with a R-

squared/AIC close to zero and thus not likely to affect our results. The fact that women with

the highest BMI had the lowest energy intake based on the FFQ, may be due to underreporting

which has been described in literature before [60].

The primary advantage of representing diet as macronutrients is that such information can

be directly related to our fundamental knowledge of biology [61]. Calculation of the total

intake of a macronutrient (as opposed to using the contribution of a specific food-item or food

group at a time) provides the most powerful test of a hypothesis, particularly if many foods
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each contribute modestly to intake of that nutrient. However, given the strengths and weak-

nesses of using nutrients or food items/groups to represent diet, it appears that an optimal

approach would employ both. The case of causality is strengthened when an association is

observed with overall intake of a nutrient and also with several food sources of that nutrient,

particularly when the food sources are otherwise different. This provides, in some sense, multi-

ple assessments of the potential for confounding by other nutrient; if an association as

observed for only one food source of the nutrient, other factors contained in that food would

tend to be similarly associated with the outcome/disease. Therefore, in future research associa-

tion between food groups and birth weight needs to be further investigated.

Conclusions

In conclusion, to the best of our knowledge, this is a first large study investigating dietary mac-

ronutrient intake in the preconception phase and its association with pregnancy outcome in a

homogenous cohort. Out of all the macronutrients studied, polysaccharides showed the stron-

gest association with birth weight, independent of energy intake and covariates.

This study underlines the importance of investigating dietary intake in the preconception

phase and its association with pregnancy outcome. We recommend that future studies should

focus on dietary intake in the preconception period, whereby different groups of women

according to their preconception BMI need be made for analyses. With this, in future, dietary

assessment and advise during the preconception phase can be tailored to weight status of the

mother.
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