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Abstract: Sonic hedgehog (Shh), a member of the hedgehog (Hh) family, was originally recognized as
a morphogen possessing critical characters for neural development during embryogenesis. Recently,
however, Shh has emerged as an important modulator in adult neural tissues through different
mechanisms such as neurogenesis, anti-oxidation, anti-inflammation, and autophagy. Therefore,
Shh may potentially have clinical application in neurodegenerative diseases and brain injuries.
In this article, we present some examples, including ours, to show different aspects of Shh signaling
and how Shh agonists or mimetics are used to alter the neuronal fates in various disease models,
both in vitro and in vivo. Other potential mechanisms that are discussed include alteration of
mitochondrial function and anti-aging effect; both are critical for age-related neurodegenerative
diseases. A thorough understanding of the protective mechanisms elicited by Shh may provide a
rationale to design innovative therapeutic regimens for various neurodegenerative diseases.

Keywords: sonic hedgehog; neurogenesis; anti-oxidation; anti-inflammation; autophagy;
neurodegenerative diseases

1. Introduction

The hedgehog gene (Hh) was first discovered in the fruit fly Drosophila melanogaster by Christiane
Nüsslein-Volhard and Eric Wieschaus, two Nobel Laureates who were devoted to studying the genetic
control of early embryonic development [1]. The loss of function mutation of Hh results in small
pointed projections covering the larvae that are similar to the spikes of a hedgehog (Hh), hence the name.
In mammals, there are three Hh family members, namely sonic hedgehog (Shh), indian hedgehog (Ihh),
and desert hedgehog (Dhh). Among them, Shh is the best-studied ligand of the hedgehog signaling
pathway. Shh is a soluble extracellular protein that was originally discovered to carry a function in
cellular differentiation in the neural tube and limb bud with the growth of digits [2].

It was later found that Shh signaling is critical to regulating a variety of developmental processes
in the nervous system, such as differentiation of ventral forebrain neurons and midbrain dopaminergic
neurons as well as proliferation and differentiation of cerebellar neuronal precursors [3–5]. In addition
to the developmental specification of the cell fate, Shh signaling plays crucial roles in early patterning
of the embryonic brain, notably to regulate polarity of the central nervous system (CNS) [6] as
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well as to guide the ventral patterning in the spinal cord [7]. These features are important for
craniofacial development because disruption of Shh signaling pathway may cause craniofacial neural
crest cell death, thereby resulting in craniofacial anomalies in both vertebrate models and human
populations [8,9]. During early stages of head formation, Shh is produced in three key domains,
namely neuroectoderm of the ventral forebrain, facial ectoderm, and the pharyngeal endoderm [8,9].
Shh signaling is critical for orchestrating the fundamental organization of the craniofacial region [10,11].
Deletion of Shh in mice results in major craniofacial defects, such as alobar holoprosencephaly,
cyclopia [12], stomodeum [13], or hypoplasia in the first pharyngeal arch [14,15].

Hh signaling is also important for tumor formation. Aberrant activation of Hh pathway during
adult life can lead to tumorigenesis in both basal cell carcinoma [16] and medulloblastoma [17].
Furthermore, improper activation of this pathway has been shown in a variety of other types of human
cancers, such as those in the brain, breast, gastrointestinal system, lung, and prostate. Paracrine effect
of Hh secretion from the tumor to the surrounding stroma can advance tumorigenesis. This pathway
also regulates proliferation of cancer stem cells and enhances tumor invasiveness. The topics of Hh
pathway in tumor formation and the related clinical application for cancer treatment have been well
reviewed elsewhere [18–20] and will not be further discussed in this article.

It is now generally accepted that the mammalian Hh signaling relies on the primary cilium,
a microtubule-based protrusion with an antenna-like structure in the plasma membrane [21]. Shh,
a secreted glycoprotein, can bind to a plasma membrane receptor called Patched (Ptch). In the absence
of Shh, Ptch maintains the transmembrane transducer Smoothened (Smo) in an inactive state and
allows the transcription factor glioma-associated oncogene homolog (Gli) to be phosphorylated by
casein kinase 1 (CK1), glycogen synthase kinase-3 (GSK3), and protein kinase A (PKA) [22]. These
phosphorylation events lead to proteolytic cleavage of the full-length Gli into Gli repressor, which
suppresses the expression of target genes and hence inactivates the Hh signaling pathway. On the
contrary, in the presence of Shh, the inactivated Ptch relieves its suppression on Smo, which is then
phosphorylated by CK1 and G protein-coupled receptor kinase 2 (GRK2) [23]. The inhibitory activity
of suppressor of Fused (SUFU) on Gli is then relieved with subsequent activation of signal transduction
pathways to induce the transcription of target genes [24,25] such as N-Myc [26], Bcl-2 [27,28], and
Bmi1 [29] that participate, respectively, in the regulation of proliferation, survival, and self-renewal.
A schematic overview of Hh signaling pathway is shown in Figure 1.

Robust neurogenesis in the cerebral cortex during the embryonic stage is significantly influenced
by Shh, which possesses a pleiotropic effect to the developing CNS and directs neural cells into
proliferation, specification, as well as growth of axons and dendrites in various CNS regions that
include forebrain, hindbrain, and spinal cord. Shh also functions as a mitogen to regulate proliferation
and survival of neural stem cells (NSCs)/neural progenitor cells (NPCs) [30]. In addition to its notable
importance at the beginning of life, Shh plays a vital role in regulating proliferation of NPCs in adult
hippocampus [31,32]. Decreased expression of Shh is associated with senescence, thereby rendering
the body more susceptible to aging-related disorders [33]. Accordingly, an active Hh signaling is
particularly crucial for maintaining the activity of neurons in adults [34]. Consistent with this notion,
Ptch and Smo, the Shh receptors, are expressed in the adult hippocampus and in the NPCs derived
from hippocampus [31,35].

Shh can regulate the response of the mature brain to various types of damages such as ischemic
insult, brain injury, and neurodegeneration [36–38]. Shh signaling may also enhance or reduce the
extent of reactive astrogliosis, depending on the time interval, injury severity, and the inflammatory
response of an insult [30,37,39–41].

Several studies, including ours, reveal that manipulation of the Shh pathway carries therapeutic
potential in neurodegenerative disorders and cerebral ischemia [42–48]. We have reported
before that Shh mediates brain-derived neurotrophic factor (BDNF)-induced neuroprotection
against 3-nitropropionic acid (3-NP), which is an irreversible inhibitor of mitochondrial succinate
dehydrogenase, also known as Complex II in the electron respiratory chain, that has been used
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to investigate the molecular mechanisms concerning cell death, mitochondrial dysfunction, and
neurodegeneration in Huntington’s disease (HD) [47,49]. BDNF-mediated protection against 3-NP
neurotoxicity was abolished by cyclopamine, the Shh pathway inhibitor. These results indicate
that BDNF induces expression of Shh to mediate the beneficial effects against 3-NP neurotoxicity
in rat cortical neurons [47]. We further validated that BDNF-dependent Shh expression and 3-NP
resistance entail preceding induction of erythropoietin (EPO), thus verifying a signaling cascade
of “BDNF → EPO → Shh → 3-NP resistance” in rat cortical neurons [46]. Recently, beneficial
actions of Shh in ischemic injury have been noted [50–52]. By topical application of N-terminal
fragment of Shh (Shh-N) and/or its specific inhibitor cyclopamine in fibrin glue over the peri-infarct
cortex in the rat model of middle cerebral artery occlusion (MCAO), which mimics cerebral ischemia,
we showed that Shh-N can attenuate protein oxidation and lipid peroxidation as well as increase
neurogenesis and angiogenesis while decreasing astrocytosis [45]. It has also been demonstrated
that, in hippocampal neurons, activation of the Shh signaling pathway may affect several features
of mitochondrial function, such as increasing mitochondrial mass, inhibiting mitochondrial fission
protein Drp1, and reducing mitochondrial fission while promoting mitochondrial elongation [53].
Shh can protect neurons against various stresses, including the amyloid β-peptide, high levels of
glutamate, hydrogen peroxide, and rotenone, all are molecules or mediators related to ischemic injury
or neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) [53].
It is suggested that Shh may function as an anti-aging signal [33,54] based on several lines of evidence;
these include the observations that the total Shh activity or inducibility are notably reduced in older
animals [55], the age-related process of cellular senescence is blocked by active Shh signaling [56],
and Shh-targeting drugs possess the potential to mitigate aging-related pathological conditions [57].

Figure 1. Sonic Hedgehog Signal Transduction Pathways. Shh acts on PTCH to relieve the inhibitory
of PTCH on SMO, thereby activating the downstream pathway of SMO via binding with COS2.
Upon binding of SMO to COS, Fu is released from COS2 complex and the freed Fu binds to SUFU
to release GLI from SUFU complex. The freed GLI then enters the nucleus and, along with other
transcription factors such as CBP/p300, binds to the promoters of target genes to regulate their
expression. Black arrows indicate promotion or increasing; red lines with a “T” and/or “X” indicate
inhibition, suppression, or decreasing; green arrows indicate competition. Abbreviation: Shh: Sonic
Hedgehog; PTCH: Patched; SMO: Smoothened; CBP: CREB-binding protein; COS2: Costal-2; Fu:
protein Fused; SUFU: Suppressor of Fused.

The emerging multifaceted roles of Shh signaling under various neurological conditions are
intriguing and the underlying mechanisms are worth further exploring. The role of Shh in mature
neural tissue may provide therapeutic possibility, especially in devastating neurodegenerative
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disorders. In this article, we will focus on the potential action of Shh signaling in neurological
diseases that may involve neurogenesis, anti-oxidation, anti-inflammation, and autophagy.

2. Sonic Hedgehog and Neurogenesis in Neurological Diseases

In the adult brain, neurogenesis continues in two regions: the subventricular zone (SVZ), which
lines the lateral ventricles and gives rise to new interneurons that reach the olfactory bulb via
the rostral migratory stream (RMS), and the subgranular zone (SGZ) of the dentate gyrus (DG)
in hippocampus, which generates new granule cells [58]. Neurogenesis is modulated by both
physiological stimuli, such as aging factor, exercise, learning, and genetic background [59–62]
as well as pathophysiological conditions, such as seizure [63–65] and cerebral ischemia [66–68].
Manipulations, especially enhancement, of neurogenesis may carry therapeutic potential that can
be applied in brain dysfunction with neuronal injury, such as cerebrovascular diseases and other
neurodegenerative disorders.

Neurogenesis is important for neural tissues to renew, replace, and repair, thereby contributing to
the maintenance of proper functions. The well-known regulators of neurogenesis in SVZ and SGZ
include Wnt, bone morphogenetic protein (BMP), and Shh [69,70]. Several lines of evidence have revealed
the crucial role of Shh in neurological diseases concerning the capability of neurogenesis [30,32,71]
and, in this article, we will focus on Shh in neurogenesis as well.

Various compounds and drugs capable of modulating Shh pathway and neurogenesis have been
tested. It was reported that salvianolic acid, an antioxidant and a free radical scavenger, promoted
functional recovery and neurogenesis via activation of Shh after stroke in mice. It enhanced
proliferation of NPCs and elevated long-term survival of newborn neurons in the SVZ; it also increased
the expression of Shh and Ptch along with heightened nuclear translocation of Gli1 in the peri-infarct
region, thereby causing robust production of BDNF and nerve growth factor. Notably, the Smo inhibitor
cyclopamine markedly attenuated the beneficial outcomes of salvianolic acids [72], suggesting that
Smo plays a crucial role in the observed protective mechanisms of salvianolic acids.

Resveratrol, a polyphenol derived from grapes, is known to have neuroprotective effects against
ischemic stroke in the brains via various mechanisms such as anti-oxidation, anti-inflammation, and
anti-apoptosis [73–75]. It was found that resveratrol considerably increased expression of Shh, Ptch-1,
Smo, and Gli-1 at mRNA levels; furthermore, resveratrol also enhanced nuclear translocation of Gli-1.
Inhibition of the Shh signaling pathway with the Smo inhibitor cyclopamine completely reversed the
effects of resveratrol. These results suggest that resveratrol decreased cerebral ischemic injury and
improved neurological function by upregulating Shh signaling pathway [76].

Epidemiologic evidence suggests that consumption of green tea is associated with reduced
mortality of cardiovascular disease, inflammatory diseases, diabetes, and stroke as well as prevention
and treatment of cancer [77,78]. Epigallocatechin-3-gallate (EGCG) is the major polyphenol and an
active ingredient in green tea. It was shown that EGCG treatment significantly enhanced neurogenesis
based on the increased numbers of 5-bromo-2′-deoxyuridine (BrdU)-labeled cells in the dentate gyrus
of adult mice as well as in adult hippocampal NPCs. EGCG also triggered a vigorous upregulation
of Shh signaling, namely expression of Ptch at mRNA and protein levels, as well as enhanced Gli
expression in cultured NPCs; moreover, blockade of the Shh signaling attenuated EGCG-induced
hippocampal neurogenesis [79].

In addition to those compounds derived from nature products like resveratrol and EGCG, small
molecules capable of directly activating Shh signaling cascades have also been shown to enhance
neurogenesis. For example, SAG, abbreviation for Smoothened AGonist, was isolated from the
screening of 140,000 synthetic compounds using a Gli-luciferase reporter assay in mouse C3H10T1/2
cells [80,81]. Being a chlorobenzothiophene-containing Hh pathway agonist, SAG binds to the Smo
heptahelical bundle in a manner similar to the Smo inhibitor cyclopamine [80]. In one study, SAG was
administered 3–7 days after ischemic stroke in mice to enhance survival of newborn NSCs derived
from both SVZ and SGZ in the ischemic brains. After one month of stroke, both cognitive function
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and locomotor activity were significantly improved in the SAG group compared to the vehicle group.
These data validate a critical role of Shh pathway in post-stroke brain restoration and functional
improvement. These results also indicate that modulation of Shh pathway can prolong treatment time
window and could be a potential treatment strategy for ischemic stroke [82].

Neurogenesis impairment is considered a main determining factor of the intellectual incompetence
observed in patients with Down Syndrome (DS), a genetic pathology caused by triplication of
human chromosome 21 [83,84]. In a Ts65Dn mouse model of DS, it was demonstrated that the
amyloid precursor protein (APP) triplicated gene impairs proliferation of NPCs from SVZ in the
hippocampus [85,86] because high levels of the intracellular domain from APP cleavage by γ-secretase
can raise the transcription of Ptch1, which is known to repress Shh pathway [85,86]. ELND006 is an
inhibitor of γ-secretase that restores the Shh pathway and fully recovers the impaired neurogenesis
in Ts65Dn pups [87]. In another study, it was demonstrated that early inhibition of γ-secretase can
improve brain development in DS [88]. These findings denote the potential therapeutic application
of Shh in DS. Consistently, the Smo agonist SAG corrects the structural and cognitive deficits in
the Ts65Dn mice; intriguingly, a single treatment of newborn mice with SAG results in normal
cerebellar morphology, behavioral improvement in the Morris water maze task, and partial rescues of
N-methyl-D-aspartate (NMDA) receptor-dependent synaptic plasticity in adults [89]. These findings
suggest that Shh agonists may carry therapeutic potential in the treatment of DS via enhancement
of neurogenesis.

Cerebrolysin, a peptide preparation with various neurotrophic factors, can augment neurogenesis
with better functional outcome in ischemic stroke and neurodegenerative diseases [90,91]. It was
demonstrated that cyclopamine, which inhibits Smo in the Shh pathway, can fully reverse the beneficial
actions of cerebrolysin on functional recovery of neurological deficits in the in vivo ischemic model [50].
Intrathecal delivery of recombinant Shh protein to the animals subject to ischemic stroke improved
behavioral and functional recovery, which may be related to its effects on neurogenesis in the SVZ [92].
These results once again revealed the importance of Shh signaling pathway in enhancing neurogenesis
under various neurological conditions, including cerebral ischemia.

Electroconvulsive seizure (ECS), a neuromodulatory modality to treat major depressive
disorder [93], can enhance hippocampal neurogenesis, mossy fiber sprouting, synaptic reorganization,
and neural plasticity in the adult brain [94–96]. It was demonstrated that ECS increases proliferation of
adult hippocampal progenitors and these effects were fully blocked by cyclopamine, the pharmacological
inhibitor of Shh signaling. These results suggest that the Shh pathway may be a critical mechanism for
ECS to enhance adult hippocampal neurogenesis [97].

Enhancing endogenous stem cells and promoting regeneration of the injured nervous system may
be vital approaches in patients suffering from brain injury. In an in vitro organotypic stretch injury
model, it was shown that endogenous glial fibrillary acidic protein (GFAP)-positive NSCs/NPCs in
the postnatal mouse cortex are activated following a stretch injury equivalent to a severe traumatic
brain injury (TBI); intriguingly, these cells are likely to arise from the cortical parenchyma but not
from the SVZ. More importantly, upregulation of Shh signaling following TBI was observed. Given
the correlative evidence linking restoration of regenerative potential to upregulation of Shh pathway,
these findings suggest a possibility of using this endogenous source of GFAP-positive stem cells for
repair following TBI, in which Shh plays a key role in regulating their proliferation [98].

Reduction of neurogenesis in the brain is one of the main causes of dementia in AD and, on the
contrary, modifying the course of hippocampal neurogenesis assists patients with AD [99]. It was
shown that a massive shortfall in Ptch1 and Gli1 was observed in the hippocampus in the aged AD
transgenic mice that would compromise the ability of genesis in both NSCs and glial precursor cells,
although contents of these two proteins were substantially higher at young ages. The comparable
findings in autopsied AD brains confirmed this discovery in the mouse model [100]. These observations
suggest that deregulation of Ptch1-Gli1 signaling may result in abnormal loss of NSCs and glial
precursor cells, thus contributing to cognitive decline in AD brains.
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Administration of kainic acid (KA) into rodents, which results in hippocampal damage, neuronal
death, and seizures, is a well-characterized model to study human neurodegeneration [101,102]. It was
shown that KA induces hippocampal neuronal death along with activation of microglia and astrocytes.
The mitogen Shh is upregulated in reactive astrocytes in response to the insults and modulates astrocyte
activation and proliferation. The activated Shh-Gli pathway in various glial cells is responsible for
proliferation in post-neurodegenerative lesions [39].

Various approaches may be applied to enhance neurogenesis under different neurological
conditions. Umbilical cord blood mononuclear cells (UCBMC) can alleviate brain damage [103,104] and
promote the proliferation of endogenous NSCs [105]. UCBMC, delivered at 24 h after hypoxia/ischemia
(HI) in neonatal rats, can advance neuronal differentiation and decrease glial differentiation in the
cerebral cortex via the Hh signaling pathway [106].

Overall, understanding how Shh signaling is affected under various neurological conditions and
precise control of the Shh signaling, and hence the capability of neurogenesis, is crucial in future
clinical application of Shh pathway in those neurodegenerative disorders in which neurogenesis plays
a pivotal role.

3. Sonic Hedgehog and Antioxidation in Neurological Diseases

It is well known that living cells can produce excessive reactive oxygen species (ROS) under
various stimuli such as hypoxia, serum deprivation, and cytokine stimulation [107,108]. Multiple
sources of ROS exist that include NADPH oxidase, 5-lipoxygenase, and mitochondria [109]. Among
them, mitochondria are the major organelle that produces ROS within cells [110–112]. During aerobic
respiration, free electrons on the mitochondria may leak out from electron transport chain to react
with molecular oxygen, thus producing superoxide anion as metabolic byproducts. Nitric oxide
(NO) can react with superoxide anion to generate the highly reactive peroxynitrite anion (ONOO−)
that modifies and damages DNA, proteins, and lipids. Collectively, modification of these cellular
macromolecules by ROS and/or reactive nitrogen species (RNS) plays an important role in a number
of different physiological/pathological conditions, particularly aging, cancer, ischemia-reperfusion
injury, and chronic neurodegeneration [113–116]. Counteracting the formation of excessive ROS via
endogenous antioxidative mechanisms is critical for cells to survive and decreasing the ROS formation
should have positive impacts in treating ROS-related disorders, including cerebral ischemia and
neurodegenerative diseases. Recent studies have indicated that the Shh signaling pathway is involved
in these diseases, but the underlying mechanisms remain to be clarified in terms of counteracting
excessive ROS production [32].

It was shown that exposure of primary cortical neurons to hydrogen peroxide (H2O2) decreased
cell viability and inhibition of endogenous Shh signaling further aggravated the detrimental effect
of H2O2 in neurons. Exogenous Shh increased the activities of glutathione peroxidase (GSH-PX)
and superoxide dismutase (SOD), attenuated malondialdehyde (MDA) formation, promoted the
expression of anti-apoptotic Bcl-2, and suppressed expression of pro-apoptotic Bax in H2O2-treated
neurons. Expression of two neurotrophic factors, namely vascular endothelial growth factor (VEGF)
and BDNF, was increased with Shh activation. These findings reveal that enhancement of Shh signaling
can protect cortical neurons against oxidative damage and apoptosis, thus denoting a potential role of
Shh for the therapeutic effects in brain ischemia and other neurodegenerative disorders [117]. It was
also reported that exogenous Shh could augment the expression of p-Akt and diminish the activity of
p-ERK, suggesting that Shh/PI3K/Bcl-2 pathway may be involved in the protection of neurons against
H2O2-induced oxidative stress and apoptosis [118]. In a similar in vitro model, it was demonstrated
that Shh, acting as a prosurvival factor, plays a crucial part in neurite outgrowth in the H2O2-treated
cortical neurons. Potential mechanisms underlying the antioxidative efficacies of Shh may include
counteracting ROS release, prevention of mitochondrial dysfunction, promotion of ATP production,
as well as preservation of mitochondrial complex II activities against oxidative stress [119].
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It was shown that subarachnoid hemorrhage (SAH) increased mRNA and protein levels of Shh,
Ptch1, and Gli-1 in the cerebral cortex. Cyclopamine, inhibitor of Smo in the Shh pathway, augmented
the MDA formation and reduced the enzyme activities of SOD and GSH-Px in the brain. These results
suggest that Shh pathway may play a protective role in SAH, notably by preventing oxidative stress in
cortex via activation of antioxidative and detoxifying enzymes [120]. In another study, purmorphamine
(PUR), another agonist of Smo in addition to SAG, enhanced the expression of Shh and Gli that was
decreased by SAH while attenuating SAH-dependent induction of Ptch and resulted in protection;
all of these PUR actions were blocked by cyclopamine. Mechanistically, PUR treatment markedly
decreased MDA content that was accompanied by the heightened expression of nuclear factor erythroid
2-related factor 2 (Nrf2) and its target gene heme oxygenase-1 (HO-1). Thus, the effect of PUR against
SAH-induced injury in rats may be mediated in part by anti-apoptotic and antioxidative mechanisms,
increased pERK levels, and enhanced Shh signaling in the frontal cortex [121].

Gli1 and Ptch1 are critical effectors in the Shh pathway; indeed, both of them are also transcriptional
targets downstream of Shh signaling. In a rat model of cerebral ischemia, inhibition of Shh pathway
led to decreased expression of Gli1, Ptch1, and SOD1 in ischemia-affected brain tissue accompanied
by increased brain water content, infarct volume, and behavioral deficits. All these results imply
that reduction of Shh signaling pathway aggravates ischemic injury in rats that is associated with
down-regulation of Gli1, Ptch1, and SOD1 [36].

The underlying mechanisms of autism spectrum disorders (ASD) are still not clear [122]; however,
as with other neurodegenerative diseases, oxidative stress may play a pathological role in this brain
disorder [123]. It was demonstrated that autistic children had a notably higher level of ROS; further,
heightened serum contents of Shh protein were detected in the children of autism, whereas BDNF
content was considerably reduced in mild, but not severe, form of autistic children. This study
demonstrates a correlation among Shh, BDNF, and ROS in autistic children and suggests a critical role
of oxidative stress and Shh in ASD [124].

Oxidized low-density lipoprotein (oxLDL) increases the expression of pro-inflammatory genes,
resulting in monocyte recruitment into the vessel wall with dysfunction of vascular endothelial
cells [125]. oxLDL is elevated under several neurological conditions and induces disruption of
blood-brain barrier (BBB) with resultant formation of cerebral edema [126]. Treatment of murine
brain microvascular endothelial cells (MBMECs) with oxLDL increased intracellular ROS and MDA
formation, decreased NO release, and reduced cell viability. These effects also involve the Shh signaling.
This is because the mRNA and protein levels of Shh, Smo, and Gli1 were all considerably decreased
after incubation with oxLDL, while overexpression of Shh diminished oxLDL-induced elevation
of permeability in MBMECs. These results may denote the potential role of Shh pathway in BBB
dysfunction with therapeutic implication in various neurological disorders [127,128].

Despite limited studies implicating Shh signaling pathway in neurological disorders, especially
in neurodegenerative diseases, emerging evidence revealed that this pathway may play an important
role in counteracting oxidative stress. Additional evidence also shows that Shh may act like an
immediate early gene that is expressed quickly in response to acute insults to exert its beneficial
effects [117,129,130] with activation of the endogenous neuroprotective mechanisms. More studies are
needed to support this notion and develop an efficacious therapeutic regimen in this regard especially
in neurodegenerative diseases.

4. Sonic Hedgehog and Anti-Inflammation in Neurological Diseases

It is well-known that inflammation may play a crucial role in the pathogenesis of neurodegenerative
diseases such as AD, amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and multiple
sclerosis (MS). Despite various etiologies such as genetic mutations, infections, misfolded proteins, and
brain injury, neuronal damages often involve both adaptive and innate immune systems at various
stages of disease in the CNS [131,132]. Inflammation-related signaling pathways in neurological
disorders includes the Toll-like receptors pathway, the mitogen-activated protein kinases pathway,
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and the nuclear factor-kappa B pathway. In particular, mutual interaction has been noted in
inflammation and oxidative stress. For instance, superoxide anion from NADPH oxidase in activated
microglia may interact with NO produced during inflammatory responses to form the active oxidant
peroxynitrite [133]. Given that these responses may have direct impacts on disease progression, they
could serve as the targets for therapeutic intervention.

Evidence showed that Shh signaling pathway plays a role in coping with ROS overproduction
under conditions of neurological diseases [36,117,121] and is also possibly involved in inflammatory
reactions. It was reported that Shh pathway is activated by acute brain injury and regulated by
injury-related inflammation [37]. Shh pathway is intensively induced three days after brain injury and
returns to baseline condition by 14 days. Shh expression correlates with Gli activation and is confined
to those reactive astrocytes with GFAP expression. Blockade of Shh pathway by cyclopamine decreases
Gli expression and attenuates considerably the extents of proliferation with reduction in the numbers
of reactive astrocytes in the injured cortex [37].

In KA-induced neurodegeneration, the Shh expression is increased in reactive astrocytes. The peak
activity of Shh was detected at seven days along with increased Gli activity and heightened proliferation
in several types of glial cells. Thus, the Shh/Gli pathway is activated and leads to proliferation of
reactive glial cells in response to KA-induced lesions [39].

The BBB that is composed of astrocytes, capillary endothelial cells, and pericytes is important for
CNS homeostasis. The BBB function is altered in a number of neurological diseases like AD, PD, ALS,
stroke, epilepsy, and brain trauma [134,135]. Several studies revealed that compromised integrity of
BBB or its dysfunction may involve Shh pathway during inflammation [136–139]. Shh released from
astrocytes plays an important role in the maintenance of BBB integrity [140]. Through diminishing
expression of proinflammatory mediators and adhesion/migration of leukocytes, Shh can promote
the quiescence of immune response in endothelial cells of BBB both in vivo and in vitro [140]. Further,
it was shown that interleukin-1β (IL-1β) induces BBB disruption by downregulating Shh expression
in astrocytes. Enhancing the expression of astrocytic Shh may carry a therapeutic potential to restore
disrupted BBB in patients with various neurological diseases [141].

Wip1, a nuclear phosphatase that can be activated under various types of stresses, is involved
in aging, neuroinflammation, neurogenesis, and tumorigenesis [142–146]. A cross-talk between
Wip1 pathways and Shh may accelerate tumorigenesis [147]. Wip1 can regulate lipopolysaccharide
(LPS)-induced BBB dysfunction and neuroinflammation through Shh signaling pathway. Silencing
of Wip1 can increase inflammatory cytokines such as IL-1β, IL-6, IL-12, and tumor necrosis factor-α
(TNF-α) of the BBB induced by LPS, while overexpression of Wip1 results in an opposite effect in the
expression of these cytokines and decreases the extent of inflammatory response. Consistent with
the above findings, Wip1 overexpression increases Shh signaling and silencing of Wip1 represses
Shh. These results indicate that Wip1 may counteract LPS-induced inflammatory response and BBB
disruption while maintaining the BBB integrity via augmentation of Shh signaling [137].

BBB dysfunction may involve increased matrix metalloproteinase-9 (MMP-9) activity and
breakdown of tight junction protein (TJP) [136,148,149]. CNS tuberculosis has a high mortality and
morbidity associated with severe inflammation and BBB dysfunction [150,151]. In a co-culture model
to study BBB integrity, which includes endothelial cells and astrocytes with conditioned medium
from Mycobacterium tuberculosis (Mtb)-infected monocytes, expression of TJP is regulated by Shh via
transcription factor Gli-1. The breakdown of TJP is related to secretion of MMP-9. SAG, exogenous
Shh, or knockdown of MMP-9 expression can decrease BBB permeability and increase the expression
of TJP in the Mtb-stimulated co-cultures [136]. These findings denote the relevance of Shh pathway in
BBB integrity in CNS inflammation and infection.

Human immunodeficiency virus type-1 (HIV)-associated neurocognitive disorder (HAND)
includes asymptomatic neurocognitive impairment, mild neurocognitive disorder, and HIV-associated
dementia [152]. The activated/infected leukocytes are recruited into CNS through disrupted BBB due
to persistent neuroinflammatory conditions. Using a rodent model of HAND, administration of SAG
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restored BBB integrity and also ameliorated the neuropathological deficits in infected mice. These
results suggest that Shh signaling carries a therapeutic potential in HAND [138,139].

Several examples are presented here to show the pivotal role of Shh signaling pathway in
inflammation-related neurological diseases. Potential use of SAG or Shh mimetic to counteract
the inflammatory status offers a therapeutic option in term of mutual reaction between oxidative stress
and inflammation; both are significant contributors to various neurodegenerative diseases. Additional
future studies will provide evidence to support the beneficial effect of these Shh-related compounds
for future clinical use.

5. Sonic Hedgehog and Autophagy in Neurological Diseases

Autophagy, a highly regulated process that breaks down organelles and macromolecules through
lysosomal degradation, is essential for maintenance of intracellular homeostasis while the cell is
under starvation, differentiation, and normal growth control [153,154]. Autophagy may function as a
pro-survival mechanism throughout the period of nutrient shortage when cytoplasmic contents are
reprocessed for ATP generation and production of nascent macromolecules. The role of autophagy
in neurodegenerative diseases is just beginning to be elucidated [155–157]. Various insults during
neurodegeneration can cause oxidative stress that damages multiple intracellular molecules. Thus,
effective clearance of damaged organelles to break down the macromolecules for generation of building
blocks, such as amino acids and nucleotides, for salvage would be protective under starvation
conditions. Furthermore, removal of damaged organelles may also prevent apoptosis, especially
when mitochondrial integrity is compromised. Through collaboration with ubiquitin-proteasome
system [158], the protective role of autophagy in neurodegenerative process may be attributable
to its ability to clear protein aggregates and damaged cytoplasmic organelles [159]. In contrast,
defective autophagy may contribute to the pathogenesis of aging and neurodegenerative diseases [160].
However, uncontrollable autophagy would lead to aggressive digestion of affected neurons leading
ultimately to neuronal death [161,162].

The induction of autophagy has been shown in mouse cortex and striatum after various brain
insults including ischemia or during progression of various neurodegenerative diseases such as AD,
PD, and HD [163–167]. The microtubule-associated protein 1 light chain 3 (LC-3) is a marker protein
for autophagy as it is required for autophagosome formation via its conversion from cytosolic LC3-I
to membrane-bound LC3-II [168]. Genetic deletion of essential autophagy genes Atg 5 and 7 in mice
results in neurodegeneration suggesting that autophagy is vital for normal neuronal function [169].
Nevertheless, autophagy could be a double-edged sword: it is protective in response to mild stress,
but it could also be stressful and detrimental to neuronal survival as a result of over-activation by
a more severe stress such as serious ischemia [170]. Delineation of the role of autophagy in various
neurological conditions may broaden our knowledge and enhance our ability to manipulate the
potential cell survival or death pathways and mitigate the neuronal injury.

Using the autophagy marker LC-3 by immunoblot analysis and immunocytochemistry, it was
reported that autophagy pathway in Shh-exposed neurons was activated. Autophagosomes and
various associated morphological changes were found in synaptic terminals in Shh-exposed neurons
and the Shh-induced autophagy was dependent on class III Phosphatidylinositol 3-kinase complexes
(PtdIns3K) [171]. However, whether Shh signaling can protect neurons against dysfunction and
degeneration in AD or other neurodegenerative disorders still awaits elucidation. Evidence revealed
the connection between Shh and autophagy because the Hh signaling pathway reduced the formation
of autophagosome, both under basal as well as autophagy-induced conditions. The potential
implications of Shh in autophagy is the ability to control protein homeostasis under physiological
and pathological conditions [172]. Despite limited studies concerning Shh and autophagy reported in
neural cells [171], numerous previous studies referring to Shh and autophagy in the disorders of other
systems should inspire future investigation of Shh in relation to autophagy under normal as well as
diseased neurological conditions [173–176].
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In the intestinal epithelial cells derived from the Shh conditional knockout mice, it was shown
that loss of Shh can alter ileal secretory cell maturation with endoplasmic reticulum stress and an
evident reduction in autophagy [175]. Dysregulation of miRNAs, a contributing factor to autophagy,
is implicated in a range of pathological conditions, including hepatic fibrosis. Among them, miR-148a
interacts with the 3′-untranslated regions (3′-UTRs) of growth arrest-specific gene 1 (Gas1) transcripts
to inhibit its expression. Gas1 encodes a surface binding receptor for Hh and assists the Shh signaling
pathway in reducing autophagosome formation and thus have the potential to serve as a target for
future development of novel therapeutic strategies against related diseases [173].

Shh pathway has been reported to protect cardiomyocytes in myocardial infarction (MI),
but the underlying mechanism is not well defined [177,178]. It was revealed that Shh triggers
AMPK-dependent autophagy in cardiomyocytes under oxygen glucose deprivation (OGD), a model
mimicking the ischemic condition. SAG, the Shh pathway agonist, increased the expression of
LC3-II and caused the formation of autophagosomes. These results indicate an important function of
autophagy in Shh-induced cellular protection [174].

Autophagy in vascular smooth muscle cells (SMCs) is known to increase plaque stability [179,180].
Shh is expressed in atherosclerotic lesions and stimulates proliferation of vascular SMCs. It was
demonstrated that both LC3-II and Shh protein expression were augmented within SMCs of neointimal
lesions in the common carotid artery of mouse. Overexpression of mouse Shh in vascular SMCs
increased the levels of LC3-II and also stimulated AKT phosphorylation. Shh-induced autophagy was
further confirmed by the formation of autophagosomes as detected by immunostaining and electron
microscopy, which was inhibited by AKT inhibitor IV. Shh promoted SMC proliferation, which was
impeded not only by AKT inhibitor IV but also by cyclopamine. These findings suggest that Shh
enhances autophagy of vascular SMCs by engaging AKT activation, thus indicating a crucial role of
autophagy in Shh-induced cellular effects [176].

In the future studies of patients with neurodegenerative diseases or animal models of neurological
disorders, manipulation of Shh signaling and alteration of autophagy by pharmacological or molecular
approaches will improve our understanding towards these diseases and may guide the way to novel
methods for their prevention and treatment.

6. Conclusions and Future Perspectives

Shh, originally revealed as a mitogen and crucial for development including CNS patterning
and polarity, is now appreciated for its various functions to cope with different types of
stresses. These include mitigation of oxidative stress and inflammation as well as modulation of
autophagy-related mechanisms to help our body adjust to environmental challenge. In addition,
Shh pathway also improves mitochondrial function and carries an antiaging effect. The potential
protective mechanisms of Shh in adult neurological disorders are shown in Figure 2. More studies
are needed to support the crucial roles of Shh signaling pathway in adult neurological disease,
especially in neurodegenerative diseases currently without effective treatment, such as AD, PD and
HD. Small molecules or compounds capable of activating Shh pathway may have the potential to treat
or delay the progression of these devastating neurological disorders.
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Figure 2. Multiple potential neuroprotective mechanisms in Shh signaling pathway. In the presence
of Shh, inactivated Ptch relieves its suppression on Smo to activate several downstream pathways.
The neuroprotective mechanisms of Shh may involve enhancement of neurogenesis, gliogenesis,
autophagy, mitochondrial function, BBB function, anti-oxidation, anti-inflammation, and anti-apoptosis.
Black solid or dashed arrows indicate promotion or increasing; red lines with an “T” and/or “X”
indicate inhibition, suppression, or decreasing; blue arrows indicate translation.
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MBMECs murine brain microvascular endothelial cells
MCAO middle cerebral artery occlusion
MDA malondialdehyde
MMP-9 matrix metalloproteinase-9
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Mtb mycobacterium tuberculosis
NO nitric oxide
NPCs neural progenitor cells
NSCs neural stem cells
OGD oxygen glucose deprivation
PD Parkinson’s disease
ONOO− peroxynitrite anion
oxLDL oxidized low-density lipoprotein
PD Parkinson’s disease
PKA protein kinase A
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PUR purmorphamine
RMS rostral migratory stream
RNS reactive nitrogen species
ROS reactive oxygen species
SAG smoothened agonist
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SGZ subgranular zone
Shh sonic hedgehog
Shh-N N-terminal fragment of Shh
SMCs smooth muscle cells
Smo smoothened
SODs superoxide dismutases
SUFU suppressor of FU
SVZ subventricular zone
TBI traumatic brain injury
TJP tight junction protein
TNF-α tumor necrosis factor-α
UCBMC umbilical cord blood mononuclear cells
VEGF vascular endothelial growth factor
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