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The network of molecular chaperones mediates the folding and translocation of the many
proteins encoded in the genome of eukaryotic organisms, as well as a response to stress. It
has been particularly well characterised in the budding yeast, Saccharomyces cerevisiae, where
63 known chaperones have been annotated and recent affinity purification and MS/MS exper-
iments have helped characterise the attendant network of chaperone targets to a high degree.
In this study, we apply our QconCAT methodology to directly quantify the set of yeast chap-
erones in absolute terms (copies per cell) via SRM MS. Firstly, we compare these to existing
quantitative estimates of these yeast proteins, highlighting differences between approaches.
Secondly, we cast the results into the context of the chaperone target network and show a dis-
tinct relationship between abundance of individual chaperones and their targets. This allows
us to characterise the ‘throughput’ of protein molecules passing through individual chaper-
ones and their groups on a proteome-wide scale in an unstressed model eukaryote for the first
time. The results demonstrate specialisations of the chaperone classes, which display different
overall workloads, efficiencies and preference for the sub-cellular localisation of their targets.
The novel integration of the interactome data with quantification supports re-estimates of the
level of protein throughout going through molecular chaperones. Additionally, although chap-
erones target fewer than 40% of annotated proteins we show that they mediate the folding of
the majority of protein molecules (∼62% of the total protein flux in the cell), highlighting their
importance.
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1 Introduction

One of the goals of quantitative proteomics is to characterise
the level of protein in a cellular system in order to under-
stand how the gene products are organised and regulated.
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Such understanding underpins any comprehensive systems
model of an organism and its biological functions, where
genome, transcriptome, proteome and metabolome interact
with each other to maintain homeostasis or react to stress and
perturbation. This in turn builds on the classical molecular
biology ‘dogma’ coined by Crick, where ‘DNA makes RNA
makes protein’, which now includes a more complex model
involving multiple isoforms and interactions. For example,
recent studies have characterised the entire yeast transcrip-
tome [1], interactome [2, 3], measured translational control
rates [4], protein locations [5] and half-lives [6]. Quantita-
tive proteomics has targeted Saccharomyces cerevisiae (‘yeast’)
as a model organism and several proteome-wide datasets
exist [7–9]. Similarly, in mammalian cells, great strides have
been made in the integration of transcription, translation
and turnover of both RNA and protein to build genome-scale
models [10]. This epitomises the challenges facing systems
biology where integration of such information is needed to
understand the full complexities of biological control and reg-
ulation of function.

Although such studies now build protein abundance and
even half-life into the model, in order for a given protein to
function it also needs to be folded, active, and delivered to
its site of action. The proteins responsible for this are the
chaperones, of which 63 are known in yeast [11]. They oper-
ate as individual proteins or assembled into molecular ma-
chines, to recognise their targets, promote the correct folding
and help deliver them to their sub-cellular destination [12].
They play a vital role in preventing protein aggregation by
recognising the nascent peptide chain to ensure proper fold-
ing in a biologically meaningful timescale. Chaperones are
also involved in other linked areas, including ribosomal RNA
processing, translocation across membranes and cellular re-
sponse to stress [13]. There are 63 yeast chaperones including
the so-called heat-shock proteins: Hsp100, Hsp90, Hsp70,
Hsp60 and the smaller HSPs that are ubiquitous in eukary-
otic cells, and much is known about the mechanistic details of
individual chaperones at the molecular level. However, a com-
prehensive understanding of the cellular roles played by chap-
erones is only just emerging. Recent pioneering work using
affinity purification coupled to MS has defined a comprehen-
sive qualitative dataset describing chaperone–chaperone and
chaperone-target interactions for all 63 yeast chaperones [11]
but we know little regarding the changes in these networks
during stress conditions, or when recombinant protein ex-
pression perturbs the system.

Our understanding of chaperone networks and their prop-
erties is emerging [11, 14, 15]. Frydman and colleagues
demonstrated that two distinct and broad chaperones classes
carry out different generic fundamental roles, delivered via
common regulatory properties [14]. More recently, an analysis
of chaperone interactome data addresses the scope of indi-
vidual chaperone systems by clustering the chaperone-target
network into modules that show some conserved properties,
including evolutionary rates [16]. These modules are quite dif-
ferent from the expected chaperone classes described above

and strongly support the hypothesis that chaperones act in
distinct communities, targeted at selected protein groups.

Here we extend the previous studies, adding further quan-
titative data to this network via QconCAT and other extant
quantitative datasets available in the public domain, includ-
ing target protein degradation rates. We show that there is
a correlation between chaperone abundance and the work-
load each chaperone has in the yeast cell, represented by the
number of known interactors, the abundance of their targets,
and the estimated folding flux. We also consider the total flux
through each chaperone (and chaperone group) and consider
this in the context of annotated biological function. We dis-
cuss this in terms of sub-cellular localisation and previously
reported throughput in chaperone pathways, as well as es-
sentiality of protein targets. This represents a first look at the
total folding flux placed upon the chaperone network derived
from quantitative proteomics data and highlights the global
role they play in regulating protein folding.

2 Materials and methods

2.1 Yeast and QconCAT sample preparation

The QconCAT proteins were produced as previously de-
scribed [17] using cell lysis by sonication and purified by
Ni-MAC nickel affinity column (Novagen, Merck Millipore).

S. cerevisiae (EUROSCARF accession number Y11335
BY4742; Mat ALPHA; his3�1; leu2�0; lys2�0; ura3�0;
YJL088w::kanMX4) was grown in defined minimal C-limiting
(F1) medium [18] using 10 g/L of glucose as the sole car-
bon source. The F1 medium was additionally supplemented
with 0.5 mM arginine and 1 mM lysine to meet the added
auxotrophic requirements of the strain. For biological repli-
cation, four cultures were grown in chemostat mode at a
dilution rate of 0.1 h−1 and aliquots (15 mL) of the culture
were centrifuged (4000 rpm; 4�C; 10 min). The supernatant
was discarded, the pellet flash frozen in liquid nitrogen and
stored at −80�C for subsequent protein extraction. Cell counts
were performed using an automated cell counter (Cellometer
AUTOM10 by Nexcelom. http://www.nexcelom.com). Pro-
teins were extracted by re-suspending the biomass pellets in
250 �L of 50 mM ammonium bicarbonate (filter sterilised)
containing 1 tablet of Roche complete-mini protease in-
hibitors (+EDTA) (Roche Diagnostics, West Sussex, UK) per
10 mL of ammonium bicarbonate. Acid-washed glass beads
(200 �L) were added. The pellet was subjected to repeated
bead-beating for 15 bursts of 30 s with a 1 min cool down in
between each cycle. The biomass was centrifuged for 10 min
at 13 000 rpm at 4�C; the supernatant was removed and
stored in low bind tubes on ice. Fresh ammonium bicar-
bonate (250 �L) with protease inhibitors was added and the
pellet re-suspended by vortexing. The bottom of the extrac-
tion vial was pierced with a hot needle, the vial placed on
a fresh Eppendorf tube and quickly spun down (5 min at
4000 rpm at 4�C. The flow-through and the supernatant
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fraction were combined, the exact volume measured and
the amount of protein determined by standard assay (Bio-
Rad Laboratories, Hertfordshire, UK). Protein extracts were
aliquoted and stored at −80�C prior to subsequent digestion.

The targets of QconCAT 1, 2 and 3 differ widely in abun-
dance, whereas the peptides derived from each QconCAT are
equimolar. Quantification therefore required multiple ana-
lytical runs at different loadings of QconCAT to constrain
quantification to analyte:standard ratios between 10:1 and
1:10. To achieve this, the digestion strategy employed three
separate digests for each bioreplicate, one codigest of yeast
lysate with QconCAT and two unspiked digestions of yeast
lysate. An amount of yeast lysate representing protein from
21.5 million cells was dispensed into low-protein-binding mi-
crocentrifuge tubes (Sarstedt, Leicester, UK) and made up to
150 �L by addition of 25 mM ammonium bicarbonate, and,
in the case of the QconCAT codigests, 7 �L of QconCAT
solution. The proteins were denatured using 10 �L of 1%
w/v RapiGestTM (Waters, Manchester, UK) in 25 mM am-
monium bicarbonate and followed by incubation at 80�C for
10 min. The sample was then reduced (addition of 10 �L of
60 mM DTT and incubation at 60�C for 10 min) and alkylated
(addition of 10 �L of 180 mM iodoacetamide and incuba-
tion at room temperature for 30 min in the dark). To allow
quantification of the QconCAT, 10 �L of 2.15 pmol/�L glu-
fibrinopeptide (Waters) was added to each digest. Trypsin
(Sigma, Poole, UK, proteomics grade) was reconstituted in
50 mM acetic acid to a concentration of 0.2 �g/�L and 10 �L
added to the sample followed by incubation at 37�C. After
4.5 h an additional 10 �L of trypsin was added and the diges-
tion left to proceed overnight. The digestion was terminated
and RapiGestTM removed by acidification (3 �L of TFA and
incubation at 37�C for 45 min) and centrifugation (15 000 ×
g for 15 min). To check for complete digestion and to quan-
tify the QconCAT, each digest was analysed by LC-MS us-
ing a nanoAcquity UPLCTM system (Waters) coupled to a
SynaptTM G2 mass spectrometer (Waters) in MSE mode and
searched against a sequence database (see Supporting In-
formation). The QconCAT was quantified by integrating the
peaks generated from XIC of m/z 785.8 (internal standard
glu-fibrinopeptide) and m/z 788.8 (glu-fibrinopeptide from
QconCAT digestion).

2.2 MS and data analysis

The database search results corresponding to the CopyCAT
were converted into a spectral database using Skyline [19] and
the four most intense fragment ions were selected as putative
transitions. The [12C6] lys, arg analyte and [13C6] lys, arg stan-
dard equivalents of these four transitions were tested by appli-
cation to both yeast only and yeast-QconCAT digest samples.
SRM analysis was performed using a nanoAcquity UPLCTM

system (Waters) coupled to a XevoTM TQ triple quadrupole
mass spectrometer (Waters) (see Supporting Information).
The three transitions with the greatest S/N were selected for

the final quantification analysis and optimised for collision
energy and cone voltage. For final quantification, samples
containing the protein equivalent of 200 000 cells with either
0.2, 2 or 20 fmol of QconCAT were analysed by the previously
described SRM methodology. The dilution was prepared by
serial dilution of the yeast-QconCAT codigest by the unspiked
yeast digest – this reduced the complications of absorption
of diluted standard peptides and ensured that the QconCAT
peptides, regardless of concentration, were maintained in an
abundant peptide environment. A set of decoy transitions
were created according to [20] and run against the yeast di-
gest under identical instrument parameters.

Label-free analysis was performed using a ‘Top3’ method-
ology [21] on a yeast digest not containing QconCAT. The
label-free analysis was performed on two platforms, an ion-
mobility coupled data independent (HDMSE) method on
SynaptTM G2 (as previously described) and a data-dependent
method on a Q-ExactiveTM (Thermo Scientific, Hemel Hemp-
stead, UK). HDMSE acquisition was performed as [22]. For
the data-dependent method a portion (4 �L) of each yeast
digest (100 000 cells/�L) was mixed with 1 �L of standard
protein (50 fmol/�L rabbit muscle glycogen phosphorylase
MassPREPTM Digestion Standard, Waters). The resulting
spiked digests were analyzed by LC-MS using a Ultimate
3000 RSLCTM nano system (Thermo Scientific) coupled to
a Q-ExactiveTM mass spectrometer (Thermo Scientific) (see
Supporting Information). The data were processed with Pro-
genesis (version 4, Nonlinear Dynamics, Newcastle upon
Tyne, UK). Samples were aligned according to retention time
using a combination of manual and automatic alignment.
Default peak picking parameters were applied and features
with charges from 1+ to 4+ featuring three or more isotope
peaks were retained. Database searching was performed us-
ing Mascot (Matrix Science, London, UK) (see Supporting
Information). These identifications were imported into Pro-
genesis and the resulting feature set was exported to Progen-
PostProcessor [23] which can produce ‘Top N’ quantification
values from Progenesis feature files. Based on the glycogen
phosphorylase standard, Top 1, Top 2 and Top 3 based quan-
tification was performed (depending on the number of pep-
tides observed per protein, 75% of proteins were Top3) and
the highest possible N used for final quantification. We refer
to this dataset as Q-Exactive Hi3.

2.3 QconCAT Data processing and analysis

QconCAT quantification values were produced using the
mProphet package [20]. Decoy transitions were generated for
each equivalent target transition using the provided mGen.pl
Perl script using the SPIKE_IN workflow option. Waters .raw
files were converted to the required .mzXML format using
wolf-MRM (http://tools.proteomecenter.org/software/wolf-
mrm/wolf-mrm.zip). The .mzXML files for both target and
decoy data were merged using an in-house Perl script to align
the acquired target and decoy transitions. Merged .mzXML
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files were passed through mMap.pl using –mach TSQ op-
tion with the transition list output produced using mGen.pl.
The mMap.pl output was then submitted to mQuest.pl using
an optimised parameter file (see Supporting Information).
The output files from mQuest.pl were then submitted to
mProphet.pl to produce the final light-heavy (target-standard)
ratios and calculate-associated false discovery rates for all pep-
tide quantifications. Final copies per cell (cpc) were then cal-
culated from the analyte:standard ratio, known concentration
of spike-in heavy standard and the number of cells loaded onto
the column (obtained from a cell count performed on each
sample). Peptide quantification values were then used only
for those where at least three out of four biological replicates
passed at 1% false discovery rate and all of which had an S/N
>5.

3 Results and discussion

3.1 Absolute quantification of 63 chaperones

Using our QconCAT methodology [24], as part of a larger
scale project to quantify in absolute terms the entire cellular
proteome of S. cerevisiae [25], we designed three recombinant
proteins constituting concatamers of surrogate peptides to en-
able the quantification of the 63 annotated chaperones in the
yeast genome. These recombinant proteins were expressed
in media supplemented with stable isotope labelled amino
acids to generate ‘heavy’ QconCAT proteins that were then
spiked into yeast protein samples to enable absolute quantifi-
cation in copies per cell, across four biological replicates. Two
peptides were nominated to quantify each protein. For each
peptide, cpc values were averaged across replicates where
available. Protein abundances were then calculated from the
two mean values, taken as the maximum of the two pep-
tides. Such protein quantifications are termed Type A, where
acceptable data are available for both analyte and surrogate
peptides. In other instances, the analyte quantotypic peptide
was not observed although the QconCAT peptide was (Type
B), and in a few, neither peptide extracted ion chromatograms
(XICs) were observed above the minimum S/N (Type C). A
complete list of the chaperone proteins with cpc is in Table 1
and details of peptides selected and individual peptide-level
cpc values are in Supporting Information Table S1. Using
our standard QconCAT method we obtained absolute quan-
titative values in cpc for 51 of the 63 chaperones. We up-
dated our data analysis pipeline to incorporate the mProphet
software [20], which supports semi-automated detection and
quantification of chromatographic peaks and provides false
discovery rate analysis from decoy transitions. Full details
on the data processing to derive cpc are given in Section 2.
Figure 1 shows representativeXICs for three transitions anal-
ysed for the peptide IYEQEFGTTK from Cct5 (further exam-
ples are provided in Supporting Information Fig 1A and B).
This is a representative Type A quantification where good re-
peatability is apparent across four bioreplicates. We were able

to quantify chaperones across a broad dynamic range from
250 to 440 000 cpc. There is good coverage of all the chaperone
classes (including the CCT proteins that have proven refrac-
tive to epitope-tagging strategies) and we have succeeded in
quantifying some proteins that other label-mediated strate-
gies have missed (e.g. HSP70 protein Ssa3). In part, this is
due to our targeted approach that selects unique peptides
wherever possible, avoiding peptides shared between several
closely related proteins. We are also able to offer an upper
limit on three SMALL class chaperones that no other method
has yet reported, according to PaxDB [26].

The QconCAT approach benefits from inclusion of at least
two peptides per protein that were observed via LC-MS for
most of our targets, allowing comparison of sibling peptides
from the same parent protein (Fig. 2). With few exceptions,
there was good agreement between sibling peptides. The
chaperone protein group was one of our first assemblies of
designed QconCAT peptides and in retrospect, there were
sub-optimal choices for some standard surrogate peptides.
We have become increasingly aware of the importance of
poor cleavage contexts in the standard of the endogenous
yeast protein (Fig. 2) and we have observed the attendant
missed cleavage peptides in subsequent MS analyses. These
are typified by cases where dibasic sites or acidic amino acids
lie close to or span the desired cleavage site (e.g. RR, KK, KR,
RK, etc.), which are now deprecated in QconCAT design, and
which should also inform any selection of proteotypic pep-
tides [27, 28]. The peptide pairs in Fig. 2 are ordered to place
the higher of the two abundance values on the x-axis. In all
cases where one of a sibling pair is subtended by a missed
cleavage site, its cpc quantification was lower than its partner
because a significant fraction of the analyte peptide signal was
lost to the miscleaved peptides that would manifest different
retention times, masses and transitions. Some poor cleavage
contexts are highlighted in Fig. 2, such as peptide 1 that is
subtended by KK at the N-terminus in the parent protein.

3.2 Comparison with other protein quantification

methods

As others and we have previously noted, there is a consid-
erable discrepancy in the quantified abundance of proteins
determined by alternative technologies. In Fig. 3 we compare
the values obtained from our label-mediated QconCAT ap-
proach to other MS-based studies and to epitope-tagging ap-
proaches; Scatterplots for all pairwise comparisons were also
generated (Supporting Information Fig. S2). The dendogram
is calculated from transformed parts per million (ppm) values
that are used to calculate Spearman rank correlations between
pairwise chaperone datasets (see Section 2 and Supporting In-
formation Table S2). Interestingly, the technically related ap-
proaches cluster together with epitope-tagging and MS-based
methods found in two independent clades. Within the MS
clade, the two label-mediated approaches show the highest
correspondence, from our own studies and the SILAC study
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Table 1. Yeast chaperones and absolute abundance expressed in copies per cell (cpc). UniProt, SGD and systematic ORF names are
provided along with QconCAT-based quantification. The quantification type refers to the status of the endogenous peptide and
surrogate peptide XIC via mProphet analysis, classifying cases where the endogenous peptide is not observed above the S/N at
any of the three spike-in concentrations as Type B, and cases where neither peptide is observed as Type C

Chaperone class SGD gene name Systematic name UniProt QconCAT (CPC ± SEM)a) Type

SMALL Hsp12 YFL014W P22943 439 000 ± 35500 A
SMALL Hsp26 YBR072W P15992 235 000 ± 33 500 A
SMALL Hsp42 YDR171W Q12329 9150 ± 450 A
SMALL Hsp31 YDR533C Q04432 6450 ± 550 A
PFD Gim4 YEL003W P40005 9650 ± 300 A
PFD Pac10 YGR078C P48363 4750 ± 200 A
PFD Gim3 YNL153C P53900 4050 ± 350 A
PFD Yke2 YLR200W P52553 3050 ± 300 A
PFD Pfd1 YJL179W P46988 2950 ± 200 A
PFD Gim5 YML094W Q04493 2000 ± 100 A
HSP90 Hsc82 YMR186W P15108 84 500 ± 2000 A
HSP90 Hsp82 YPL240C P02829 23 000 ± 1000 A
HSP70 Ssa1 YAL005C P10591 335 500 ± 25,500 A
HSP70 Ssb2 YNL209W P40150 85 500 ± 3500 A
HSP70 Ssb1 YDL229W P11484 68 500 ± 1500 A
HSP70 Ssz1 YHR064C P38788 63 000 ± 3500 A
HSP70 Sse1 YPL106C P32589 62 000 ± 2000 A
HSP70 Ssc1 YJR045C P12398 58 000 ± 4000 A
HSP70 Ssa2 YLL024C P10592 58 000 ± 2500 A
HSP70 Kar2 YJL034W P16474 26 500 ± 1500 A
HSP70 Sse2 YBR169C P32590 5700 ± 250 A
HSP70 Ssa4 YER103W P22202 5700 ± 50 A
HSP70 Ssq1 YLR369W Q05931 2300 ± 100 A
HSP70 Lhs1 YKL073W P36016 2450 ± 300 A
HSP70 Ssa3 YBL075C P09435 660 ± 55 A
HSP60 Hsp60 YLR259C P19882 47 000 ± 2500 A
HSP40 Zuo1 YGR285C P32527 31 500 ± 1500 A
HSP40 Sis1 YNL007C P25294 15 000 ± 500 A
HSP40 Sec63 YOR254C P14906 11 000 ± 500 A
HSP40 Caj1 YER048C P39101 5000 ± 300 A
HSP40 Tim14 YLR008C Q07914 4000 ± 100 A
HSP40 Erj5 YFR041C P43613 3400 ± 100 A
HSP40 Mdj1 YFL016C P35191 3200 ± 200 A
HSP40 Swa2 YDR320C Q06677 1550 ± 50 A
HSP40 Scj1 YMR214W P25303 1500 ± 100 A
HSP40 Djp1 YIR004W P40564 1050 ± 100 A
HSP40 Jjj1 YNL227C P53863 500 ± 80 A
HSP40 Jac1 YGL018C P53193 470 ± 210 A
HSP40 Jem1 YJL073W P40358 450 ± 40 A
HSP40 Xdj1 YLR090W P39102 330 ± 20 A
HSP40 Mdj2 YNL328C P42834 250 ± 50 A
CCT Cct6 YDR188W P39079 5300 ± 900 A
CCT Cct4 YDL143W P39078 20 000 ± 1000 A
CCT Tcp1 YDR212W P12612 11 500 ± 1000 A
CCT Cct2 YIL142W P39076 7050 ± 550 A
CCT Cct5 YJR064W P40413 6300 ± 150 A
CCT Cct8 YJL008C P47079 6000 ± 100 A
CCT Cct7 YJL111W P42943 2900 ± 100 A
AAA+ Hsp104 YLL026W P31539 27 500 ± 2000 A
AAA+ Hsp78 YDR258C P33416 10 500 ± 500 A
AAA+ Mcx1 YBR227C P38323 1200 ± 250 A
HSP70 Ecm10 YEL030W P39987 <600 B/B
HSP40 Cwc23 YGL128C P52868 <600 B/B
HSP40 Jjj2 YJL162C P46997 <6000 B/B
HSP40 Jjj3 YJR097W P47138 <600 B/B
HSP40 Jid1 YPR061C Q12350 <600 B/B
HSP40 Hlj1 YMR161W P48353 <600 B/C
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Table 1. Continued

Chaperone class SGD gene name Systematic name UniProt QconCAT (CPC ± SEM)a) Type

HSP40 Apj1 YNL077W P53940 <6000 B/C
CCT Cct3 YJL014W P39077 <600 B/C
SMALL Sno4 YMR322C Q04902 <600 B/C
SMALL Hsp33 YOR391C Q08914 <600 B/C
SMALL Hsp32 YPL280W Q08992 <600 B/C
HSP40 Ydj1 YNL064C P25491 – C/C

a) An upper quantification limit can be placed for proteins with B-type peptides where no A-type peptides were available.
– indicates no quantification.
Errors across four biological replicates are expressed as SEM. All cpc and error values were rounded (to nearest 500 for cpc > 10 000,
nearest 50 for cpc > 1000 and nearest 10 for lower cpc values).

from de Godoy and colleagues [7]. It is perhaps notable that
different growth conditions do not produce apparent greater
variation than different methodologies as shown by the close
similarity between the GFP-tagging datasets for yeast grown
in YPD and sucrose-deficient media [9]. Naturally, some dif-
ferences will also be expected between the yeast strains, as
well as growth conditions. Our label-free (Q-Exactive Hi3
DDA) and label-mediated (QconCAT SRM) analyses also yield
different chaperone cpc values despite being performed on
identical yeast samples (strain and growth conditions), since

they cluster to different regions of the dendogram. Harmon-
isation of the different quantification methods still seems to
be out of reach.

This comparison conceals some of the detail of the various
studies, none of which were able to obtain values for all 63
yeast chaperones. Indeed as noted above, the CCT complex is
poorly represented in the eptitope tagging studies [8,9] though
it is present in most of the MS-based quantification studies.
Figure 4 shows the eight major CCT proteins quantification
values, expressed in ppm (for the purposes of this paper 1

Figure 1. Extracted XICs from mProphet for three selected transitions for both light (yeast analyte) and heavy (QconCAT surrogate) peptide
sequence IYEQEFGTTK. Grey boxes represent the peak group from which areas are calculated for quantification. All four bioreplicate
XICs are shown displaying excellent reproducibility. The parent protein, CCT5, was not observed in either of the epitope-tagging datasets
available [8,9].
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Figure 2. Sibling peptide XY-plot for all chaperone proteins quan-
tified using two surrogate QconCAT peptides. The most abun-
dant of the pair is along the x-axis. Large discrepancies be-
tween sibling peptide pairs can in part be explained by poor
cleavage contexts. Peptide-1: The lower abundance sibling (Ssa1:
AEETISWLDSNTTASK) for this protein contains a dibasic (KK)
tryptic site at the N-terminus, of which a missed cleavage vari-
ant ([K]AEETISWLDSNTTASK) has been observed in subsequent
mass spectrometric analysis. Additional signal loss may be at-
tributed to the acidic residues surrounding the C-terminal cleav-
age site (Glu-Glu), which are known to increase the propensity
of a missed cleave [43]. Peptide-2: The peptide LNDAVEYVSGR
from Hsp12 has an interspersed dibasic N-terminal tryptic site
(KSK) that would affect proper cleavage [27, 28]. Peptide-3: The
peptide LAAEDYIGSAVK from Ssz1 with lower abundance may be
attributed to missed cleavage via an interspersed dibasic tryptic
site at the N-terminal and glutamic acid immediately proceeding
the C-terminal tryptic site.

ppm ∼= 60 cpc), extracted from the PaxDB database [26]. Only
Cct4 has been quantified by any of the epitope-tagging strate-
gies to-date, while all of the MS-based methods have good
success with all proteins in this complex. This is perhaps un-
surprising since the CCT complex is formed by a heteromeric
8-mer ring structure which could be perturbed by any addi-

tional protein tagged on to it [29] and is believed to mediate the
folding of a significant fraction of all cytosolic proteins [30].
Furthermore, the CCT proteins are all classed as essential by
saccharomyces genome database (SGD) [31, 32] suggesting
that techniques that perturb the structure or folding of such
proteins could be lethal. It is also interesting to note that this
class of chaperone shows the lowest CV of the abundance
values across all the classes, given that it is an octamer with
one:one stoichiometry [29]. This result is independent of the
method of quantification (see Supporting Information Table
S3). Comparing the quantifications across datasets, our most
recent analysis using label-free methods on the Q-Exactive
yields a stoichiometry closest to one:one for this chaperone
class.

Finally, it is evident that the different quantitative ap-
proaches report different overall estimates of protein abun-
dance, as epitomised by Fig. 4. Although it is difficult to di-
rectly compare the methods since they are converted to ppm
values in PaxDB with somewhat arbitrary conversion factors,
we can make direct comparisons of those reporting absolute
quantitative values in cpc. In this case, the mean cpc values for
all chaperones are 36 000, 52 000, 42 000 and 113 000 for the
QconCAT, TAP-tagging, HDMSE and Q-Exactive Hi3 label-
free methods, respectively. The QconCAT data is lowest; this
partly reflects the high sensitivity of this technique to report
quantification via SRM at < 1000 cpc values for additional
chaperones, lowering the overall average. For example, five
of the HSP40 class of chaperones are reported at less than 500
cpc using our QconCATs but are absent from the HDSME

and Q-Exactive Hi3 label-free quantifications entirely. It is
also possible that epitope tagging can induce over-expression
in some cases, which could lead to inflated cpc values.

3.3 Relationship between chaperone and target

abundance

The chaperones mediate protein folding in the cell, regu-
lating the stability and preventing mis-folding for a large
component of the genome. Gong and colleagues [11]

Figure 3. Dendogram of chaper-
one quantification values from
different experimental method-
ologies. All but the QconCAT,
Q-Exactive Hi3 and HDMSE

datasets were obtained from
PaxDB [26]. All protein abun-
dance values are expressed
as ppm for comparisons with
PaxDB data, assuming 60 mil-
lion protein cpc in total for
the QconCAT, Q-Exactive Hi3
and HDMSE datasets. Primary
references for the independent
datasets are: Ghaemmaghami
[8], Newman SD and YEPD [9],
and de Godoy [7].
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Figure 4. Protein quantification of the members of the CCT chap-
erone complex by alternative experimental strategies. The CCT
complex is formed by an 8-mer of subunits forming a ring struc-
ture and is expected to retain a 1:1 stoichiometry between sub-
units. All protein abundance values are expressed as ppm for
comparisons with PaxDB data, assuming 60 million copies in total
for the QconCAT, Q-Exactive and HDMSE datasets. The absence of
measured quantification values is represented by a star symbol.

identified 4340 candidate substrates from their tandem affin-
ity purification strategy that represents the majority of the
yeast proteome. This qualitative map of the yeast chaper-
ome network however lacks quantification, and here we add
our own and published yeast protein abundance values to
consider the folding ‘workload’ undertaken by each chaper-
one or its class. Additionally, given the tendency of affinity
pull-down data to contain false positives, we have generated
an additional ‘high-quality’ dataset of the chaperone interac-
tome, comprising a total of 3649 interactions over 60 chap-
erones. All chaperone interactions were obtained from three
public protein–protein interaction datasets (BioGRID [33],
MIPS [34] and STRING [35]). These were further filtered by
excluding chaperone–chaperone interactions, retaining inter-
actions where the reciprocal interaction was also observed
(within a dataset) and in the case of STRING the interaction
confidence score was >0.7 (high-confidence). The three fil-
tered datasets were then combined to produce a ‘high-quality’
dataset, covering 60 chaperones, 1711 substrates and 3649

Figure 5. Number of chaperone-targets versus chaperone abun-
dance. The number of non-chaperone substrates (or targets) is
plotted against the abundance of each chaperone (in copies per
cell units) for the QconCAT quantification dataset, against num-
ber of chaperone targets. A moderate correlation is observed with
the more abundant chaperones having more interacting proteins
(Rsp: 0.49, p = 0.00002).

interactions. Analysis of the overlap between the datasets
showed that MIPS provided no information additional to the
combination of BioGRID and STRING (see Supporting
Information Fig. S3A–C). The filtering process retained
all but one of the complexes exhibiting reciprocity as re-
ported by Gong and colleagues (see Supporting Information
Fig. S3D).

We next considered the relationship between chaperone
abundance and the number of interactors, reasoning that
chaperones with high numbers of targets ought to be abun-
dant. Although no previous correlation had been noted [11],
a modest but significant positive correlation is observed here
(Fig. 5), for the high-quality filtered interaction set. This cor-
relation is observed independently of the method used to
quantify the chaperones, generating a Spearman Rank cor-
relation statistic of 0.08–0.54 (see Supporting Information
Table S4). Simplistically, there is a correlation between the
qualitative workload of a chaperone (as measured by the num-
ber of interactors) and its abundance in the cell. In this case,
we have not included the chaperone–chaperone interactions
as substrates since many will be co-chaperone interactions
and do not strictly represent substrates. The correlation is
also observed for the unfiltered complete set of interactions
reported by Gong and colleagues [11], and some of the cor-
relations observed are slightly stronger (Spearman Rank cor-
relations between 0.48 and 0.74). Figure 5 also breaks down
the chaperones into classes, showing that the generally low
abundance HSP40 class have relatively few substrates while
the generic ‘promiscuous’ chaperones with many substrates,
such as the SMALL class and Hsp70 members (including
Ssa1), are high in abundance.

These analyses only consider the number of interactors,
not the total ‘volume’ of protein folding/translocation being
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mediated by a given chaperone. Accordingly, for each chaper-
one (c), the volume of protein (Vc) was calculated as the total
abundance (cpcn) of all n substrates.

Vc =
n∑

1

cpcn

However, the volume does not directly consider the ac-
tual folding workload placed on chaperones which is influ-
enced by rate of substrate turnover. To account for this, we
use measured protein degradation rates kdeg [6] to estimate a
synthesis rate, ksyn, for individual chaperone targets, as shown
below.

ksyn = cpcn × kdeg

We can then sum these values to estimate the total work-
load or flux Fc (in molecules per minute) handled by an indi-
vidual chaperone or chaperone class.

Fc =
n∑

1

ksyn

These values are based on some assumptions. We assume
that protein abundances are in steady state ( dcpc

dt = 0) and the
rate of synthesis captures the total flux dealt with by the at-
tendant chaperones; we split flux on a pro rata basis across
chaperones when there are multiple ‘parents’. Missing kdeg

were substituted by the geometric mean across the entire
dataset for instances where no turnover data was available for
some substrates. We have also ignored growth rates, since
our raw quantification and half-life data come from different
sources of yeast experiment. Effectively, this adds a constant
to kdeg values, akin to the dilution rate in a controlled culture
system, which would alter our estimated fluxes. Neverthe-
less, we believe that despite the limitation of the data and
assumptions, these values represent the most accurate cur-
rent estimates of protein flux available that are, importantly,
also comprehensive. We refer the interested reader to a re-
view article that addresses several key issues and challenges
in measuring protein turnover, which develops these ideas
further [36].

Here, and for all further calculations, we use the filtered
high-quality set of 3649 interactions rather than the complete
set from Gong and colleagues [11]. We do not have a genome-
wide SRM-based quantitative dataset from QconCATs and
therefore use the more comprehensive datasets from PaxDB
and our own label-free data to capture substrate abundance.

When considering either the total chaperone substrate
abundance Vc, or more formally, the total chaperone sub-
strate flux Fc, the correlation is maintained or strengthened.
The Spearman correlation coefficients range from 0.26 to
0.69, for the comparison of chaperone abundance with flux
as shown in Fig. 6. This demonstrates that chaperones medi-
ating the folding of a large flux of expressed protein are them-
selves high-abundance proteins. The full set of both Pearson
linear and Spearman Rank correlations are provided in Sup-

porting Information Table S4, which highlights that signifi-
cant correlations are obtained for both volume and flux. We
also see similar correlations when using the larger unfiltered
protein interactions set (data not shown).

Figure 6 also clearly illustrates the reduced sensitivity of
several label-free and epitope-tagging methodologies which
have failed to quantify proteins (chaperones or substrates)
below 1000 cpc, unlike the MS-based methods such as SILAC
or the QconCAT approach presented here.

3.4 Chaperone workload and efficiency

As previously discussed, we can estimate the total chaper-
one ‘workload’ and the attendant ‘efficiency’ of individual
chaperones and chaperone classes, defining the workload as
the total substrate flux (Fc). This definition, considers the
cpc per minute estimated from the protein abundance and
half-life as a proxy for the total amount of work a chap-
erone must undertake. Although this approach has some
caveats, and does not directly factor in growth, it does pro-
vide a broad snapshot of the overall volume of protein folding
meditated by individual chaperones. Table 2 shows the top
15 ranked chaperones by workload, calculated and ranked
for the HQ filtered set of 3649 interactions. The proteins at
the top of the list agree with expectation, containing ‘gen-
eralist’ chaperones that interact with significant fractions of
nascent polypeptide chains close to or at the ribosome as
part of the ribosomal-associated complex (RAC), or traffick-
ing from Hsp70s and Hsp40s to Hsp90s. As would be ex-
pected, Table 2 is dominated by these chaperone classes,
including RAC members Ssb1/2, other cytosolic Hsp70s in-
cluding Ssa1, and nucleotide exchange factors such as Sse1
that are involved in trafficking onto the Hsp90 complex. It
has been suggested that 20% of nascent polypeptide chains
pass through the RAC/Hsp70/Hsp40 route [12] consistent
with the high workload we observe here. Our estimate of
over 1 million molecules per minute passing through the
ribosome-associated Ssb1, suggests that each Ssb1 protein
handles around 14 molecules per min. Similar statistics are
observed when the unfiltered list of candidate substrates is
used (Supporting Information Table S5), though the esti-
mated flux per chaperone increases to 25 molecules/min.

Table 2 raises the question as to whether there are chap-
erones (or chaperone groups) that are extremely (in)efficient
in terms of the protein folding they mediate? Are there chap-
erones that despite being low abundance, mediate folding
of a high-protein flux (high efficiency), or vice versa (low
efficiency). This is an important concept, since not all chap-
erone proteins are expected to be directly and singly respon-
sible for the folding of their targets [15, 37]. To address this,
the total substrate flux Fc can be normalised by dividing by
the chaperone’s own abundance to calculate a workload effi-
ciency. These are plotted as box-and-whisker plots in Fig. 7,
on a log2 scale, grouped by chaperone class, using the PaxDB
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Figure 6. Analysis of chaperone abundance versus total target flux, Fc. For each quantification dataset the chaperone protein abundances
were plotted against the total flux Fc (workload) calculated from all its interacting proteins (where abundance values were obtained).
Correlations are observed for each dataset, ranging from 0.26 to 0.69, which are all significant (p < 0.05) except the 0.26 obtained for
HDMSE. For all but the Q-Exactive Hi3 and HDMSE datasets, protein abundance data was taken from PaxDB [26], assuming 1 ppm = 60 cpc.

values from the de Godoy analysis to represent chaperone and
target abundance [7]. Very similar results are obtained when
using any of the other comprehensive yeast protein abun-
dance datasets (data not shown). A considerable variation is
observed across the chaperones and their classes with appar-

ently super-efficient chaperones such as Hsp70-Ssb2 (with
log2 efficiency of >8) through to the apparently under-used
chaperones such as the Hsp40-Djp1 (with a log efficiency
of <−4). The latter is one of the regulatory J-domain chap-
erones which promotes the ATP-ase activity of Hsp70s and
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Table 2. Overall folding workload for top15 chaperones ranked by total substrate flux

Gene name Systematic Chaperone Chaperone abundance Number of Total Substrate Total substrate
ORF name class (cpc)a) substratesb) volume (cpc)c) flux (cpc/min)d)

Ssb2 YNL209W HSP70 85 650 172 13 675 400 1 172 700
Ssb1 YDL229W HSP70 68 570 348 9 666 400 743 300
Ssz1 YHR064C HSP70 63 090 115 6 167 800 423 800
Ssc1 YJR045C HSP70 58 050 40 2 802 400 346 700
Ssa4 YER103W HSP70 5700 29 2 261 500 323 800
Zuo1 YGR285C HSP40 31 290 89 4 628 100 314 100
Hsc82 YMR186W HSP90 84 370 90 3 853 900 274 600
Ssa1 YAL005C HSP70 335 460 179 3 210 800 247 100
Cct2 YIL142W CCT 7070 29 1 080 700 159 000
Cct4 YDL143W CCT 20 010 32 1 044 700 150 000
Hsp60 YLR259C HSP60 46 960 30 1 083 200 122 800
Sse1 YPL106C HSP70 61 980 79 2 408 400 120 300
Hsp82 YPL240C HSP90 23 040 89 1 338 500 103 000
Kar2 YJL034W HSP70 26 300 66 935 100 96 300
Gim3 YNL153C PFD 4060 120 1 162 300 95 400

a) Chaperone cpc values were taken from our QconCAT yeast quantification.
b) As determined from the high-quality filtered subset of 3649 interactions.
c) Substrate abundance values were taken from PaxDB for the SILAC-based yeast quantification determined by de Godoy and colleagues [7]
and converted to cpc assuming 60 million protein molecules per cell.
d) Flux was calculated as the sum over all chaperone substrates of the product of total substrate volume and the degradation rate, the
latter obtained from the half-life study of Belle et al. [6].

hence may not be directly interacting with true substrates;
indeed, it is more abundant than the summed abundance of
all its non-chaperone substrates. Interestingly, the prefoldins
(PFD) as a class are the most efficient, an observation which
is conserved irrespective of the quantification method used to
calculate the values (Supporting Information Fig. S4). These
proteins form a heterohexameric complex that deliver nascent
chains of TRiC/CCT substrates to this complex for refolding,
including key structural proteins such as actin and tubulin.

We can also consider the total volume and workload di-
vided amongst the different chaperone classes, aggregating
the abundance or flux of the targets to each class. If we as-
sume that proteins not classed as chaperone targets can fold
independently, we can consider the fraction of proteins (or
protein abundance or flux) that is mediated by chaperone in-
teractions in yeast (Fig. 8). Only 36% of proteins have been
classed as chaperone targets but they constitute the majority
(57%) of all protein volume in the cell, which itself represents
62% of the total flux of protein synthesis. Figure 8 also shows
how the relative workload changes when we consider the flux
weighted fraction compared to just the number of targets for
each chaperone class (note: we share flux across classes pro
rata when a substrate’s folding is mediated by more than one
chaperone from different classes). This shows that although
the Hsp70 class acts on fewer than 50% of known chaper-
one substrates, these proteins account for over 70% of the
total chaperone-mediated protein synthesis flux in the cell. A
similar small expansion is shown for the Hsp90 class while
most others fall or stay roughly constant. Indeed, despite
their efficiency and essentiality, the PFD and CCT chaper-
ones mediate folding of less than 2 and 4%, respectively, of

Figure 7. Relationship between chaperone abundance and nor-
malised flux via each class. Box-and-whisker plots show the range
of chaperone efficiency (flux/chaperone abundance) values cal-
culated for individual chaperones in each class. The bold line
shows the median value for each class, with boxes represent-
ing the inter-quartile ranges and whiskers the full extent of the
minimum/maximum values in the normal way. The classes are
ordered on median value from left to right. All workload effi-
ciency values were calculated using the data from de Godoy and
colleagues [7], normalising the total protein flux Fc by the chap-
erone cpc value, and then converting to a log2 value.
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Figure 8. Overall chaperone workload in yeast. The
two sets of pie charts consider the overall work-
load for chaperone classes in yeast, calculated by
the number of proteins whose folding they medi-
ate or scaled by the total protein flux for which they
are responsible. In both cases, substrate counts or
flux are shared pro rata between classes when more
than one chaperone from different classes acts upon
them. The two left most charts show how the amount
of protein whose folding is regulated by chaperones
in yeast is expanded when considered by total pro-
tein flux, and similar differences are observed when
considered the breakdown of the data into chaperone
classes on the right.

chaperone-mediated protein flux. The latter estimate is lower
than previously reported values of ∼10% for CCT [30, 37],
though we note our value is Iikely to be an underestimate
given that we filter the interacting substrate set. Despite this,
the CCT class in particular is enriched in targets which are
themselves deemed essential (Supporting Information Fig.
S5). Around 50% of the protein abundance or flux regulated
by CCT is annotated as ‘essential’ by the yeast genome dele-
tion project [31], more than for any other chaperone class.

Integrating the abundance data with annotated essential-
ity, we can calculate how much of the yeast proteome is
chaperone-mediated and deemed essential. The folding of
approximately ∼9% of known ORFs are chaperone mediated
and classed as essential, but this doubles to ∼18% when
considered as a fraction of total protein flux, reinforcing the
key role played by chaperones. Nevertheless, ∼16% of es-
sential protein synthesis apparently requires no chaperone
mediation.

Using the abundance estimates from different experimen-
tal approaches, we can estimate the total throughput of dif-
ferent chaperone classes with respect to the total protein in
the cell (Supporting Information Table S6). Around 6.5% of
all protein flux passes through the PFD/CCT route, compa-
rable to the previous estimates of ∼10% [12, 30, 38] in both
yeast and bacterial systems. Similarly, around 7% of all pro-
tein folding is mediated by Hsp90s (a slightly lower estimate
than the 20% previously reported). However, our data esti-
mates that 44% of all protein synthesis passes through the
Hsp70 class including that allied to the RAC, Hsp70, Hsp40
route, which suggests previously reported values of 20% may
be under-estimates [38, 39].

3.5 Chaperone target sub-cellular localisation

Since the sub-cellular localisation of the majority of yeast
proteins has been characterised by a variety of studies,
notably [5], we can scale the proteins in different locations
by their abundance rather than just the number of different
protein species. This is shown in Fig. 9 for one of the
more comprehensive quantification datasets [7]. Most of the
cellular proteome is in the cytoplasm, as would be expected,
followed by the membrane and mitochondrion, whether
considered by proteins annotated in the genome or scaled
by abundance. However, the cytoplasmic, membrane and
mitochondrial protein abundances are expanded versus
expectation (i.e. the total copy number of cytosolic proteins
is larger than the total number annotated as such in the
genome). Conversely, the nuclear protein abundance is
reduced compared to expectation. This makes sense since
despite the large number of proteins encoded in the genome
destined for the nucleus, many of them will have signalling
and regulatory roles (e.g. transcription factors) and would not
be expected to be continually expressed or high abundance.

When the chaperone-mediated substrates are analysed by
class, different distributions of substrate location emerge.
The SMALL and PFD class both have quite different
distributions to that for all proteins in Fig. 10, specialising in
several non-cytosolic categories. Similarly, PFDtargets con-
stitute a large fraction of protein destined for the vacuolar
membrane, nucleus and ER. We also noted a small expan-
sion in the mitochondrial class for Hsp90s, which concurs
with the module assigned to Hsc82 by Bogumil and col-
leagues that also includes known mitochondrially active yeast
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Figure 9. Sub-cellular disposition of the yeast proteome. The pie charts show the total proteome split into component sub-cellular
localisations, annotating proteins from Huh et al. [5]. In A, the number of proteins is used as a fraction of the total, while in B this is
scaled by the total protein abundance. In both cases, proteins assigned to multiple loci and split pro rata between the different locations,
either by count or by abundance. The differences between A and B highlight the expansions in abundance where the total concentration
of protein assigned to a specific location exceed the relative number of proteins encoded in the genome. Sub-cellular locations containing
less than 2% are not labelled for clarity, but also include ER to Golgi, Golgi to ER, Golgi to vacuole, actin, bud, bud neck, cell periphery,
endosome, lipid particle, microtubule, peroxisome and spindle pole.

chaperones [16]. Indeed, this enrichment is statistically sig-
nificant (p < 0.01) as are many of the individual values of
fractional target protein volume in selected sub-cellular lo-
cations using the Expression Analysis Systematic Explorer
(EASE) modified Fisher Exact statistical test [40]. This in-
cludes the microtubular and mitochondrial targets for the
PFD, ER, Golgi and nuclear targets for the Hsp40s and cyto-
plasm for the ‘generalist’ Hsp70s, all consistent with expec-
tation in the literature (cf. [41, 42]). The full list of p-values
for each sub-cellular location by chaperone class are listed in
Supporting Information Table S7.

The data are consistent with a degree of specialisation for
different chaperone classes in terms of the sub-cellular des-
tination of their targets, notwithstanding the fact that the
majority of their targets are normally cytosolic. Indeed, the
observed sub-cellular specialisation by target protein volume
is also statistically significant across the chaperone classes
(p < 0.001, using Kruskal–Wallis), an observation that is
clear when the data are viewed from the perspective of
the sub-cellular localisations (Supporting Information Figs.
S6 and S7) which highlights, for example, the PFD/CCT
preference for actins and microtubule proteins such as
tubulin.

No clear specialisations for substrate location were re-
ported in a previous comprehensive study although a
different approach was taken to the assignment of chaper-
ones to modules and quantification was not directly factored
in [16].

4 Concluding remarks

We present here, for the first time, absolute quantification
of a functional class of the yeast proteome using the Qcon-
CAT methodology as part of our COPY project. We have
successfully quantified 51 of the 63 annotated chaperones
in the yeast proteome by SRM using stable isotope labelled
surrogate peptides with high precision, achieving quantifica-
tion down to ca. 250 cpc. The sibling peptides for individ-
ual proteins show a high level of agreement and we believe
this represents the most accurate measurement of chaperone
abundance in yeast. Nevertheless, the comparison with other
approaches highlights the disparity that still exists in quanti-
tative proteomics and the variance introduced by the different
methodologies, which apparently exceeds that occurring bio-
logically.

We elected in most cases to use the SILAC-based quan-
tification data [7] to present aggregated abundance data for
protein volume, flux, folding efficiency and sub-cellular local-
isation. This is one of the most comprehensive studies, with
over 4000 proteins quantified. We reasoned that the relatively
small number of proteins missed by this set are likely to be
low abundance or not expressed, and therefore cannot greatly
skew the analysis. Moreover, this is an MS-based dataset that
does not involve epitope tagging (which could on occasions
lead to lethal fusions or over-expression). Nevertheless, the
global trends are maintained, regardless of dataset used to
make the calculations (data not shown).
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Figure 10. Abundance scaled sub-cellular proteomes of the different chaperone classes. The pie charts show the relative fraction of total
protein volume of the sets of chaperone targets for each chaperone class, split by the sub-cellular localisation of the targets. The plots
show that different chaperone classes display different preferences compared to the overall trends displayed in Fig. 8, specialising in the
regulation of folding of proteins destined for different sub-cellular locations. Cytoplasmic proteins dominate all classes, but the SMALL
class also has a preference towards nuclear and mitochondrial substrates, while prefoldins (PFD) are also linked to vacuolar membrane
and ER, as well as of their key targets such as actin.

The availability of quantitative datasets such as these sup-
ports the estimation of protein synthetic flux (workload) and
associated efficiency, which coupled to interactome and half-
life data allows the different chaperones and classes to be
compared. We report for the first time the direct correlation
between chaperone abundance and the number, aggregated
abundance and flux of their targets, an observation which
makes energetic sense for yeast cells. This extends other re-
ported data; for example, Bogumil et al. [16] note that AAA+
and CCT chaperones substrates are highly expressed and have
high-codon adaptation indices, as do the chaperone modules
which contain the chaperones themselves. We see this trend
extended broadly across all classes, independent of experi-
mental approach to quantify the proteome.

We also see evidence that yeast chaperones are biased to
mediate the folding of substrates from different sub-cellular
localisations. Although the comprehensive study by Bogumil
and colleagues [16] highlighted a broad spread of sub-cellular
locations within chaperone modules they did not observe spe-

cific module trends. We confirm the observation that chap-
erones appear to mediate folding across a broad range of
different sub-cellular localisations, and not just the one(s)
where they are believed to reside.

The integrated interactome and quantification data offer an
alternative method to estimate chaperone substrate through-
put, which may be compare to previous studies. Our analy-
ses provide new estimates on the volume of protein folding
passing for through the different chaperone pathways and
classes, and we estimate as much as 44% of all protein syn-
thesis goes through the RAC-induced route via Hsp70s and
Hsp40s.

Quantitative proteomics data, especially on absolute con-
centrations, can provide a new interpretation of affinity pull-
down inter-actomics data and better characterise molecular
systems such as the chaperone network. We aim to extend
these generalised findings to develop our understanding of
the chaperone network and the dynamics and stoichiometry
of protein folding and proteostasis in yeast.
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