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The beneficial metabolic
actions of prolactin

Yazmı́n Macotela*, Xarubet Ruiz-Herrera,
Dina I. Vázquez-Carrillo, Gabriela Ramı́rez-Hernandez,
Gonzalo Martı́nez de la Escalera and Carmen Clapp

Instituto de Neurobiologı́a, Universidad Nacional Autónoma de México
(UNAM), Querétaro, Mexico
The role of prolactin (PRL) favoring metabolic homeostasis is supported by

multiple preclinical and clinical studies. PRL levels are key to explaining the

direction of its actions. In contrast with the negative outcomes associated with

very high (>100 mg/L) and very low (<7 mg/L) PRL levels, moderately high PRL

levels, both within but also above the classically considered physiological range

are beneficial for metabolism and have been defined as HomeoFIT-PRL. In

animal models, HomeoFIT-PRL levels counteract insulin resistance, glucose

intolerance, adipose tissue hypertrophy and fatty liver; and in humans associate

with reduced prevalence of insulin resistance, fatty liver, glucose intolerance,

metabolic syndrome, reduced adipocyte hypertrophy, and protection from

type 2 diabetes development. The beneficial actions of PRL can be explained by

its positive effects on main metabolic organs including the pancreas, liver,

adipose tissue, and hypothalamus. Here, we briefly review work supporting PRL

as a promoter of metabolic homeostasis in rodents and humans, the PRL levels

associated with metabolic protection, and the proposed mechanisms involved.

Finally, we discuss the possibility of using drugs elevating PRL for the treatment

of metabolic diseases.
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Introduction
Defining the role of prolactin (PRL) inmetabolismhas been challenging due to contrasting

findings demonstrating positive and negative effects of PRL on metabolic homeostasis. This

contradiction is disentangled after realizing that PRL levels and the physio-pathological context

influence the direction of PRL action (1). Low and very high PRL levels are deleterious to the

metabolism, whereas medium and moderately high levels are usually beneficial.

PRL action is necessary to maintainmetabolic homeostasis, as the absence or reduction of

PRL signaling due to the lack of PRL receptors (PRLR) or low PRL levels associate with

exacerbated metabolic alterations, particularly in the context of a metabolic challenge or

disease. In humans, low PRL levels associate with increased prevalence of metabolic diseases

(1). In contrast, patients with overweight and obesity (OW/OB) having elevated PRL levels
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show better metabolic profiles than BMI-matched patients with

lower PRL values (2–6), to imply that elevated PRL is a mechanism

dealing with metabolic challenge.

The mechanisms by which PRL promotes metabolic

homeostasis involves actions in different metabolic organs. A

detailed description of the levels of PRL and their cellular and

molecular mechanisms mediating metabolic benefits warrant

further research. Also, a careful evaluation of drugs that elevate

PRL levels is needed in the context of metabolic diseases.

Prolactin promotes metabolic
homeostasis in rodents

Serum PRL decreases in rodents with obesity, diabetes, and

insulin resistance (2, 7–10), suggesting a role for reduced PRL

levels in the pathophysiology of metabolic diseases. As a proof of

concept, PRL treatment in mice and rats with streptozotocin

(STZ)-induced diabetes or diet-induced obesity improves their

metabolic profile (2, 11, 12), whereas PRLR null mice with STZ-

induced diabetes or diet-induced obesity show a more severe

disease phenotype (2, 13). Moreover, mice lacking PRLR in the

liver become insulin resistant, whereas insulin resistant obese mice

(db/db mice lacking leptin receptors) overexpressing the PRLR in

the liver show improved insulin sensitivity (14).

In addition, PRL action is required to deal with the metabolic

challenges of pregnancy, a state characterized by hyperphagia,

excessive adiposity, and physiological insulin resistance to redirect

nutrients towards the fetus (15–17). Pregnant mice null for the

PRLR in the pancreas, specifically in b-cells, develop gestational

diabetes (18–20), due to deficient pancreatic b-cell hyperplasia
and hyperinsulinemia (21).

Moreover, PRL reduces metabolic alterations in lactating pups

nursed by dams consuming a high fat diet (HFD) during lactation.

The obesogenic milk from HFD-fed dams has 50% less PRL

compared to the milk from dams fed a chow diet (22). Pups

consuming the obesogenic-hypoprolactinemic milk develop

obesity, excessive adiposity, severe insulin resistance, and fatty

liver at weaning; whereas when their HFD-fed mothers or

themselves receive exogenous PRL during lactation, metabolic

alterations are ameliorated (22). These findings support PRL in

maternalmilk exertingbeneficialmetabolic effects in lactatingpups,

and lowPRL levels inmilk contributing to thematernal obesogenic

diet-induced metabolic disease in pups.
Elevated prolactin levels as a
mechanism to counteract metabolic
alterations in humans

Low PRL levels associate with a higher prevalence of type 2

diabetes (T2D), insulin resistance, glucose intolerance, metabolic

syndrome (MS), adipose tissue (AT) dysfunction, b-cell
Frontiers in Endocrinology 02
dysfunction, non-alcoholic fat liver disease (NAFLD), and

cardiovascular events, whereas moderately high PRL levels

correlate with metabolic protection in all these instances (Table 1).

Moderately high PRL levels (16–35 mg/L) associate with lower

prevalence of T2D and even predict a reduced incidence of T2D 10

years later (23). PRL levels in the 4th quartile correlate with lower

incidence (23, 25, 29) or prevalence (24, 26–28, 30, 42) of T2D

(Table 1), andPRL levels are inversely related to fasting glucose levels

and glycosylated hemoglobin (HbA1c) values (4, 25, 26, 28, 31, 35,

36) in both men and women. Consistently, high serum PRL in

pregnancy predicts a lower risk of postpartum prediabetes/diabetes

(29), and in women with gestational diabetes mellitus, lower PRL

levels at 6 to 9weeks postpartumassociatewith a higher future risk of

developingT2D in a 10-year followup (30) (Table 1). T2D and other

metabolic alterations derive from insulin resistance, i.e., the inability

of insulin to activate a normal insulin response on its target cells.

Moderately elevated PRL levels associate with increased insulin

sensitivity in men (2, 3, 5, 26, 31), women (3, 5, 26, 31, 33, 34) and

even children (32) (Table 1).

Insulin resistance can derive from AT dysfunction and occur

in parallel to b-cell dysfunction. High PRL levels associate with

reduced AT dysfunction and predict smaller adipocytes (reduced

hypertrophy) in visceral AT (2, 3, 5, 6, 34), the type of fat that, in

excess, associates with metabolic alterations and disease severity

(43–46). Regarding b-cell function, pregnant women with high

PRL levels have a lower postpartum risk of developing diabetes

and b-cell dysfunction (29), and women with polycystic ovary

syndrome (PCOS) with PRL levels in the 4th quartile show lower

prevalence of b-cell dysfunction (33) (Table 1).

The MS represents a group of alterations that elevate the risk of

cardiovascular disease, stroke, and T2D, and consists of high blood

pressure, hyperglycemia, abdominal obesity, and abnormal

cholesterol and triglyceride levels (47). Moderately high PRL levels

associate with lower prevalence of MS in children (32) and in adult

patients suffering from certain conditions, such PCOS in women

(38), and sexual dysfunction (SD) in men (36, 37). Also, high PRL

levels in men with SD are associated with protection from major

cardiovascular events (40). However, in the general adult population

a correlation betweenPRL andMShas not been found (3, 25).When

only dyslipidemia is evaluated, an inverse association occurs between

PRL levels and total cholesterol, LDL cholesterol, and triglyceride

levels (4, 5, 38, 39).

Another parameter closely linked to metabolic disease is a

proinflammatory environment. In subjects with obesity,

moderately high PRL levels associate with lower levels of

interleukin 6 in children (32) and tumor necrosis factor-a (TNF-

a) in adults (4).

Most studies in humans show that moderately high PRL levels

are not associated with obesity itself, the exception being a study in

children (32). This observation can be explained by the fact that

some subjects with obesity remain metabolically healthy

(metabolically healthy obesity - MHO), or at least show fewer

metabolic alterations. Indeed, subjects having MHO have
frontiersin.org

https://doi.org/10.3389/fendo.2022.1001703
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Macotela et al. 10.3389/fendo.2022.1001703
increased circulating PRL levels as compared to those with

metabolically unhealthy obesity (MUHO) (4–6). Moreover,

logistic regression analysis showed PRL as an independent

predictor of MHO (6). Patients with obesity and high PRL (HP)

levels displayed reduced blood glucose, total and LDL cholesterol,

triglyceride, and TNFa levels than patients with obesity and

normal PRL (NP) levels. Also, after sleeve gastrectomy, patients

in the HP group showed reduced PRL levels, whereas those in the

NP group have increased PRL levels (4). Similarly, patients with

OW/OBwith higher PRL levels had a better metabolic profile than

those with lower PRL values. Interestingly, PRL levels decreased

once metabolic parameters improved following bariatric surgery

(5) (Table 1). These studies support that increased PRL levels are

protective against metabolic diseases and return to basal values

after the metabolic challenge is resolved (Figure 1).

Another metabolic disease associated with low PRL levels is

NAFLD. Patients withNAFLD show lower PRL levels than control

subjects and thosewithseverehepatic steatosis haveeven lowerPRL

values than patients with amild tomoderate disease (41) (Table 1).

Moreover, PRL levels are part of amathematicalmodel to diagnose

the presence and severity of NAFLD (48).
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The association between low PRL levels and higher prevalence

of metabolic diseases also stands for postmenopausal women and

middle-aged and elderly men (23, 36), implying its independence

from gonadal status. Because PRL levels may decrease with aging,

it remains to be determined whether the HomeoFIT-PRL range

differs between young vs. middle-age or elderly individuals.

The right prolactin levels for metabolic
maintenance and protection – not too
much and not too little

While low and very high PRL levels have deleterious metabolic

consequences, a specific range of PRL values is beneficial for

metabolism. This PRL range includes levels in the normal

physiological range (7 to 25 mg/L) but also levels above (25 to

100 mg/L). The latter, previously claimed as hyperprolactinemia,

have been defined as HomeoFIT-PRL (Homeostatic Functionally

Increased Transient Prolactinemia) (1), since they occur in response

to physiological or pathological challenges and respond to it by

favoring metabolic homeostasis (Figure 1).
TABLE 1 Moderately high PRL serum levels associate with lower incidence of metabolic disease.

Metabolic disease Population PRL level associated with lower disease incidence or prevalence (mg/L)

T2D Women
Women & men
Pregnancy
Women w/GDM

>15.8 (23), 18.4 (24)
>12.9 (25), >11.5 (26), Q4 (27, 28)
>115 Lower postpartum risk (29)
>78.7 postpartum, lower risk of future T2D (30)

Insulin resistance Men
Women & men

Children
Women w/PCOS
Women & men w/obesity

≥12.0 (2)
≥12.0 (3), >11.5 (26)
Inverse association with PRL levels (31)
7.9 (32)
>14.9 (33), Inverse association with PRL levels (34)
Inverse association with PRL levels (5)

Fasting glucose levels & HbA1c Women w/T1D
Women & men w/obesity
Women & men

Inverse association with PRL levels (35)
19.2 (6)
30.5 (4), >11.5 (26), >12.9 (25), Q4 (28)
Inverse association with PRL levels (31)

MS Children
Men w/SD
Women w/PCOS

7.9 (32)
>11.1-35 (36), Inverse association with PRL levels (37)
>7.0 (38)

Adipose tissue dysfunction Women & men
Men
Women w/PCOS
Women & men w/obesity

≥12.0 (3)
≥12.0 (2)
Inverse association with PRL levels (34)
19.2 (5, 6)

Metabolically unhealthy obesity Women & men w/obesity
Women & men

19.2 (5, 6)
30.5 (4)

Beta cell dysfunction Pregnancy
Women w/PCOS

>115 Lower postpartum risk (29)
>14.9 (33)

Dyslipidemia Women & men
Women & men w/obesity
Women w/PCOS

30.5 (4)
Inverse association with PRL levels (5)
>7.0 (38), >15.9 (39)

Major CVE Men w/SD > 12 – 35 (40)

NAFLD Women & men >12.8 (41)
Clinical studies within the last 12 years showing an inverse association between PRL circulating levels and risk, prevalence or incidence of metabolic diseases. Abbreviations: Q, quartile;
T2D, type 2 diabetes; GDM, gestational diabetes mellitus; PCOS, polycystic ovary syndrome; T1D, type 1 diabetes; HbA1c, glycosylated hemoglobin; MS, metabolic syndrome; SD, sexual
dysfunction; CVE, cardiovascular event; NAFLD, non-alcoholic fatty liver disease.
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In healthy individuals PRL levels are usually within the

classical normal range <25 mg/L. However, some physiological

challenges elevate PRL in a transient manner, such as intense

exercise, acute stress, sleep, and sexual arousal (49). These

conditions together with reproductive states (pregnancy and

lactation) can be categorized as conditions that trigger a

homeorhetic response, meaning the orchestrated or

coordinated control of body metabolic tissues necessary to

maintain a physiological state (defined by Bauman and Currie)

(50). Moreover, the association between moderately elevated

PRL levels and a beneficial metabolic phenotype supports

elevated PRL levels in obesity as part of a homeorhetic

response occurring both, under physiological and pathological

challenges (Figure 1).

Altogether, PRL levels ranging from 7 to100 mg/L are

beneficial for metabolism. PRL values are in the lower end of

this range under healthy physiological conditions (outside

reproductive states); however, in the context of a metabolic

challenge they are likely to increase towards maintaining

metabolic homeostasis and return to basal when the stressor/

challenge is eliminated. Conversely, patients experiencing a

metabolic challenge, such as obesity, that are unable to

respond by increasing PRL levels, are more prone to suffer

from metabolic alterations than those upregulating their PRL

levels (Figure 1).

Elevated PRL levels derived from prolactinomas are not part

of a response to a metabolic challenge, they result from a diseased

state (tumor) and are not considered HomeoFIT-PRL (and are

usually above 100 mg/L). It is expected that normalization of PRL
Frontiers in Endocrinology 04
levels in subjects with prolactinomas associate with a healthier

metabolic profile, if the PRL levels achieved by the treatment

remain in the healthy range (>7mg/L).
Mechanisms mediating the
beneficial metabolic action
of prolactin

PRL actions favoring metabolism are the result of its

pleiotropic action reflected by the presence of the PRLR in

almost every tissue in the body, including the main metabolic

organs —pancreas, liver, adipose tissue, muscle, intestine, and

hypothalamus— where beneficial metabolic actions and

mechanisms of PRL have been described (51, 52).
Pancreatic b-cells

PRL stimulates the proliferation and survival of b-cells (53,
54), promotes glucose-induced insulin secretion (53), stimulates

pancreas development during the perinatal stage (55), and is

essential for b-cell expansion during pregnancy (18, 19, 56). The

mechanisms that mediate PRL effects on b-cells involve

increased osteoprotegerin synthesis, leading to the inhibition

of receptor activator of NF-kB ligand pathway, an inhibitor of b-
cell proliferation (57); increased survivin levels (58), elevated

expression of the transcription factors Foxm1 and MafB,

increased cyclin activity, and higher islet serotonin production
FIGURE 1

Elevated prolactin levels are part of a homeorhetic response upon metabolic challenges. A challenged metabolic state can be either
physiological or pathological; in both cases a homeorhetic response includes elevated prolactin (PRL) levels, allowing a series of metabolic
adaptations to deal with the physio-pathological demand. In a physiological challenge, such as pregnancy, lactation, or stress, this response
leads to a new physiological set point (green arrows), whereas in a pathological challenge, such as obesity, it leads to a milder disease or
protection from disease risk (yellow arrows, left side of figure). If the homeorhetic response fails, PRL levels do not rise and remain low instead,
leading to altered physiological states (i.e., gestational diabetes mellitus, GDM, lactation insufficiency, LI, anxiety) (yellow arrows, right side of
figure), or to aggravated disease with higher disease risk or prevalence (red arrows, right side of figure). MS, metabolic syndrome, T2D, type 2
diabetes, NAFLD, non-alcoholic fatty liver disease; MUHO, metabolically unhealthy obesity. Created in BioRender.com.
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via Tph1 synthesis, all promoting b-cell proliferation (18, 56).

Also, PRL leads to the inhibition of extrinsic and intrinsic

apoptosis pathways (54) and improved glucose sensitivity

through increased glucokinase and glucose transporter 2

expression (19, 59, 60) (Figure 2).
Liver

PRL regulates liver growth (61) and liver metabolic function.

Increased PRLR expression in liver stimulates both liver and

systemic insulin sensitivity, whereas reduced hepatic PRLR

expression results in tissue and whole-body insulin resistance

(14). Also, PRL reduces hepatic lipid accumulation by inhibition

of the expression of the fatty acid transporter CD36 and the lipid

synthesis enzyme, SCD1 (41, 62). Consistently, there is an

inverse association between PRL levels and hepatic CD36

expression, and the PRLR decreases in the liver of patients

with NAFLD (41). Thus, PRL prevents fatty liver disease.

Mechanistically, the activation of STAT5 downstream of the

PRLR mediates the insulin sensitizing effects of PRL (14). PRLR

interacts with IRS1 (63) and promotes the phosphorylation of

AKT (64), two key members of the insulin signaling pathway.

Upregulating the hepatic PRLR in combination with systemic

insulin treatment enhances the phosphorylation of the insulin

receptor and of AKT in mouse liver, whereas reducing the

expression of the PRLR by adenovirus-shRNA impairs insulin-

induced liver phosphorylation of IR and AKT (14) (Figure 2).

Moreover, the PRLR is regulated by the level of hepatic insulin

resistance/sensitivity, i.e., it is downregulated in insulin resistant

conditions and upregulated in insulin sensitive states (14).
Adipose tissue

PRL acts on the AT to regulate lipid metabolism and

promote adipogenesis and healthy AT expansion (65). PRL

inhibits lipid uptake via reduced lipoprotein lipase activity in

human fat (66) and inhibits lipolysis in rat and human AT (67).

PRL contributes to adipocyte differentiation in the adipocyte cell

lines NIH-3T3 and 3T3-L1, by stimulating the activation of

STAT5, and of the adipogenic transcription factors C/EBPb and

PPARg (68, 69). PRL is essential for brown fat formation and

activity in newborn mice, and for brown preadipocyte

differentiation (70). The PRLR is present in AT from rodents

and humans and PRL is secreted by human AT (65, 66, 71),

while obesity decreases PRL release from human fat (67). In

PRLR null mice, there is either decreased or no change in fat

mass (2, 72–74) depending on age, fat depot, and genetic

background. C57BL/6 PRLR null mice fed an HFD, show

increased adiposity and exacerbated adipocyte hypertrophy in

AT (2). In obese rats, PRL treatment stimulates the healthy

expansion of AT by promoting adipocyte hyperplasia and
Frontiers in Endocrinology 05
reducing visceral adipocyte hypertrophy, via increased

expression of transcription factors PPARg and Xbp1s, both

favoring adipogenesis and insulin sensitivity (2) (Figure 2).
Hypothalamus

PRL promotes insulin sensitivity, at least in part, by central

actions on the hypothalamus. Increased PRLR expression in the

hypothalamus stimulates whole body insulin sensitivity, whereas

reduced PRLR expression results in insulin resistance and glucose

intolerance (75). PRL effects on the hypothalamus lead to vagal

signals that promote increased liver insulin sensitivity (75). Also,

in 90% pancreatectomized rats, intracerebroventricular infusion

of PRL increases liver insulin sensitivity, inhibits b-cell apoptosis,
and reduces body weight and adiposity by increasing

hypothalamic dopamine levels and leptin signaling

(76) (Figure 2).
Prolactin elevating drugs in the
treatment of metabolic diseases

Several drugs elevate PRL circulating levels, mainly those

that act as dopamine D2 receptor blockers, including first- and

second-generation antipsychotics and medications treating

gastrointestinal symptoms, antidepressants, antihypertensives,

and others (77, 78). The use of antipsychotics has been

associated to the development of metabolic alterations;

however, a recent meta-analysis, evaluating the metabolic

actions of 18 antipsychotics in around 26,000 patients with

schizophrenia (79), showed a large variation in the metabolic

side-effects of antipsychotics. Some drugs had clear adverse

effects increasing body weight, triglyceride levels, cholesterol

levels, and glucose levels (olanzapine, clozapine, and quetiapine),

while others showed neutral or even positive metabolic

outcomes, with very mild or no effects on body weight and

triglyceride levels, and some reducing LDL cholesterol and

glucose levels (aripiprazole, brexpiprazole, cariprazine,

lurasidone, ziprasidone and amisulpiride). Regarding the effect

of these drugs on PRL levels (77), some of the drugs exerting

beneficial metabolic actions present a moderate to high risk for

elevating PRL levels (77), whereas the drugs causing adverse

metabolic actions have minimal to moderate risk for elevating

PRL levels (77). This and other studies (80, 81) support those

metabolic adverse effects derived from treatment with

antipsychotic drugs not being associated with elevated PRL

levels. Attention on drugs that exert beneficial metabolic

effects by elevating PRL to HomeoFIT-PRL levels with

negligible adverse actions is warranted.

One example is amisulpiride, a D2/D3 antagonist shown to

reduce glucose levels in humans (79) and in diet-induced obese

mice (82). The proposed beneficial metabolic action of
frontiersin.org
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amisulpiride at low doses involves increasing dopaminergic

activity by preferentially blocking presynaptic D2/D3 receptors

(83). Also, amisulpiride seems to stimulate insulin secretion by

pancreatic b-cells (82). Therefore, given the positive metabolic

effects of amisulpiride at low doses and its capacity to increase

PRL levels, it is worth testing whether this and other benzamides

can improve metabolic outcomes in obesity conditions.

Another benzamide, levosulpiride, is being tested in a

clinical trial on patients with diabetic retinopathy and diabetic

macular edema to elevate PRL levels and favor its conversion
Frontiers in Endocrinology 06
into vasoinhibin, the antiangiogenic, anti-vasopermeability PRL-

derived fragment (84). The results of this clinical study raise the

possibility to explore the potential therapeutic benefits of

levosulpiride on obesity-derived metabolic alterations.

The fact that bromocriptine quick release (Cycloset), a PRL-

lowering drug, is an FDA-approved treatment for T2D questions

the association between low PRL levels and high prevalence of

T2D. This controversy can be explained by the fact that

dopamine and PRL act through different mechanisms to

promote metabolic homeostasis. There is a morning surge of
FIGURE 2

Mechanisms of prolactin’s beneficial metabolic actions. Prolactin (PRL) promotes metabolic homeostasis acting on the main metabolic tissues.
In white adipose tissue, PRL reduces adipocyte size by stimulating lipolysis and reducing LPL activity, preventing lipid uptake. Also, it stimulates
insulin sensitivity by activating PPARg and Xbp1s and promotes adipogenesis by activating CEBP/b and PPARg, favoring the healthy expansion of
adipose tissue by hyperplasia vs hypertrophy in obesity conditions. In brown adipose tissue (BAT), PRL promotes adipocyte differentiation and
BAT formation and activity in newborns. In liver, PRL promotes insulin sensitivity by its canonical signaling STAT5, and by activation of IRS1 and
AKT. PRL also reduces liver lipid accumulation by reducing the activity of SCD1 and CD36, preventing aggravated fatty liver in NAFLD. In
pancreas, PRL promotes b-cell proliferation, inhibits their apoptosis, and elicits glucose-induced insulin secretion. In hypothalamus, PRL
promotes dopamine release and stimulates leptin signaling, inducing hypothalamus-mediated liver insulin sensitivity. LPL, lipoprotein lipase;
PPARg; peroxisome proliferator-activated receptor-g; Xbp1s, spliced form of X-box-binding protein-1; CEBP/b, CCAAT/enhancer-binding
protein beta; PRLR, prolactin receptor; IR, insulin receptor; IRS1, insulin receptor substrate 1; AKT, Protein kinase B; SCD1, stearoyl-CoA
desaturase 1; CD36, fatty acid translocase; Tph1, tryptophan hydroxylase 1; 5-HT, serotonin; OPG, osteoprotegerin; RANKL, receptor activator of
NF-kB ligand; Foxm1, forkhead box M1; MafB, MAF BZIP transcription factor B. Created in BioRender.com.
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https://www.BioRender.com
https://doi.org/10.3389/fendo.2022.1001703
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Macotela et al. 10.3389/fendo.2022.1001703
dopaminergic activity in the central nervous system that lowers

insulin resistance and hyperglycemia, and this surge is reduced

in patients with T2D (85). Accordingly, by counteracting such

reduction, treatment with bromocriptine benefits glucose

homeostasis. Also, bromocriptine increases glucose tolerance

in diet-induced obese mice that are PRL deficient (86).

Whether normalizing PRL levels in bromocriptine-treated

patients leads to further metabolic improvements is unclear

and needs to be investigated.
Conclusions and future perspectives

PRL is present in the circulation throughout life and,

particularly in humans, its levels are comparable between

sexes, highlighting the role of PRL in physiology beyond

reproduction. PRL senses the metabolic status of an individual,

and upon physiological and pathological metabolic challenges its

levels rise as part of an homeorhetic response, allowing

organisms to adequately adjust to such demands. On the other

hand, the inability to elevate PRL levels in challenged conditions

aggravates metabolic diseases and alters physiological outcomes.

Key questions remain to be addressed such as: 1) What are

the signals that increase PRL levels in metabolically healthy

individuals and what prevents such elevations in metabolically

unhealthy individuals? 2) Does the pharmacological elevation of

PRL levels in metabolically unhealthy individuals improve their

health outcomes? 3) Are changes in PRL (either decreased or

elevated levels) in metabolic diseases part of a larger cascade of

altered responses? and, if so, what is the upstream or leading

regulator of the cascade? 4) What and how is the PRLR regulated

in different physio-pathological conditions and a tissue-

specific manner?

Future studies should focus on answering these questions,

evaluating the benefit of PRLR-specific agonists, and carefully

testing whether the current D2 receptor antagonists at low doses

may be useful in the treatment of metabolic diseases due to their

PRL-elevating properties. Understanding the underpinnings of

PRL actions on metabolism in physiological and pathological
Frontiers in Endocrinology 07
conditions will help target this hormone to improve

health outcomes.
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