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Liuwei-dihuang (LWDH) is widely used in traditional Chinese medicine (TCM), but its molecular mechanism about gene
interactions is unclear. LWDH genes were extracted from the existing literatures based on text mining technology. To simulate the
complex molecular interactions that occur in the whole body, protein-protein interaction networks (PPINs) were constructed and
the topological properties of LWDH genes were analyzed. LWDH genes have higher centrality properties and may play important
roles in the complex biological network environment. It was also found that the distances within LWDH genes are smaller than
expected, which means that the communication of LWDH genes during the biological process is rapid and effectual. At last, a
comprehensive network of LWDH genes, including the related drugs and regulatory pathways at both the transcriptional and
posttranscriptional levels, was constructed and analyzed.The biological network analysis strategy used in this study may be helpful
for the understanding of molecular mechanism of TCM.

1. Introduction

Traditional Chinese medicine (TCM) is one important com-
ponent of the medical drug system, which can treat disease
systematically and is effective at recuperating the balance of
the whole body in patients using herbal formulas (Fang-Ji
in Mandarin) [1]. TCM usually uses several medicinal herbs
that have different roles. The ingredients of these herbs have
been organized into certain formulas that may have potential
complex interaction effects. Considering the different natural
properties of herbs, including hot, warm, cool, and cold, the
interactions among herbs will be difficult to be understood
[2, 3].

In order to understand the complex effects of TCM
formulas in the whole body, research about molecular targets
of formula may be necessary. Some previous studies have
found important target genes of TCM. Li et al. analyzed the
target genes of TCM [4–6]. Based on the target prediction of
TCM compounds, Liang et al. tried to construct the network
about one case of TCM, which represents the newest progress
of network approach in pharmacology [7]. Some researches
tried to construct the relationship between TCM and disease
in silico [8, 9]. Fang et al. collected the target genes of TCM
into a database TCMGeneDIT and analyzed those genes [10].
Furthermore, some researchers have generated a comprehen-
sive database for TCM [11]. Based on the accumulation of
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TCM modernization, Chen group provided web servers for
virtual screening and de novo drug design [12, 13]. However,
suitable methods for determining how the target genes work
in the complex environment of the whole body have not been
developed.

Complex biological systems can be broken down into
interacting networks composed of nucleotides, RNA, pro-
teins, drugs, foods, and so forth. Studies of biological net-
works are increasing the understanding of the mechanism
of biological systems [14, 15]. With the rapid development of
computational systems biology, especially network biology,
the mechanisms study about how TCM target genes work
has changed from “one drug, one target” to “multidrugs,
multitargets, biological networks” [16–18]. Based on these
concepts, some studies constructed the drug targets network
with PPINs [19]. Li group made their efforts to analyze the
topological properties of drug targets in PPINs [20, 21].
Yang et al. also analyzed the topological characteristic of
toxin targets in PPINs [22]. Though this research model
is still in its infancy, computational systems pharmacology
has also been highlighted in the medical drug development
fields [23, 24]. Previous studies attempted to construct and
analyze the networks about TCM [4, 25]. Considering the
usefulness of analyzing biological networks to determine the
complex effects of TCM target genes globally, we performed
experiments to explore the topological properties of TCM in
biological networks. These experiments had been previously
applied to study social networks in social sciences [26].

In this study, candidate target genes of “Liuwei-dihuang”
(LWDH, also known as Rehmannia Six, Six-Ingredient
Rehmannia, or Rokumigan, a famous TCM formula that may
nourish the balance of kidney yin yang) were obtained from
previous studies using natural language mining technology.
Then, the topological properties of LWDH genes were ana-
lyzed in PPINs. Interestingly, the LWDH genes were found
to have high intensive centrality in PPINs. This indicates
that the LWDH genes may have more important roles in the
biological process than other genes. We also found that the
distances within LWDH genes were smaller than other genes,
which indicates that the LWDH genes may respond rapidly
and synergistically to the common biological stimulation.
For further understanding the inner molecular mechanism,
a comprehensive network of LWDH genes was constructed
and some modules were found.

2. Materials and Methods

2.1. Extraction of LWDHGenes Using Text Mining Technology.
Considering the complexity of LWDH components and their
complex interactions in vivo, little is known about the target
genes of LWDH. The complex components of LWDH are
comprised with six herbs. But their genomes of the six herbs
that are components of LWDH have not been sequenced.
Thus, determining the target genes of LWDH was critical
for understanding the molecular mechanisms of LWDH.
The existing research regarding LWDH genes is scattered
in different groups around the world, even though the
total number of LWDH target genes is small. Currently,

researchers normally choose candidate genes for study by
extensive literature review. However, scientific literature is
now growing rapidly along with the development of the
life science. The database of PubMed biomedical literature
has over 23 million citations for biomedical literature from
MEDLINE, life science journals, and online books. Thus, it
is impossible for a researcher of a specific area to read all the
literatures in his field, not tomention the papers in the related
field. In this study, we obtained candidate LWDH target genes
for study using the text mining technology.

We obtained LWDH genes for study by mining and
analyzing the biomedical literature in PubMed with natural
language processing technology. Considering the composi-
tion of LWDH, we extracted LWDH genes according to the
components. As there are six herbs of LWDH, so we first
decomposed LWDH with several search terms correspond-
ingly, including Liu-wei-di-huang (LWDH, also known as
Rehmannia Six, Six-Ingredient Rehmannia, or Rokumigan),
Shan-zhu-yu (Fructus Corni), Ze-xie (Rhizoma Alismatis),
Dan-pi (Cortex Moutan), Di-huang (Radix Rehmaniae), Fu-
ling (Poria Cocos), and Shan-yao (RhizomaDioscoreae), and
combined these search terms with “or” or “and” logic oper-
ators. Second, we extracted literature about Homo sapiens
with the search terms in PubMed using eSearch and eFetch
with the SQL statement. Third, we analyzed the literature
with MEDLINE format files to get the gene name using the
gene/protein names recognition software AbGene and filed
the results manually [27]. At last, all the data were stored in
the MySQL 5.0.90 database and reorganized into one list.

2.2. Protein-Protein Interaction Network Construction. The
PPINs were constructed with a large number of proteins and
their interactions, where the nodes denote proteins and the
edges denote interactions between different nodes. PPINs are
the most frequently used biological networks for research
in computational system biology. PPINs are undirected net-
works that can be detected usingmultiplemethods, including
high-throughput and low-throughput experiments, such as
yeast two-hybrid, affinity capture-MS, synthetic lethality, and
reconstituted complex. In order to illustrate the robustness
of our results to the primary dataset, we generated two
different original datasets.The first is BioGrid and the other is
HPRD [28, 29]. Considering the false position rate, the high-
throughput data for both datasets were filed out. In this study,
the self-interactions were also eliminated.

2.3. The Topological Analysis of PPINs. To explore the roles
that LWDH genes play in PPINs, this study focused on the
centrality analysis of nodes. AS LWDH has the therapeutic
effects of recovering the balance of kidney yin and yang
in the complex whole-body environment, we hypothesized
that the LWDH genes products in PPINs have different
roles from other normal proteins. The centrality of one node
in network has different measurements, including degree,
betweenness, and clustering coefficient (Table 1) [30, 31]. We
obtained as many centrality measurements as possible to
explore the properties of LWDH genes. We obtained a total
of 9 centrality measurements. Among the 9 measurements,
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Table 1: Topological definition used in the study.

Name Definition Description

ASP
∑𝑗∈𝑁 𝑑𝑖𝑗

|𝑁||𝑁 − 1|

𝑁 denotes the set of all nodes in the PPI network; 𝑑𝑖𝑗 denotes the
shortest path between node 𝑖 and node 𝑗

Betweenness 𝐵𝑖 = ∑
𝑘 ̸=𝑗 ̸=𝑖∈𝑉

𝜎𝑘𝑖𝑗

𝜎𝑘𝑗


𝐵𝑖 represents the betweenness of node 𝐼, 𝜎𝑘𝑗 denotes shortest paths
between node pairs 𝑘 and 𝑗, and 𝜎𝑘𝑖𝑗 denotes that pass through the
node 𝑖

Closeness
1

avg(𝐿(𝑛,𝑚))
𝐿(𝑛,𝑚) is the length of the shortest path between two nodes 𝑛 and𝑚.
The closeness centrality of each node is a number between 0 and 1

Clustering coefficient
2𝑛𝑖
(𝑘𝑖(𝑘𝑖 − 1))

𝑛𝑖 is the number of links between all neighbors of node 𝑖

Degree 𝑘𝑖 The number of links to node 𝑖

Eccentricity 𝐸
Themaximum node eccentricity (𝐸) can be described as the network
diameter, which is the largest distance between two nodes

Radiality 𝑅 = 𝐷 − ASPL + 1
This attribute is a node centrality index computed by the diameter
(𝐷) of a node 𝑛’s the connected component plus 1 and subtracting the
average shortest path length (ASPL)

Stress 𝑝𝑖 𝑝𝑖 is the number of shortest paths passing through 𝑖

Topological
coefficient

𝑡𝑖 =
avg(𝐽(𝑖, 𝑗))
𝑑𝑖

𝑡𝑖 represents the topological coefficient of node 𝐼; 𝐽(𝑖, 𝑗) is the number
of neighbors shared between the nodes 𝑖 and 𝑗, plus one if there is a
direct link between 𝑖 and 𝑗. avg(𝐽(𝑖, 𝑗)) is the average value of 𝐽(𝑖, 𝑗). 𝑑𝑖
is degree of node 𝑖

degree is the basic element in the topological analysis which
was used to detect the number of edge links to the node.
Besides, all other topological properties can be used to
measure the centrality of nodes in biological networks. In
general, the higher the centrality of one node, the more
important roles it plays in biological networks. For detailed
description, we took some properties as examples to illustrate
theirmeanings. Average shortest path length (ASP) is defined
as the average length between a node and all the nodes in
biological networks. Closeness centrality is defined as the
reciprocal of the average shortest path length of one node
which can be used as a measure of how fast information
spreads from a given node to all other reachable nodes
in biological networks. In undirected biological networks
(such as PPINs), clustering coefficient of a node is defined
as the proportion of the observed connections between the
neighbors of this node against the maximum number of
possible connections among them. Clustering coefficient is
used to indicate the close extent of the local neighborhood of
one node. Topological coefficient is a relative measurement
of the tendency of one node in biological networks to have
shared interactive partners with other nodes. For more in-
depth interpretation of these concepts, one can get the exact
definitions of these topological properties from Table 1.

In this study, we also paid close attention to the contacts
within LWDH genes. There is one hypothesis that if the
LWDH genes studies here had the same functions and acted
on the same biological processes, it is expected that the
distances among LWDH genes should be shorter than the
average distance in background network. A shorter distance
between two nodes in networkwill be helpful for information
communication. Thus, this study will analyze the shortest
path length among the LWDH genes.

Both the centrality analysis and shortest path length
comparison were performed using the software Cytoscape
version 3.0.0 [32, 33].

2.4. Construction and Analysis of Comprehensive Network
about LWDH Genes. An integrated biological network was
constructed (Figure 1). Firstly, we got the drug targets and
drug-drug interaction information fromDrugBank [34]. Sec-
ond, the transcriptional regulation information was obtained
from Transfac [35]. Third, we also detected the effects of
posttranscriptional regulation on LWDH genes withmicroR-
NAs (miRNAs) and the related targets of miRNAs were from
Tarbase, which only collected the results of experimental
verification [36].

3. Results

3.1. LWDH Genes. Based on the text mining in PubMed, we
first got all the references about LWDH. There are 151 816
entries, including 3228 references, 107 species, and 145 099
genes; see Table S1 in SupplementaryMaterial available online
at http://dx.doi.org/10.1155/2014/484926. As we focused on
the genes that play roles in human, we considered genes
on other species as false positive results. After the filter of
species, we got total of 107 manually collected entries from
which we can get LWDH genes with different searching
conditions, including 96 unique genes related to LWDH in
61 literatures (Table S2). From the results, we found that di-
huang is the core component of LWDH and had been most
thoroughly investigated. Di-huang related genes were studied
in 101 times. These studies included 93 unique genes in 56
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Figure 1: Workflow diagram of our approach to construct comprehensive biological network about LWDH genes. The left frame represents
the component of LWDH. After the mining of related genes of LWDH based on natural language technology in PubMed, comprehensive
information was obtained, including protein-protein interaction, transcription regulation, drug-drug interaction, and drug-target interaction
(middle frame). At last, the comprehensive network of LWDH genes was constructed (right frame).

literatures. On the other hand, no research was found for ze-
xie related genes. When the LWDH genes were mapped to
the most component in PPINs, the total numbers of LWDH
genes remain 71 and 65 in BioGrid and HPRD, respectively.

To verify the function of the LWDH genes, we performed
a function enrichment analysis using gene ontology (Table 2).
From the results, we found that the regulation of cell apopto-
sis and death is the main function of LWDH genes, which is
consistent with previous study [37].

3.2. Protein-Protein Interaction Networks. There were a total
of 10,996 nodes and 54,433 edges in BioGrid primary. After
removing the isolated nodes, there were 10,768 nodes and
52,993 edges. Similarly, there were a total of 9,453 nodes
and 36,888 edges in HPRD primary, and after removing
the isolated nodes, there were 9,205 nodes and 36,748
edges. The LWDH genes that were mapped to the PPINs
formed subnetworks that showed the core genes and their
information communication path between them. Figure 2
shows that ESR1, STAT3, EP300, and so forthhave important
positions in two subnetworks from both the BioGrid and
HPRD datasets, respectively. The results indicate that these
genes have important functions in the LWDH interaction
environment.

3.3. Centrality of LWDH Genes in PPINs. In the centrality
analysis of PPINs, 9 measurements in Table 1 were compared
between the nodes which belong to LWDH genes (abbre-
viation as LWDH) and the nodes which do not belong to
LWDH genes (abbreviation as Other). All the computations
were processed with 𝑡-test in 𝑅 program. Results show that
the LWDH genes have higher centrality than the other nodes
in the PPINs (Tables 3 and 4). The BioGrid results showed

that 8 out of the 9 measurements of the LWDH genes
were significantly greater than the other nodes (Table 3). The
HPRD dataset also supports the same tendency (Table 4).

3.4. Shortest Path Length Comparison. In order to explore the
modularity within LWDH genes, we processed the compu-
tation about the shortest path length. As one famous herbal
formula, LWDH is widely used and has been proved to be
useful. If the LWDH gene is detected correctly, it is expected
that the LWDH genes may show modularity and have closer
connections inside themselves than the random chosen ones.
In order to verify this hypothesis, the connection extent
between each other among LWDH genes was compared
with the background PPINs used shortest path length. As
the expectation, Figure 3 supports that hypothesis. In the
BioGrid datasets, the mean distance between the LWDH
genes was 3.33, and if two nodes in the PPINs were chosen
randomly, the expected distance was 4.20 (with 𝑃 < 2.23𝐸 −
308) (upper panel of Figure 3). Similar to the BioGrid results,
the mean shortest path length of the LWDH genes in the
HPRD was 3.28, compared to 4.23 in the random situation
(with 𝑃 = 1.53𝐸 − 271) (lower panel of Figure 3).

3.5. Comprehensive Network of LWDH Genes. The network
reflects the impacts of both biological molecules and syn-
thetic compounds (Figure 4). It contains 4 types of nodes,
including 62 LWDH genes, 301 transcriptional factors (TFs),
85 miRNAs, and 83 chemical compound drugs. Among these
nodes, there were 5 types of edges, including 63 protein-
protein interactions (from both HPRD and BioGrid), 516 TF
transcriptional regulations, 113 miRNA posttranscriptional
regulations, 106 drug-target relationships, and 40 drug-drug
interactions (Table S3). From the network, we obtained
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Table 2: Functional enrichment analysis of LWDH genes in the biological process branch of GO.

GOID Term Count Count% 𝑃 value FDR
GO:0043066 Negative regulation of apoptosis 18 18.9 4.00𝐸 − 12 6.80𝐸 − 09

GO:0043069 Negative regulation of programmed cell death 18 18.9 5.00𝐸 − 12 8.50𝐸 − 09

GO:0060548 Negative regulation of cell death 18 18.9 5.30𝐸 − 12 8.90𝐸 − 09

GO:0042981 Regulation of apoptosis 23 24.2 1.10𝐸 − 10 1.90𝐸 − 07

GO:0043067 Regulation of programmed cell death 23 24.2 1.40𝐸 − 10 2.30𝐸 − 07

GO:0010941 Regulation of cell death 23 24.2 1.50𝐸 − 10 2.50𝐸 − 07

GO:0010033 Response to organic substance 20 21.1 5.30𝐸 − 09 9.00𝐸 − 06

GO:0006916 Antiapoptosis 12 12.6 1.20𝐸 − 08 2.10𝐸 − 05

GO:0042127 Regulation of cell proliferation 20 21.1 2.20𝐸 − 08 3.70𝐸 − 05

GO:0009719 Response to endogenous stimulus 15 15.8 2.70𝐸 − 08 4.70𝐸 − 05

GO:0070482 Response to oxygen levels 10 10.5 6.20𝐸 − 08 1.10𝐸 − 04

GO:0009725 Response to hormone stimulus 14 14.7 6.90𝐸 − 08 1.20𝐸 − 04

GO:0043065 Positive regulation of apoptosis 14 14.7 4.30𝐸 − 07 7.30𝐸 − 04

GO:0043068 Positive regulation of programmed cell death 14 14.7 4.60𝐸 − 07 7.90𝐸 − 04

GO:0010942 Positive regulation of cell death 14 14.7 4.90𝐸 − 07 8.30𝐸 − 04

GO:0001666 Response to hypoxia 9 9.5 5.90𝐸 − 07 1.00𝐸 − 03

GO:0048545 Response to steroid hormone stimulus 10 10.5 8.60𝐸 − 07 1.50𝐸 − 03

GO:0001776 Leukocyte homeostasis 6 6.3 1.30𝐸 − 06 2.20𝐸 − 03

GO:0042592 Homeostatic process 17 17.9 1.90𝐸 − 06 3.20𝐸 − 03

GO:0006915 Apoptosis 15 15.8 3.30𝐸 − 06 5.70𝐸 − 03

GO:0051384 Response to glucocorticoid stimulus 7 7.4 3.80𝐸 − 06 6.40𝐸 − 03

GO:0012501 Programmed cell death 15 15.8 4.00𝐸 − 06 6.70𝐸 − 03

GO:0043029 T cell homeostasis 5 5.3 4.40𝐸 − 06 7.40𝐸 − 03

GO:0045884 Regulation of survival gene product expression 5 5.3 4.40𝐸 − 06 7.40𝐸 − 03

GO:0008219 Cell death 16 16.8 5.40𝐸 − 06 9.10𝐸 − 03

GO:0016265 Death 16 16.8 5.80𝐸 − 06 9.90𝐸 − 03
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Figure 2: Subnetwork of LWDH genes from BioGrid and HPRD.
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Table 3: Centrality analysis of LWDH genes in BioGrid.

Measurements LWDH Other 𝑃 value − log 10(𝑃 value)
ASP 3.322458 3.756768 7.13𝐸 − 12 11.14671
Betweenness 0.002336 0.000242 1.49𝐸 − 11 10.82709
Closeness 0.308365 0.27118 7.01𝐸 − 18 17.15445
Clustering coefficient 0.113448 0.156074 0.155779 0.807491
Degree 46.88732 9.596803 1.64𝐸 − 31 30.78599
Eccentricity 7.309859 7.731794 2.9𝐸 − 08 7.537242
Radiality 0.788867 0.749385 7.13𝐸 − 12 11.14671
Stress 5075568 500694.1 1.36𝐸 − 16 15.86601
Topological coefficient 0.129467 0.178003 0.032223 1.491832

Table 4: Centrality analysis of LWDH genes in HPRD.

Measurements LWDH Other 𝑃 value − log 10(𝑃 value)
ASP 3.773832 4.229902 4.34𝐸 − 10 9.362655
Betweenness 0.002235 0.000337 2.59𝐸 − 25 24.58708
Closeness 0.270647 0.240556 3.86𝐸 − 15 14.4135
Clustering coefficient 0.061171 0.10591 0.088168 1.054689
Degree 30.52308 7.82407 8.74𝐸 − 36 35.05851
Eccentricity 9.323077 9.803829 9.55𝐸 − 08 7.019855
Radiality 0.801869 0.769293 4.34𝐸 − 10 9.362655
Stress 2551317 349608.7 1.47𝐸 − 29 28.83402
Topological coefficient 0.103758 0.201088 3.1𝐸 − 05 4.508613
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Figure 3: Comparison of the shortest path length between pairs of
LWDH genes and pairs of other nodes. The left groups represent
pairs of genes that are related to LWDH, and the right groups repre-
sent pairs of genes that are not related to LWDH.The measurement
of SPL means the shortest path length of gene pairs in each group.

a panoramic view of the molecular interaction pathway of
LWDH genes. Furthermore, the modules around the LWDH
genes were found in the comprehensive networks. According

to the types of nodes around the LWDH genes, the modules
were classified into three types: the first one is drugs (drug-
module); the second one is TFs (TF-module); the third one
is a mix of TFs and miRNAs (mixed-module). As a typical
example of drug-module, ATF3was targeted by a lot of drugs
(upper right of Figure 4). Because ATF3 relates with both
LWDH and lots of drugs, there should be common biological
pathway through ATF3 that is shared by LWDH and these
drugs. On the basis of common pathway about ATF3, this
research may provide some novel molecular mechanism
about the treating of disease with LWDH. CYP3A4 is one
typical TF-module, which is targeted by lots of TFs (lower
left of Figure 4). This result indicates that CYP3A4 may
be a key crosstalk link to the pathways of these TFs in
vivo. Considering the relationship between LWDH and these
TFs through CYP3A4, we infer that LWDH implements
its function of treating disease synergistically with these
pathways of the TFs. As a TFs and miRNAs mixed-module,
BCL2 is around with lots of TFs and miRNAs (upper left of
Figure 4). This means that BCL2 may play roles from both
transcriptional and posttranscriptional regulation levels.

4. Discussion

Facing the difficulty of studying the molecular mechanism
about TCM targets, this research provided some novel
approaches to reveal new characters of TCM genes in bio-
logical network. Through the example of LWDH, we got
their candidate target genes based on natural language text
mining technology and found that they may play important
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Figure 4: Comprehensive network of LWDH genes. Green represents drugs; purple represents LWDH genes; blue represents TFs; cyan
represents miRNAs.

roles in PPINs. We also found that LWDH genes have rela-
tively close communication in common biological process.
Understanding the characteristics of TCM herbal formulas
in complex biological networks, particularly through the
molecular mechanism exploration, will not only benefit the
modernization of TCM but may also be helpful for the
development of new drugs [2, 17].

To address the lack of known target genes of LWDH,
this study extracted all the known genes related to LWDH
in Homo sapiens using natural program technology and
deemed them LWDH genes. We used OMIM datasets as
the criterion for validating the effectiveness of text mining
methods for obtaining LWDH genes [38] (Table 5). The
results showed that LWDH genes were mainly related to
diseases of nosohemia and cancer, which is consistent with
previous research [7, 39, 40]. Compared with Liang et
al. research, our work provided all the genes in existing
literatures and characterized the topological properties in

biological networks firstly [7]. This strategy will be helpful
for the traditional biological medicine research fields, which
are still lacking genome information for the herbs that
comprise LWDH. Using computational methods, this study
obtained the LWDH genes from a large number of literatures
rapidly. Considering the automation during the search of
the literatures and the false positive results that were hidden
in the literatures, the results of this study may need to
be adjusted with new text searching technology and more
abundant information in future.

Based on the extracted LWDH genes obtained frommag-
nanimous literatures, we constructed two protein-protein
interaction networks from different datasets and processed
some topological analysis. Both analyses showed that the
LWDH genes have higher centrality in PPINs, which indicate
that they may play more important roles in complex whole-
body environments. When one node has higher central-
ity properties in biological network, there would be more
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Table 5: Diseases related to LWDH genes in OMIM.

Gene symbol Location MIM number Disorders

ALB 4q13.3 103600
Analbuminemia;
dysalbuminemic
hyperthyroxinemia

APOA5 11q23.3 606368 Hypertriglyceridemia
BAX 19q13.33 600040 Colorectal cancer
BCL2 18q21.33 151430 Leukemia/lymphoma
KDR 4q12 191306 Hemangioma, capillary infantile
MET 7q31.2 164860 Renal cell carcinoma
PGR 11q22.1 607311 Progesterone resistance
PHB 17q21.33 176705 Breast cancer

information flow through it. These nodes may be regarded
as key components in network, which help to maintain
the stabilization of the molecular pathway. This result is
consistent with the concepts of TCM function “balance”
in regard to yin and yang, because only the proteins in
the center of PPINs may be convenient to get the global
information of body and can quickly respond to the whole-
body environment [2, 41].

Interestingly, we also found that there is a smaller distance
between the LWDH genes than would occur randomly.
This indicates that the function of LWDH is focused on
some particular biological process and that LWDH target
genes have sufficient and quick information interflow.This is
consistent with the well-known function of LWDH to help
maintain and restore the balance of kidney yin yang [41].
These results also indicate that the LWDHherbal components
are grouped together as the small distances between the nodes
in the PPINs which mean the concentration of function. If
one TCM herbal formula is expected to have good effects in
treatment, its components may all focus on one main func-
tion and execute a common biological process synergistically.

Based on system information, a comprehensive network
of LWDH genes was constructed. From that network, the
effects of both biological molecules and artificial chemical
drugs were clearly detected. Besides, some interesting results
were found.Three types of modules around the LWDH genes
were extracted from the comprehensive network. Genes in
drug-modules are candidate targets of LWDH in treating
disease. Observing genes in TF-modules can help researchers
to detect the molecular mechanism of LWDH in vivo. Genes
inmixed-modulesmay be helpful for exploring the epigenetic
effects of LWDH in posttranscriptional regulation.

5. Conclusions

This research describes a new approach to explore the molec-
ular mechanisms of TCM in complex biological networks.
The topological properties observed may be helpful for the
characterization and prediction of TCM target genes. The
shortest path length comparison may also provide some
criteria to estimate the rationality of TCM herbal formulas.
Different modules in the comprehensive network of LWDH
genes may provide a global perspective regarding TCM

molecular mechanisms. With the development of computa-
tional system biology, their advantages in processing big data
of biological medicine will be more significant.
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