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Abstract

Background: Reporting of absolute risk difference (RD) is recommended for clinical and epidemiological
prospective studies. In analyses of multicenter studies, adjustment for center is necessary when randomization is
stratified by center or when there is large variation in patients outcomes across centers. While regression methods are
used to estimate RD adjusted for baseline predictors and clustering, no formal evaluation of their performance has
been previously conducted.

Methods: We performed a simulation study to evaluate 6 regression methods fitted under a generalized estimating
equation framework: binomial identity, Poisson identity, Normal identity, log binomial, log Poisson, and logistic
regression model. We compared the model estimates to unadjusted estimates. We varied the true response function
(identity or log), number of subjects per center, true risk difference, control outcome rate, effect of baseline predictor,
and intracenter correlation. We compared the models in terms of convergence, absolute bias and coverage of 95 %
confidence intervals for RD.

Results: The 6 models performed very similar to each other for the majority of scenarios. However, the log binomial
model did not converge for a large portion of the scenarios including a baseline predictor. In scenarios with outcome
rate close to the parameter boundary, the binomial and Poisson identity models had the best performance, but
differences from other models were negligible. The unadjusted method introduced little bias to the RD estimates, but
its coverage was larger than the nominal value in some scenarios with an identity response. Under the log response,
coverage from the unadjusted method was well below the nominal value (< 80 %) for some scenarios.

Conclusions: We recommend the use of a binomial or Poisson GEE model with identity link to estimate RD for
correlated binary outcome data. If these models fail to run, then either a logistic regression, log Poisson regression, or
linear regression GEE model can be used.
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Background
Arguments have been made for reporting meaningful
treatment measures, such as absolute risk difference and
relative risk (RR), in clinical and epidemiological prospec-
tive studies [1–4]. For clinicians considering the likely
benefits of a treatment for individual patients, the most
relevant measure of treatment effect is the absolute dif-
ference in benefit or harm from two treatment options
[5–7]. For binary outcomes, this corresponds to the abso-
lute risk difference (RD) or its reciprocal, the number
needed to treat [2, 5–7]. By combining the RR and the risk
of the disease outcome, the number needed to treat tells
us how much the treatment reduces or increases risk for
an individual and hence the likelihood of benefit or harm
for that individual [5, 8]. Compared to the RR, the RD is
also better understood by clinicians and patients [9, 10].
For these reasons, the CONSORT statement recommends
reporting of both RD and RR for all trials with binary
outcomes [11].
In randomized clinical trials, estimates of RD can be

obtained from analysis of a 2 × 2 table, but regression
models are preferable when adjustment is needed for
design variables (e.g., stratifying variables) or for baseline
covariates that are strong predictors of outcome (to gain
efficiency) [12]. In multicenter trials, adjustment for cen-
ter is necessary when randomization is stratified by center
or when there is large variation in patients outcomes
across centers [13–15]. While the binomial model with
identity link is the natural choice to obtain adjusted RD
estimates, problems with convergence may limit its prac-
tical application [16, 17]. For uncorrelated binary data, an
average risk difference approach was proposed as a way
to calculate RD from a multiple logistic regression, con-
trolling for covariates in observational studies [18]. This
approach was shown to perform better than models with
identity link regarding bias, coverage and precision [19].
Yet, comprehensive model comparisons for RD computa-
tion in the context of clustered or correlated binary data
(e.g., data from a multicenter or cluster trial) have not
been conducted. In the present paper, we report results
of a simulation study investigating performance measures
of six models for calculating RD with correlated binary
data arising from a multicenter trial design. All models
are fitted under a generalized estimating equations (GEE)
framework, since GEE models have been shown to per-
form well for estimating RR and odds ratios (ORs) with
correlated data.

Methods
We consider a clinical trial study design involving J cen-
ters where subjects are randomized to treatment or con-
trol. We assume that outcomes from different centers are
independent, but outcomes from the same center are cor-
related. Letting π(1) be the probability of the outcome

with treatment and π(0) the probability of the outcome
with the control condition, the risk difference is defined
as π(1) − π(0). We can estimate this quantity with the
difference of the observed proportions, p̂1 − p̂0, or with
model-based estimates to adjust for baseline covariates
and clustering.
We examined six models that can be used to estimate

the RD while accounting for intracenter correlation. To
account for clustered data, we used GEE methods [20] to
fit all models assuming an exchangeable correlation struc-
ture where subjects’ outcomes from the same center have
equal correlation ρ with each other but are uncorrelated
with outcomes from subjects in other centers. Addition-
ally, we used robust sandwich variance estimators with
small sample correction to compute standard errors (SEs)
for the estimated RD [20, 21]. Robust SEs are typically
used with GEE methods to account for possible misspeci-
fication of the covariance structure and distribution of the
outcome (i.e., Poisson for binary outcomes).

Models
The models evaluated used either an identity link, a log
link, or a logistic link to model the probability πij of the
binary outcome yij.

Identity linkmodels
These models assume that

yij ∼ F(πij)

πij = α + β xij + γ zij (1)

where yij is the binary outcome for subject i (i =
1, 2, . . . , nj) in center j (j = 1, 2, . . . , J) with probability
πij, and F(·) is either a binomial, Poisson, or Normal dis-
tribution; xij is a binary indicator for treatment and zij is
a binary baseline covariate. The regression coefficient for
the treatment variable, β , is the estimated RD between
the treatment and control groups adjusting for the base-
line covariate and accounting for intracenter correlation.
The main disadvantage of these models is that the esti-
mate of πij may be outside of the [0, 1] range (and may not
be useful for estimating individual risks), and the binomial
model may have convergence problems. However, a direct
estimate of the RD is obtained from β .

Log linkmodels
Here we assume that

yij ∼ F(πij)

log(πij) = α + β xij + γ zij, (2)

where the β is the log RR of the disease comparing treat-
ment to control. For this link, we used a binomial or
Poisson distribution for yij. The log Poisson model is typi-
cally used to estimate RRs since it tends to be more stable
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than the log binomial model and gives consistent esti-
mates [16]. However, similar to the identity link models
the estimate of πij resulting from the log link models may
be larger than 1.
To estimate the average RD, we use Eq. 2 to estimate

subject-specific probabilities of the outcome under the
treatment and control conditions. We calculate the prob-
ability of the outcome if the subject is treated as π̂ij(1) =
exp(α̂ + β̂ xij + γ̂ zij), and π̂ij(0) = exp(α̂ + γ̂ zij) if the
subject does not receive treatment. We then estimate the
average RD for the whole study population as

R̂D = 1
n

∑
ij

(π̂ij(1) − π̂ij(0)) (3)

where n is the total sample size.

Logit linkmodel
Here we use the logistic regression model assuming that

yij ∼ Bernoulli(πij)

logit(πij) = α + β xij + γ zij. (4)

The coefficient β is the log odds ratio. Similar to the
log link models, we can use the logistic model 4 to esti-
mate the probability of the outcome for each subject under
treatment or control condition. For a given subject, the
probability of the outcome with treatment is

π̂ij(1) = exp(α̂ + β̂ xij + γ̂ zij)
1 + exp(α̂ + β̂ xij + γ̂ zij)

(5)

and

π̂ij(0) = exp(α̂ + γ̂ zij)
1 + exp(α̂ + γ̂ zij)

(6)

with no treatment. The average RD is again estimated with
Eq. 3.

Standard errors of the RD
For models with identity link, the SE for the RD was
obtained from the fitted model. For models with a log
or logit link, standard errors of the RD were calculated
using the delta method. A sampling correction factor of
J/(J −p− 1), where J is the number of centers and p is the
number of variables in the model, was applied to robust
SEs from all regression models to account for the small
number of centers [21].We used this corrected SE to com-
puteWald-type 95 % confidence intervals (CIs) for the RD:
R̂D ± 1.96 × SEcorrected(R̂D).

Simulation study
We assumed a multicenter randomized trial study design
with 18 centers to assess performance of the models with
a small number of centers (i.e., < 50), which is common

in perinatal trials [22–24]. Randomization is stratified by
center using blocks of size four with approximately equal
number of subjects per center. We considered two sets of
different simulation scenarios. The first set assumes a true
identity link response function as in (1), and the second set
assumes a true log link function shown in (2). We include
the log function to check the robustness of the models
since we cannot know whether a real data set comes from
an additive or multiplicative model. For both sets of sce-
narios, we varied the number of subjects per center (nj),
the outcome rate in the control group (πc), intracenter
correlation coefficient (ICC), true RD, and the effect of the
baseline covariate on the outcome.

Data generation with true identity link function
We simulated 1000 trial datasets for each combination of
the parameters using the model with identity link func-
tion:

yij ∼ Bernoulli(πij)

πij = α + β xij + γ zij + νj. (7)

The treatment indicator xij was generated by ran-
domization stratified by center, covariate zij from
Bernoulli(0.3), and random center effect νj from
Normal(0, σ 2) to induce the center correlation. The
number of subjects per center nj was 10, 50, or 100 (total
sample sizes of 180, 900, or 1800) corresponding to small,
medium, and large sample sizes. Outcome rate in the
control group, α = πc, was 0.10, 0.25, or 0.50. Values
of β = 0, 0.05, 0.10, and 0.15 corresponding to true
RDs ranging from no effect to a large treatment effect
were considered. The covariate effect γ was 0.5α or 0
corresponding to a 50 % increased risk in the presence
of the covariate (an effect strong enough such that it
would be included in the design or analysis) or no effect
(i.e., no baseline covariate). The ICC ρ was set to 0.01,
0.05, or 0.10 which are values typically found in clinical
cluster trials [25, 26]. We calculated the center variance
as σ 2 = ρ π̄(1 − π̄), where π̄ = α + 0.5β + 0.3γ is
the average probability of the outcome among the entire
study population [27]. The values of σ 2 ranged from 0.001
to 0.025. Whenever the simulated πij was outside the [0,1]
interval, a new value of the random center effect νj was
sampled until 0 < πij < 1.

Data generation with true log link function
Since our main interest is in the estimation of the aver-
age RD, we assume the same true RD (0, 0.05, 0.10, 0.15)
and control outcome rate πc (0.10, 0.25, 0.50) values as for
the identity response simulation set. We generated 1000
datasets from the log link function model:

yij ∼ Bernoulli(πij)

log(πij) = α + β xij + γ zij + νj. (8)
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The xij’s were obtained from the randomization; zij’s,
and νj’s were generated from a Bernoulli(0.3) and
Normal(0, σ 2), respectively. ICC values of 0.01, 0.05, or
0.10 were again used for ρ, and nj = 10, 50, 100. For the log
link function, we calculated the center variance based on a
variance transformation approximation [27, 28] with σ 2 =
ρ (1−π̄)/π̄ , where π̄ = exp(α+0.5β+0.3γ ). Values of σ 2

ranged from 0.006 to 0.90. To correspond with the values
used in the identity response simulation set, the parameter
values in model (8) were α = log(0.1), log(0.25), log(0.5);
γ = log(1.5), 0; and β = log(1 + RD/exp(α + 0.3γ )). We
again restricted the simulated πij to the [0,1] interval by
generating a new value of νj whenever the πij fell outside
this interval.
Using a fully factorial study design, we investigated a

total of 432 simulation scenarios (2 response functions ×
4 true RDs × 3 control outcome rates × 3 ICCs × 3 sam-
ple sizes × 2 covariate effects). All the simulations and
computations were performed in R 3.1.1 [29]. All mod-
els were implemented using the geese function in the
R package geepack [30–32]. Unadjusted RD estimates
(and CIs) were obtained using the epi.2by2 function
from the epiR package [33]. We provide sample code in
the Additional file 1 for calculating the RD and SEs from
all GEE models for scenarios with covariate adjustment.

Performance measures
Under each simulation scenario, we analyzed each of the
1000 data sets with the six GEEmodels and the unadjusted
method (to evaluate the impact of ignoring the intracenter
correlation): 1) binomial identity; 2) Poisson identity; 3)
Normal identity; 4) log binomial; 5) log Poisson; 6) logis-
tic; 7) unadjusted 2× 2 table analysis. We computed point
estimates, SEs, and 95 % CIs for the RD.We evaluated and
compared the different models based on convergence rate
(model runs and converges), absolute bias, and coverage
of the 95 % CI. Absolute bias was calculated as the aver-
age difference between the estimated RD and the true RD.
The coverage of the 95 % CI is the proportion of simula-
tions resulting in 95 % CIs for the RD that include the true
RD. When computing bias and coverage for a model, we
only included the datasets for which that specific model
converged.

Results
Results for πc = 0.10 and 0.25 with a baseline covari-
ate are shown in Figs. 1, 2, 3, 4, 5 and 6. Graphs of the
results for all other simulation scenarios are included in
the Additional file 1.

True identity link function
Scenarios without a baseline covariate
All models ran without errors. Absolute bias from all
models is virtually the same with magnitude of± 0.004 for

nj = 10 and even smaller for the larger sample sizes. Cov-
erage of the 95 % CIs was within the 95 % nominal level
(93.6–96.4 %) for the majority of scenarios and models.
However for some scenarios with smaller values of ICC,
small sample size, or large true RD, the coverage of all the
GEE models was below 93.6 % (minimum coverage was
92 %). For the same scenarios the coverage of the unad-
justed method tended to also be low (lowest coverage was
also 92 %). Conversely, for some scenarios with the largest
ICC of 0.10, the coverage of the unadjusted RD estimates
was larger than the nominal value indicating conservative
CIs (maximum coverage was 97 %).

Scenarios with a baseline covariate
The log binomial model failed to converge for a large por-
tion of the datasets for scenarios with πc = 0.50 and hence
we do not report results from this model for this con-
trol rate. For πc = 0.10, 0.25, the log binomial, binomial
identity, and Poisson identity models did not converge for
small proportions of the datasets (< 3 %,< 3 %,≤ 3 %).
The point estimates of RD from all the GEE models were
very similar with very little bias, especially as the sample
size increases (Additional file 1: Figures S.7–S.9). The cov-
erage of the 95 %CIs is very similar for all the GEEmodels,
and all are close to the nominal level (Figs. 1 and 2). Again
for a few scenarios with the largest ICC (Fig. 2), the cover-
age of the CI for the unadjusted RD estimate is larger than
the nominal value.

True log link function
Scenarios without a baseline covariate
All models ran without errors, and point estimates of RD
from all models were the same. Here, the bias increases
as the true RD increases for πc = 0.10, 0.25 with maxi-
mum bias of 0.03 and 0.01, respectively (Additional file 1:
Figures S.11–S.13). Coverage probability from all GEE
models is very similar and close to the 95 % nominal value,
although the coverage is below 90 % for a few scenarios
with πc = 0.10 and ICC ≥ 0.05. The unadjusted method
has poor coverage (62–90 %) for ICC > 0.01 and nj >

10 when πc = 0.10, 0.25 (see Additional file 1: Figures
S.14–S.15). These scenarios correspond to larger values of
center variance (σ 2 > 0.07) where the unadjusted model
vastly underestimates the SE of the RD.

Scenarios with a baseline covariate
The log binomial model again failed to converge for a large
portion of datasets for πc = 0.50, and we again exclude it
from the results. The identity Poisson and binomial mod-
els also failed to converge for scenarios with the smallest
sample size (< 3 and < 4 %, respectively). All other mod-
els ran without errors for all datasets. Bias from all models
is very similar and increases as RD and ICC increase
(Figs. 3 and 4). The smallest bias resulted from the Poisson
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Fig. 1 Coverage of 95 % CIs for scenarios with true identity link function including a baseline covariate for control outcome rate πc = 0.10

identity model for scenarios with πc = 0.10, 0.25 and from
the binomial identity model when πc = 0.5 and ICC ≥
0.05, although differences between the models are small.
Coverage varied depending on the true πc. For scenar-

ios with πc = 0.10, with the exception of the unadjusted
method all other models resulted in similar coverage very
close to the nominal value. The unadjusted method had
very poor coverage (≤ 90 %) when ICC > 0.01 and
nj ≥ 50 (Fig. 5), which again correspond to scenarios with
larger values of σ 2(> 0.24). For scenarios with πc = 0.25,
all models had good coverage although the unadjusted
method had lower coverage for ICC > 0.01, nj = 100 and
RD=0.15 (σ 2 > 0.10; Fig. 6). For πc = 0.50, all models
had low coverage (86–93 %) for RD = 0.15, ICC > 0.05,
and nj ≥ 50(σ 2 > 0.06; Additional file 1: Figure S.18).
For these scenarios, the probability of the outcome in the
treatment and covariate group is close to the parameter
boundary of one. In these instances, the binomial identity
model had the coverage closest to nominal.

Applications
We present two examples to illustrate the similar perfor-
mance of the GEE models in randomized studies with
slightly different designs than those studied in the sim-
ulations. The first example is a cluster randomized trial,
and the second is a multicenter trial with small number of
centers.

Cluster trial example
The ASSIST trial assessed the effectiveness of three differ-
ent interventions for improving the secondary preventive
care of patients with coronary heart disease delivered
at the level of general practice [34]. This study was a
cluster trial where 21 general practices were randomized
to the three interventions. The control group received
audit of notes with summary feedback to primary health
care team. The intervention groups received assistance
with setting up a disease register and systematic recall
of patients to either general practitioner or a nurse led
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Fig. 2 Coverage of 95 % CIs for scenarios with true identity link function including a baseline covariate for control outcome rate πc = 0.25

clinic. The primary outcome was adequate assessment of
3 risk factors (blood pressure, cholesterol, and smoking
status) at 18 months follow-up. We analyzed the data pre-
sented by Thompson et al. [27] using all 6 GEE models
and the unadjusted method. We grouped the 2 interven-
tion groups together and compared them to control. The
number of patients in each practice ranged from 25 to 222
and the observed proportion of the outcome ranged from
0.38 − 0.73 in control practices and 0.54 − 0.95 in inter-
vention ones. The point estimates and 95 % CI of the RD
from all the regression models are identical (0.315, 95 %
CI: 0.194, 0.436), and they are very similar to the Bayesian
estimates reported by Thompson et al. (0.301, 95 % CI:
0.175, 0.435). The unadjusted method gives a lower esti-
mate of the RD with a narrower CI (0.285, 95 % CI: 0.238,
0.331). However, the conclusions drawn from any of these
estimates would most likely be the same.

Multicenter trial with small number of centers
To compare model estimates in a study with a small num-
ber of centers, we also analyzed the data presented by

Beitler and Landis [35] arising from an 8 center random-
ized trial. The study evaluated the efficacy of an active
drug compared to control in treating an infection. The
rate of success in the active drug group varied from
9–80 % in the 8 centers whereas the control group had
rate of success from 0–86 % (Table 1). We fitted the 6
GEE models as well as the unadjusted method to data
from 273 subjects from the 8 study centers. Table 2 shows
the estimated RD from the different methods. All 6 GEE
models give almost identical RD estimates (0.125–0.127)
and SEs as well as estimates of ICC. The 95 % CIs from
the GEE models do not cross 0 and would be considered
statistically significant. In comparison, the unadjusted RD
estimate is lower and not significant (0.094, 95 %CI: –0.20,
0.21) although the SE is the same as from the GEEmodels.
This difference in RD estimates from the GEE and unad-
justed model is in part due to the large variability in the
response rate across the 8 centers (and hence large ICC
of 0.22), which is accounted for in the GEE models. As
pointed out by a reviewer, this difference can be largely
accounted for by the imbalance in the number of patients
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Fig. 3 Absolute bias for scenarios with true log link function including a baseline covariate for control outcome rate πc = 0.10

in each arm across the centers. When we exclude the cen-
ter with the largest baseline difference (center 2 with 20
active vs 32 control patients), the estimated RDs are very
close (0.133 from GEE models vs 0.129 from unadjusted
model).

Discussion
In clinical and epidemiological studies with binary out-
comes, it is preferable to report the RD or the number
needed to treat since these effect measures are more eas-
ily understood compared to relative risks or odds ratios
[5–7]. For patients and clinicians alike, it is much easier
to weigh the treatment benefits and risks using the abso-
lute RD than using the RR [36]. For multicenter studies,
it is important to adjust for possible center correlation
when computing treatment effects, particularly when cen-
ter variability is large or when randomization is stratified
by center since unadjusted SEs will be too large and
lead to diminished power and possibly erroneous con-
clusions [13–15]. While regression methods have been

proposed to estimate RDs in cluster trials [27, 37], no
studies have been previously conducted to evaluate the
performance of the most widely used methods, particu-
larly in multicenter studies with a small number of centers
(< 50).
In this paper, we evaluated the performance of six

different GEE models to estimate both unadjusted and
covariate-adjusted RD while accounting for within-center
correlation. We compared all models in terms of abso-
lute bias and coverage under various simulation scenarios.
We also assessed the convergence rate for all the methods
since non-convergence is a known issue for the binomial
with log and identity links as well as for the Poisson with
identity link [16, 38]. We assessed the robustness of the
methods to model misspecification by assuming a true log
response function as well as an identity response. For sce-
narios without a covariate under both response functions,
all regression models converged and performed equally
well regarding absolute bias and coverage of the 95 %
CIs. The unadjusted method introduced little bias to the
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Fig. 4 Absolute bias for scenarios with true log link function including a baseline covariate for control outcome rate πc = 0.25

RD estimates, but its coverage was larger than the nom-
inal value in some scenarios with an identity response.
Under the log response, coverage from the unadjusted
method was well below the nominal value (< 80 %) for
scenarios with larger values of center variation where the
unadjusted model underestimates the SE of the estimated
risk difference. Even with the small sample correction
factor, the CIs from the GEE models also had cover-
age lower than 95 % in some scenarios. Although the
coverage obtained here is similar to that reported for
estimating RRs [16, 39, 40], other variance adjustment
methods to correct for the small number of clusters [21]
or bootstrap estimates [41] may perform better. Alterna-
tively, model-based SEs may be another option for GEE
models [13].
For scenarios where a baseline predictor was included,

the log binomial model did not converge for a large por-
tion of the scenarios evaluated. This problem has been
widely experienced and noted in both RCTs and observa-
tional studies with either independent or clustered data

[16, 39, 40]. The binomial and Poisson with identity mod-
els also failed to converge for some data sets (< 4 %) with
small sample size.
While the logistic model performed very similar to the

other GEE models, it might provide some challenges to
analysts since the estimation of the RD is not straightfor-
ward as it is for models with an identity link. Furthermore,
SEs are not directly obtained from the output and require
extra steps to compute. We provide sample code in the
Additional file 1 using the deltamethod. The linear regres-
sion model is not usually considered for binary data.
However, for estimation of RD it appears to be a pos-
sible solution when paired with robust SEs. It has been
previously evaluated for uncorrelated data with similar
performance as the results shown here [38]. Given its ease
of implementation in existing statistical software, consid-
eration might be given to this method if a binomial or
Poisson with identity link model fails to converge.
We focused on comparing GEE methods since they

are often used for correlated or clustered data and have
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Fig. 5 Coverage of 95 % CIs for scenarios with true log link function including a baseline covariate for control outcome rate πc = 0.10

been shown to perform well for estimating RRs and ORs
[13, 26, 37, 40, 42]. However, generalized linear mixed
models or random effects models may also be used
to analyze correlated data. Estimates derived from ran-
dom effects models are interpreted as center-specific as
opposed to population-averaged (or marginal) interpre-
tation of GEE estimates. We note that under an iden-
tity link, the RD point estimates from GEE and random
effects models are the same [43, 44]. However, it would
be important to investigate differences in the SEs and
evaluate the performance of random effect models with
logit or log links for estimating RD for correlated binary
outcomes.
Our results from the binomial with identity link GEE

model are similar to those obtained in a study by
Ukoumunne et al. [37] using the same model to ana-
lyze data from cluster trials. Given the good performance
of GEE models for estimating RRs and ORs in CRTs
[26, 37, 42, 45], we would expect the GEE models with
identity link to perform well when estimating RD for

cluster trial data, but it is unclear how the other links
would perform in this setting.
Our simulation study was limited to one number of cen-

ters and an equal number of subjects within each center.
However, for logit and log link GEE models others have
noted similar performance when the number of centers
and distribution of subjects within centers were varied
[13, 39, 40, 45]. These models have also been shown to
performwell with as few as 5 centers [13].We did not con-
sider fixed effects models since for binary outcomes these
methods require small number of centers (i.e., 2–3) oth-
erwise the treatment effect estimate can be biased and the
type I error rate inflated [13]. Treating center as a fixed
effect can also lead to exclusion of patients in centers that
do not have adequate number of patients or events [46].
Our study evaluated a randomized trial design. How-

ever, we would expect center variability or within-center
correlation to be a larger issue for observational stud-
ies where it is not unusual for centers to differ in the
interventions used as well as their patient populations
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Fig. 6 Coverage of 95 % CIs for scenarios with true log link function including a baseline covariate for control outcome rate πc = 0.25

[13, 47]. While it is unusual for more than one base-
line covariate to be included in the primary analysis
of an RCT, adjustment for more than one covariate
or alternative methods such as propensity scores may
be needed in an observational study setting, and the

Table 1 Data from a multicenter trial comparing the efficacy of
an active drug and control for curing an infection [35]

Response

Center Active No./Total (%) Control No./Total (%)

1 11/36 (31) 10/37 (27)

2 16/20 (80) 22/32 (69)

3 14/19 (74) 7/19 (37)

4 2/16 (13) 1/17 (6)

5 6/17 (35) 0/12 (0)

6 1/11 (9) 0/10 (0)

7 1/5 (20) 1/9 (11)

8 4/6 (67) 6/7 (86)

methods evaluated here may perform differently in these
scenarios.
We also did not consider the presence of an interaction

between the intervention and a covariate or intervention
and center. These situations are important, particularly if
we are trying to evaluate heterogeneity of treatment effect.
We recommend that these issues be evaluated in future
studies.

Table 2 Estimates of risk difference (RD) for a multicenter trial
comparing active drug and control group presented in Table 1

Model RD SE 95 % Confidence interval ICC

Binomial identity 0.126 0.059 0.011, 0.241 0.218

Poisson identity 0.125 0.058 0.012, 0.238 0.219

Normal identity 0.127 0.060 0.011, 0.244 0.217

Binomial log 0.126 0.059 0.011, 0.241 0.218

Poisson log 0.125 0.058 0.012, 0.238 0.219

Binomial logit 0.126 0.059 0.011, 0.241 0.218

Unadjusted 0.094 0.058 –0.020, 0.209 –
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Conclusion
In conclusion, we recommend adjusting for center in mul-
ticenter studies. In an RCT setting with small number
of centers, GEE regression models perform well for the
estimation of RD, even under a misspecified model. Our
results support the use of a binomial or Poisson GEE
model with identity link and robust variance estimates.
In cases where these models fail to run either a logis-
tic regression, log Poisson regression, or linear regression
GEE model with exchangeable correlation and robust
standard errors (with small sample size correction if num-
ber of centers is < 50) can be used to estimate the risk
difference with correlated binary data. When preparing
statistical analysis plans, we would recommend to state an
alternative method of analyses in case of non-convergence
of the primary method.

Additional file

Additional file 1: Additional results and sample R code. (PDF 275 kb)
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