
Mutational Robustness of Gene Regulatory Networks
Aalt D. J. van Dijk1,2,3*, Simon van Mourik2, Roeland C. H. J. van Ham1¤

1 Applied Bioinformatics, PRI, Wageningen UR, Wageningen, The Netherlands, 2 Biometris, Plant Sciences Group, Wageningen UR, Wageningen, The Netherlands,

3 Netherlands Consortium for Systems Biology (NCSB), Amsterdam, The Netherlands

Abstract

Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon
mutations that change network structure. Such networks contain regulatory interactions (transcription factor – target gene
interactions) but often also protein-protein interactions between transcription factors. Using computational modeling, we
study factors that influence robustness and we infer several network properties governing it. These include the type of
mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a
regulatory interaction, the sign of the interaction (activating vs. repressive). In addition, we analyze the effect of
combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription
factors. Our results are consistent with available data on biological networks, for example based on evolutionary
conservation of network features. As a novel and remarkable property, we predict that networks are more robust against
mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding
residues in monomeric vs. dimeric transcription factors provides indirect evidence.
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Introduction

Transcription factors (TFs) regulate gene expression by binding

to DNA adjacent to target genes. In addition, TF proteins often

physically interact with each other and form protein dimers, which

in combination with regulatory interactions gives rise to an intricate

network of interactions. Aspects of TF-TF protein-protein interac-

tions and how these change during evolution have been studied

[1,2,3], and dimerization is known to be important for various TF

families [4]. Known or presumed biological roles of TF dimeriza-

tion include potential effects at the level of DNA recognition, such as

facilitated proximity and enhancement of DNA-binding specificity.

Roles at the level of the network output include that dimerization

might function to dampen noise due to fluctuations in monomer

concentrations [5], or might be important in attaining multistability

in certain types of networks [6]. Dimerization could also serve as a

means to generate ultrasensitive responses via molecular titration,

which occurs when an active subunit is sequestered into an inactive

heterodimer complex by a titrating molecule [7]. Depending on

interaction strength, dimerization also influences the kinetics of the

TF-DNA search process [8].

Perturbations of gene regulatory networks, either through input

concentrations, parameters of the interactions, or the network

topology, can result in changes in network output, i.e. the resulting

expression pattern. Robustness refers to the stability of this output

in response to perturbations, and although robustness against

perturbations of concentrations or against parameter changes has

obtained a lot of attention [9,10,11,12,13,14,15,16,17,18], the

effect of evolutionary tinkering with network structure via changes

in the sequences of the underlying components has received less

attention [18,19,20,21,22]. This is true in general, but in particular

for networks which contain dimerizing TFs. Given the biological

importance of TF dimerization as explained above, better

understanding of robustness of such networks would be valuable.

Computational studies of the effects of network rewiring have

been performed mainly using discrete approaches such as Boolean

Networks (BNs) or related models. Robustness and evolvability of a

BN under the process of gene duplication followed by divergence

was studied, and it was found that networks operating close to the

‘critical regime’, which depends on the network connectivity,

exhibit the maximum robustness and evolvability simultaneously

[23]. Several studies focused on the relation of robustness to

mutations with robustness to noise [19,20]. These two were shown

to be highly correlated [24]. In addition, nearly all networks can

evolve toward greater robustness through gradual changes in

topology. It was also shown that two networks with exactly the

same phenotype may produce very different innovations, depend-

ing on their topology [22].

Importantly, various experimental analyses indicate that gene

regulatory networks can be highly robust against network rewiring

[25,26,27]. However, network properties influencing it are not

clearly understood. Here, we analyze the relation between network

properties and mutational robustness using a computational

approach, in combination with an integrative analysis of various

experimental datasets.
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Results

We investigated robustness against mutations in large ensembles

of simulated network models (Figure 1). In these networks, two

types of interactions were present: TF-target gene (regulatory)

interactions, and TF-TF protein-protein interactions. In contrast

with previous studies of robustness and evolvability that used

discrete models, we used ordinary differential equations to

simulate networks. Each ensemble was constructed using specified

topology parameters and within ensembles, TF-TF and TF-target

gene interaction parameters were sampled. We applied two types

of mutations: protein-protein interaction mutations and mutations

of regulatory interactions. These mutations were designed such

that, for a protein interaction mutation, all regulatory interactions

were retained, and for a regulatory interaction mutation, all

protein interactions were retained. The difference between the

resulting expression pattern (network output) of mutated vs.

wildtype networks was represented by the metric Dmut; thresholds

for ‘‘small’’ and ‘‘large’’ differences, Dsmall and Dlarge, were derived

from experimental data and are described in the first part of the

Results section. After that, we describe the observations from our

simulations, followed by comparison with experimental data.

Expression data analysis and Dmut cutoffs
In our analysis of robustness of gene regulatory networks against

network rewiring, we want to characterize whether differences in

expression between two network variants are ‘large’ or ‘small’. We

use a metric Dmut to compute the difference between two such

expression patterns. An important methodological question is how

to determine a suitable cutoff for Dmut such that the difference

between the expression patterns is ‘‘small’’ or ‘‘large’’. The need

for a threshold value to define whether a mutation has a large

influence on network output arises because we use a continuous

instead of the previously used discrete approaches to study

robustness. In the latter, one typically finds the stable states of

wildtype and mutated networks and compares those to see

whether they are exactly identical or not. This is however not

directly applicable in our case.

To answer the question how to define threshold values for Dmut,

we computed Dmut values obtained by analyzing a number of

different gene expression datasets. We performed two inter-species

comparisons, where we compared expression data for four

different wine yeast strains [28] and for two Drosophila species

[29], as well as two intra-species comparisons (comparing different

cell types) within Arabidopsis thaliana [30] and within human [31]

(Figure 2). To define a cutoff for ‘large effect’, we reasoned that at

least some of the differences in expression of network components

between species must be responsible for differences between those

species. We obtained the Dmut observed in the cross-species set

such that 99% of the cases have a lower Dmut. For the wine yeast

strains, 99% of the cases have a Dmut below 0.92, and for the two

Drosophila species (which are at a larger evolutionary distance) this

is 1.7. We take a value between those two values as a cutoff for

‘‘large effect’’ and set this cutoff at Dlarge = 1.0.

To obtain a lower limit for Dmut below which we could say that

the effect is likely to be small, we reasoned that at least some

networks would be expected not to change between various

conditions or tissues within one species. Hence, we analyzed the

two datasets of expression between various conditions/tissues

within one species. Here, in the human dataset, 99% of the cases

had Dmut above 0.1, and for the Arabidopsis dataset 99% had

Dmut above 0.5. Note that the Arabidopsis dataset is more targeted

(a small number of factors known to be involved in the process of

flowering was analyzed, for which the different tissues selected

from the dataset are the relevant ones). We take again a value in

between and set this cutoff at Dsmall = 0.2. For the wineyeast set a

cutoff based on similar reasoning would be 0.11, and for Drosophila

0.33, which are compatible with this value.

Figure 1. Overview of our study of evolutionary robustness. (a) Models for gene regulatory networks containing transcription factor –
transcription factor (protein-protein) interactions and transcription factor – target gene interactions were simulated. Mutations changing the network
topology were applied, and the resulting change in expression patterns was described using a metric Dmut. By comparing networks with various
properties, network features were found that influence network robustness. Finally, the observed trends were compared with available data about
biological networks. (b) Two types of mutations were applied, either targeting a protein-protein interaction (top panel), or targeting a regulatory
interaction (bottom panel). In the case of a mutation changing a protein-protein interaction, a dimer is changed into another dimer; all its regulatory
interactions remain. In the case of a mutation changing a regulatory interaction, for one specific regulator (either a dimer as shown in the figure, or a
monomer in case of monomeric networks), one regulatory interaction is changed; all other regulatory interactions remain, as do all protein-protein
interactions.
doi:10.1371/journal.pone.0030591.g001
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We are aware of the fact that our analysis here does not give a

definite answer on how to define whether a gene regulatory

network mutation has a ‘‘large’’ effect. However, to a certain

extent we circumvent the associated problems by comparing

different types of changes with each other, which means that we

analyze relative Dmut values instead of their absolute values.

Importantly, the main conclusions from our analysis were robust

against the exact value of the defined cutoffs (Text S1, Table S1).

Simulation results
To simulate gene regulatory networks, systems of ordinary

differential equations (ODEs) were used, which describe TF-TF

dimerization and TF-target gene regulation (via Hill functions). To

investigate the stability upon network rewiring, for each network,

one ‘wildtype’ simulation was done, and two simulations of

mutated versions. One mutated network was obtained with a

protein-protein interaction change, where a dimer A–B is changed

to dimer A–C (that did not occur yet in the protein-protein

interaction network). All other dimers are preserved, and this new

dimer preserves the regulatory interactions of the original dimer. A

second mutated version of the network was obtained with a

regulatory change where for one specific dimer, one of the genes

that it regulates is changed to another gene (which it did not yet

regulate). In this case, none of the protein-protein interactions is

changed. For monomeric networks, only a mutation in a

regulatory interaction was applied. The way in which these

mutations are constructed ensures that the number of interactions

does not change, which allows a more fair comparison between

wildtype and mutated system than in case this number would

change. The resulting stable state concentrations after simulating

the mutated networks were compared with the wildtype

concentrations using Dmut. If networks with certain properties

obtain in most cases a low Dmut upon certain types of mutations,

then these networks have a high robustness against that particular

type of mutations, and vice versa.

Theoretical results for e.g. Boolean Networks or related models

are often reported with densely connected networks (many

regulatory interactions per gene) but this means that adding

spurious interactions is rewarded in the sense that mutating such

interactions will not lead to phenotypic changes, resulting in an

artificially increased robustness. Because of that, we chose values

for fractions of regulatory interactions that are close to what was

found in various experimental networks [32]. We also distinguish

ensembles of networks based on their connectivity, making a

proper comparison between networks with similar connection

density. The fraction of dimers (Fdim) in our networks equaled 0.0

(monomeric networks), 0.3, or 0.6, and the fraction of regulatory

interactions (Fregint) equaled 2.0 or 4.0. Here Fdim was defined as

the fraction of dimers out of all putatively possible dimers, and

Fregint as the average number of TFs regulating the expression of a

given target. We also separately analyzed networks with different

fractions of activating interactions (0.25, 0.5, and 0.75) but because

these resulted in overall similar observations (Supporting Infor-

mation Figure S1), the analysis below focusses on networks with

fraction activating interactions 0.5.

We made five key observations on network robustness (Table 1).

First, protein interaction mutations are more likely to have a large

effect than mutations in regulatory interactions, especially in case

of a low fraction of dimers (Figure 3A). Using a randomization

procedure, this difference in robustness was statistically significant

(p,0.001) for three of the four cases shown; only for the case with

Fdim 0.6, Fregint 4.0 it was not significant (p,0.1). Second,

repressive interactions are associated with a higher robustness

against protein-protein interaction mutations as well as regulatory

interaction mutations, compared to activating interactions. This

was assessed by counting the number of repressive vs. activating

interactions that the regulator affected by the mutation was

involved in. In particular, when the regulator was only involved in

repressive interactions, averaged over the different ensembles, the

average (standard deviation) of Dmut was only 0.39+/20.47,

whereas when the regulator was only involved in activating

interactions, it was 0.62+/20.46. Similar but more pronounced

differences were obtained when analyzing this effect for each of the

different values of Fdim and Fregint separately (Text S1, Table S2).

Third, to explore the interdependency of mutations, we tested

for possible compensatory effects, i.e. two subsequent mutations

that in combination result in a small net change to the original

expression pattern although the first mutation has a large effect.

Because protein interaction mutations had the largest effect, our

starting point was protein interaction mutations with high impact

(Dmut.Dlarge). When the follow-up mutation is again a protein

interaction mutation, the overall robustness for the combination of

the two mutations does not depend much on the fraction of

activating interactions. When the next mutation is a regulatory

mutation, however, the percentage of compensatory mutations

increases with increasing amount of activating interactions; at the

highest fraction of activating interactions, a given regulatory

mutation has a ,3.5% chance of ‘rescuing’ a previous large-effect

protein interaction mutation (Figure 3B). The exact value of this

percentage depends on the value of the thresholds for Dmut defined

above (for example, with a stricter threshold it is ,1%) but the

trend observed in Figure 3B stays the same. The fact that we find

computational evidence for such compensatory mutations is novel,

and as discussed below, there are various experimental indications

that compensatory mutations indeed exist. Fourth, networks

without dimers are much more robust against changes in

regulatory interactions (Figure 3A). Using a randomization

procedure, this difference in robustness was statistically significant

(p,0.001) for each of the comparisons between monomeric and

dimeric networks with the same fraction of regulatory interactions.

Finally, when the number of autoregulatory interactions increases,

the robustness against protein interaction mutations decreases, but

against regulatory mutations increases (Figure 3C).

Figure 2. Histogram of Dmut for experimental datasets. Dmut

quantifies expression differences between orthologs (interspecies sets)
or the same gene in various conditions (intraspecies sets). Interspecies
analysis was performed using wine yeast strains (red) and Drosophila
species (green), and intraspecies analysis for Arabidopsis thaliana (blue)
and human (purple). The observed 1th and 99th percentile were used
to obtain cutoffs for Dmut in order to describe ‘small’ and ‘large’ changes
(Dsmall and Dlarge).
doi:10.1371/journal.pone.0030591.g002
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Integration with biological data
The best way to validate our predictions would be to compare

gene regulatory networks across different species. In combination

with expression patterns, this would shed light on how

evolutionary changes of network structure do or do not result

in changes in network output. In the absence of sufficient

amounts of such data, we obtained indirect evidence from data

on biological networks. Three of the five predictions summarized

in Table 1 are consistent with such data. For two of these, our

reasoning was that network features which are less robust upon

changes should be more conserved. First, we predicted that

networks are more robust against regulatory mutations than

Table 1. Predicted effects of various network characteristics on robustnessa.

Feature Effect on Robustness

Regulatory vs. protein interaction mutation More robustness against regulatory mutations

Mutation of activating vs. repressive interaction More robustness against mutation of repressive interaction

Combinations of mutations Compensatory effects

Monomer vs. dimer networks Monomer networks are more robust

Number of auto-regulatory interactions Opposing effects on robustness against regulatory or protein interaction mutations

aSimulations were performed with models of gene regulatory networks, both for wildtype and mutated versions of the network. This enabled to find characteristics of
networks with low robustness (large changes in expression patterns upon mutations) vs. those with high robustness (small changes in expression patterns upon
mutations).

doi:10.1371/journal.pone.0030591.t001

Figure 3. Variation of gene regulatory network robustness. (a) Percentage of networks whose output does not change upon mutation
(Dmut,Dsmall). Fraction of dimers (Fdim) equals 0.0, 0.3 or 0.6, and fraction regulatory interactions (Fregint) equals 2.0 or 4.0. Upper panel, protein
interaction mutations. Lower panel, regulatory mutations. (b) Percentage of compensatory mutations after a first large effect (Dmut.Dlarge) protein
interaction mutation. From left to right, the fraction activating interactions equals 0.25, 0.5 or 0.75. Blue symbols indicate average percentage (and
standard deviation) for secondary protein interaction mutations, red for secondary regulatory mutations. (c) Dependence of robustness on number of
autoregulatory interactions. Average Dmut is shown (legend at the bottom) depending on the number of activating (x-axis) and repressing (y-axis)
autoregulatory interactions, for protein interaction mutations (upper panel) and regulatory mutations (lower panel). Note that the higher the average
Dmut, the lower the robustness.
doi:10.1371/journal.pone.0030591.g003
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against protein interaction mutations. This is consistent with the

observation that protein-protein interactions are more conserved

than regulatory interactions [33,34], and although this is well-

known, the fact that our simulations reproduce it is reassuring for

our approach. Second, we predicted more robustness against

changes in repressive interactions; indeed it has been reported

that activators are somewhat more frequently conserved among

bacterial genomes than repressors [35]. That same study also

reported that mixed activators/repressors have the highest

conservation, which would suggest the lowest robustness upon

mutation, following the reasoning that network features which are

less robust upon changes should be more conserved. Indeed we

observed in part of our network ensembles, although not in all of

them, that mixed regulators lead to lowest robustness, depending

on the topology parameters. However, in our analysis indeed

mixed regulators appeared to have lower robustness than pure

repressors for all topology parameters (details are reported in

Text S1, Table S2). Third, the existence of compensatory

mutations is supported by various lines of evidence [27,36,37,38].

For example, the evolution of alternative transcriptional circuits

with identical output logic has been described [36], and a study

on combinatorial gene regulation reported turnover of cis-acting

sequence and the formation of new protein-protein interactions

[37]. Similarly, analysis of allele-specific expression in parental

and hybrid strains revealed the existence of compensating

mutations in various species [38,39]. In this last example,

contrary to the first two examples, it is known that the individual

mutations indeed have significant effects.

For our prediction about autoregulatory interactions, where we

found an opposite dependence of robustness against protein

interactions mutations or against regulatory mutations on the number

of such autoregulatory interactions, we did not find data for

falsification or verification. However, if our prediction is correct, it

could be an important aspect of gene regulatory network evolution

that robustness against different types of mutations requires a different

optimal fraction of autoregulatory interactions. In general, autoreg-

ulatory interactions are known to be important for various aspects of

regulatory networks, including speeding up response times [40] and

providing robustness against fluctuations in concentrations [41], and

hence how mutational robustness of gene regulatory networks is

influenced by autoregulatory interactions is an important issue.

Finally, a novel and remarkable prediction is that mutations in

regulatory interactions lead to larger changes in networks with

dimeric TFs compared to networks with monomers. Given the

importance of TF-TF protein-protein interactions as explained

above, this difference in robustness could be an important aspect

of regulatory interaction network evolution. For this predicted

difference in robustness, we obtained indirect validation by

analyzing differences in conservation of DNA-contacting residues

in monomeric and dimeric TFs. Here we followed again the

reasoning that features which are connected to lower robustness

should be more conserved. Hence, based on our prediction, we

expect on average more conservation of dimeric DNA-contacting

residues, compared to the conservation of such residues in

monomeric TFs. To test this hypothesis, we analyzed the

distributions of sequence entropy values for DNA-contacting

residues in both types of TFs, using a set of 57 monomeric and

228 dimeric human TFs for which structural information was

available (Figure 4). Indeed, these were significantly different as

tested using a Kolmogorov-Smirnov test (p,10215). Dimeric

DNA-contacting residues display lower entropy, i.e. higher

conservation, in accordance with our hypothesis. Such differences

were not observed for residues in those TFs that do not contact

DNA.

Discussion

Robustness in biological networks can have various origins.

First, redundancy of gene functions is important, as genes with

overlapping functions will be able to compensate for each other. A

second source is robustness that has its origin in interactions

between genes with unrelated functions, i.e. different positions in

the network, not having the same set of interactions. Such

robustness is a property of the network as a whole and not solely of

some of the components. Some studies indicated that such

‘‘distributed robustness’’ would be more important than redun-

dancy for robustness against mutational loss in yeast [42,43],

although this has been challenged [44]. In our analysis this second

type of robustness is what we look at. Our model is relatively

simple; in particular, there is no explicit coupling between

dimerization and DNA interaction specificity. However, com-

pared to existing approaches using Boolean Networks or related

approaches our use of ODEs means that we can study more

biological relevant aspects, in particular explicit dimerization.

We focused on obtaining evidence for factors influencing

robustness against mutations of network structure. The results of

our analysis provide several clues towards such factors. An

important follow-up would be to investigate in detail the

mechanistic aspects of why certain types of networks are more

robust than others. Although we will leave that question to a large

extent to be addressed by future work, we briefly discuss two

relevant issues. One is related to the observation that regulatory

mutations in dimer networks have larger effect than in monomeric

networks. This might be related to the fact that in dimeric networks,

the change in expression of a target gene caused by a regulatory

mutation will not only influence other genes via regulatory

interactions of that target, but also via protein interactions that it

is involved in. We obtained evidence for this by analyzing whether

the regulatory mutation mainly had a direct effect (changing

expression level of the target gene targeted by the mutation) or

mainly an indirect effect (changing expression levels of other genes).

In dimeric networks, the indirect effect was much larger than the

direct effect, whereas for monomeric networks, the indirect effect

was somewhat smaller than the direct effect. Comparing dimeric

and monomeric networks, the direct effects were roughly compa-

rable, whereas the indirect effect was much larger in the dimeric

network (data not shown). Although this should be analyzed in more

detail, this analysis indicates a causal mechanism for the observed

differences in robustness between dimeric and monomeric net-

Figure 4. Cumulative histogram of sequence conservation of
DNA contacting residues in human TFs. Sequence entropy was
calculated for dimeric (black) and monomeric TFs (red). Lower values
indicate more conservation.
doi:10.1371/journal.pone.0030591.g004
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works. A second point is related to the fact that repressive

interactions confer more robustness; here one could argue that

the effects of a mutation in an interaction which tends to switch off

expression of a target gene, will be less easily transferred to other

parts of the network, compared to a mutation in an interaction that

activates a target gene, because in the latter case the product that

has been upregulated might have all kinds of additional effects.

In addition to regulatory interactions, protein-protein interac-

tions are an important type of connections in gene regulatory

networks [4]. Our analysis provides insight into how mutations of

both types of interactions can shape network evolution. We studied

compensation between protein-protein and regulatory mutations;

such compensatory mutations have indeed been observed

experimentally, as mentioned above. These observations so far

constituted isolated examples, but our results highlight the

potential general importance of this type of interplay between

protein-protein interaction mutations and regulatory mutations,

providing a framework for further study of such effects. In

addition, based on observed differences in robustness in our

simulations, we predicted differential conservation of DNA-

contacting residues in monomeric vs. dimeric TFs, a prediction

which we validated using protein structure and sequence data.

The integration and comparison with biological data that we

perform is based to some extent on the hypothesis that network

features which induce lower robustness upon mutations to network

structure should be more conserved. Obviously, this hypothesis

needs not always hold, because for some processes and in some

circumstances evolutionary change and not robustness will be

favorable and will be selected. Nevertheless, the trends we find are

consistent with biological datasources. For one of those, the fact

that TF-DNA interactions are less conserved than protein-protein

interactions, it is important to realize that this does not necessarily

mean that DNA binding domains of TFs are less conserved than

protein interaction domains. In fact, the opposite has been

observed in an analysis that focused on conservation of DNA

binding domains (although not specifically on residues involved in

DNA binding) [4]. However, because of rapid turnover of TF-

binding cis-motifs [33,34,45], at the network level the net effect is

still that regulatory interactions are less conserved than protein-

protein interactions [33,34].

Our results clearly demonstrate the importance of taking

protein-protein interactions into account when studying the

robustness of gene regulatory networks. Although much attention

in studying gene regulatory networks and their evolution has been

focused on regulatory interactions, recently data is coming

available which integrates TF-TF interactions within the context

of such networks [46]. In addition, powered by the ongoing

revolution in sequencing technologies and their application in e.g.

ChIP-seq experiments, large amounts of data on transcriptional

regulatory interactions and the evolution of network connections

are being generated [47,48,49]. Our analysis provides a

framework for further study of these networks and their evolution.

In particular, previous studies indicated the importance of

functional constraints on network topology, such as the impor-

tance of different types of topologies to obtain either multi-

stationarity or homeostasis [50]. Our results implicate the

existence of additional evolutionary constraints.

Methods

Simulations of network models
Network models were simulated using ordinary differential

equations (ODEs) where monomer and dimer concentrations were

represented explicitly. The rate of change of the dimer

concentrations consists of the association rate of monomers into

dimers minus the dissociation rate of dimers into monomers,

minus the dimer decay rate. Denoting by xi the concentration of

monomer i and by xij the concentration of a dimer consisting of

proteins i and j, we have the following equation in case of a single

dimer:

dxij

dt
~konxixj{koff xij{cdimxij

Here kon, koff are the forward and backward dimerization rate

constants and cdim is the dimer decay rate. Extensions in the more

general case where multiple dimers are formed are presented in

Text S1.

For the monomer dynamics, activating or repressing Hill

functions were used to model gene regulation, which are combined

with dimerization reactions and monomer decay. In the case of

regulation by one particular dimer, for a protein involved in one

dimerization reaction, we have the following equations:

activation :
dxi

dt
~

bikxik

Kikzxik

{konxixjzkoff xij{cmonoxi

repression :
dxi

dt
~

bik

1:0z
xik
Kik

{konxixjzkoff xij{cmonoxi,

for activation and repression, respectively. Here bik and Kik are

Hill function parameters for the regulation of gene i by dimer k (in

a more general setting one could also include a cooperativity

parameter but we set this to 1). cmono is the monomer decay rate.

Extensions for more general cases are shown in Text S1.

In order to compare the simulated systems with dimeric protein-

protein interactions, also networks were simulated with only

monomeric proteins. These monomers directly regulate transcrip-

tion, again via Hill functions (equations for monomeric systems are

provided in Text S1).

Parameters that occur in those equations were randomly chosen

in various network realizations, but were limited to certain ranges

or values (Table 2). These were based on literature values

[7,51,52]. Parameters that describe the topology of the systems are

shown in Table 2 as well. The fraction of dimers is calculated as

follows: fdim = ndim/(0.5*nprot
2+0.5*nprot). Here ndim is the number

of dimers present in the network. The fraction of regulatory

interactions (Freg) is the average number of dimers or monomers

regulating a gene.

We investigated how the robustness of the network output

depends on the topology parameters in randomly generated

networks. To analyze this, two test sets were generated: 1) set1,

with a limited number of networks where a large number of ODE

parameter assignments could be tested, and 2) set2, with a much

larger number of networks, without sampling of the ODE

parameters for each network. For set1, 20 different networks were

generated with random topology for each combination of

parameters in Table 2, except that Fregint was only set equal to

2.0, giving 120 networks in total (263620). The network topology

was generated using the selected values of interaction densities as

probabilities for each possible protein-protein interaction or

regulatory interaction, ensuring however that each gene is

regulated by at least one dimer or monomer. For each of these

networks, 1,000 random assignments were generated for Hill

parameters, kon and starting concentrations. This set was used for

the analysis of compensatory mutations.
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Set2 was used for the other analyses; here, much larger

ensembles of networks were generated, using all possible

combinations of network parameters shown in Table 2. In each

such ensemble, 25,000 different topologies were generated, all with

the same number of proteins, same fraction of dimers and same

fraction of regulatory interactions, but each with different

connections. For each such network, parameters were initialized

randomly within the boundaries indicated in Table 2.

Simulations were started using only monomers present; their

values were set to randomly chosen values within the range of

1 nM–100 nM. The simulation time was 15,000 min. ODEs were

solved using Biocham [53] with the fourth-order Runge-Kutta

method, adapting the step size to a maximum error of 1E-10 and

using the default initial step size of 0.01.

To investigate the stability upon network rewiring, the following

simulations were performed. For each parametrized system of

ODEs, one ‘wildtype’ simulation was done. Then, independently

from each other, two mutations were performed changing network

structure: (1) a protein-protein interaction change, where a dimer

A–B is changed to dimer A–C (that did not occur yet in the protein-

protein interaction network); this new dimer keeps exactly the same

regulatory interactions as were previously attached to the deleted

dimer; (2) a regulatory change where for one specific dimer, one of

the genes that it regulates is changed to another gene (which it did

not yet regulate). All parameters remain unchanged when

performing those mutations; the ‘new’ interaction takes over the

parameters from the ‘old’ interaction. Figure 1 provides a graphical

illustration of the mutations. The way in which these mutations

were constructed ensures that the number of interactions does not

change, which allows a more fair comparison between wildtype and

mutated system than in case this number would change. The

mutated systems were simulated as well, and the resulting

concentrations were compared with the wildtype concentrations.

To assess the change after mutation, a relative change was

defined as follows (Dmut):

Dmut~
Xn

i~1

2 Ci
mut{Ci

wt

�� ��
Ci

mutzCi
wt

Here the summation goes over all concentrations (i.e. n equals the

number of monomers plus the number of dimers), Cwt is the

wildtype concentration and Cmut the value observed in the

mutated system.

Expression data analysis
An important methodological question is how to determine a

suitable cutoff for Dmut such that the difference between the

expression patterns is ‘‘small’’ or ‘‘large’’, i.e. a cutoff Dsmall and a

cutoff Dlarge. To answer this question, we calculated values

obtained for Dmut by analyzing a set of different gene expression

datasets. These included two inter-species comparisons, using

expression data for four different wine yeast strains [28] and for

two Drosophila species [29], and two intra-species comparisons

(comparing different cell types) within human [31] and within

Arabidopsis thaliana [30]. For the latter, a focused set of factors

involved in flowering and floral organ determination was used:

AG, AP3, PI, AP1, SHP1, SEP3, WUS, LFY, UFO, miR172,

SUP, LUG, SEU, SAP, RBE, YUC2, YUC6, YUC1, YUC4,

PIN1, NPY1, BLR, CUC1, whereas for human the dataset

consisted of genome-wide expression data across several tissue. For

all datasets, we randomly selected 6 proteins 1,000 times and

computed their Dmut values between two different conditions

(different species or different tissues).

Note that multiplicative normalization of microarray data does

not influence the calculated Dmut. However, log transformation

does, so in case of the Drosophila data we back-transformed the log

transformed data.

Statistical significance of observed differences in network
robustness

Statistical significance of the observed differences in robustness

between protein interaction vs. regulatory changes was assessed

using a randomization procedure. Here, the observed values of

Dmut for the mutated networks were randomly reassigned to

‘protein interaction’ or ‘regulatory interaction’ mutation. Next, the

percentage of rewired networks with only a small change

(Dmut,Dsmall) was calculated for these randomized datasets, and

the difference between those percentages for protein interaction vs.

regulatory interaction mutations in the randomized datasets was

compared to the observed difference obtained with the input

dataset. This was repeated 1,000 times. A p-value was obtained as

the number of cases in which this difference was at least as large in

Table 2. Network model parameters and network topology parameters.

Parameter Description Value or range

Model parameters

c Degradation rate 0.2 min21 for monomer; 0.01 min21 for dimer

koff Dimerization off rate 0.01 min21

kon Dimerization on rate 1022 or 1 nM21 min21

b Hill function maximal expression level Within range 40 nM min21–2400 nM min21

k Hill function activation coefficient Within range 10 nM–1000 nM

Topology parameters

Nprot Number of proteins 6

Fdim Fraction of dimers 0.0, 0.3 or 0.6

Fregint
a Fraction of regulatory interactions 2.0 or 4.0

Fact
b Fraction of regulatory interactions that is activating 0.25, 0.5 or 0.75

aFregint is calculated as the number of regulatory interactions per protein.
bFact is calculated as the ratio of the number of activating regulatory interactions over the total number of regulatory interactions.
doi:10.1371/journal.pone.0030591.t002
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the randomized datasets as compared to what was obtained with

the input datasets. In a similar way, the significance for the

difference in robustness observed for regulatory changes in

monomeric vs. dimeric networks was assessed.

Compensatory mutations
For mutations that produced a large change (Dmut.Dlarge) we

tested if compensatory mutations could be found that to a large

extent rescued the phenotype of the network. A second mutation

was applied, and all parameter values remained unchanged. This

was tested with set1 described above, applying 1,000 regulatory

and 1,000 protein interaction mutations as secondary mutations to

each primary high-effect mutation.

Network properties
The network ensembles we generated were based on ‘simple’

topological parameters (number of proteins, number of interac-

tions). More involved parameters might offer a more comprehen-

sive description of network properties of relevance for mutational

stability. One example is regulation entropy, which was calculated

as described in ref. [18]. Briefly, first all regulatory paths between

two nodes are obtained (for which we simply did an exhaustive

search which is very fast in our small networks). Next, each path is

scored as positive if the number of repressing interactions is even,

and negative if this number is odd. The entropy of the regulation

of one node by another node is the entropy calculated using the

fractions of positive and negative paths. The regulation entropy of

a given node is the average of its regulation entropies with respect

to all the other nodes.

For the networks without dimerization this calculation is

identical to that in ref. [18]. However, for the dimeric systems,

one has to choose how to treat dimers when finding regulatory

paths between two nodes. We simply used the most straightfor-

ward approach, consisting of ‘splitting’ each dimer such that for

each dimeric regulatory interaction, the path finding in fact finds

two branches. Regulation entropy did not show clear relationship

with robustness and is not presented in the Results section.

In addition to regulation entropy, we also used the number of

autoregulatory interactions as a characteristic of the network. In

this case, only direct interactions are used. As with regulation

entropy, for each dimer we ‘splitted’ the regulatory interaction

such that if a dimer A–B regulates both A and B, there would be

two autoregulatory interactions.

As a third parameter, redundancy of interactions was calculated

as a proxy for gene function redundancy. Here, we calculated

interaction similarity, for dimer interactions, for regulatory

interactions and for both types of interactions. Interaction

similarity was defined as the number of similar interactions

divided by the number of different interactions plus the number of

similar interactions. We analyzed both average and maximum

interaction similarity. This did not result in any clear dependence

of robustness on redundancy; hence, this analysis is not presented

in the Results section.

Structure analysis
To test the hypothesis that DNA-contacting residues in dimeric

TFs are more conserved than those in monomeric TFs, a set of

human dimeric and monomeric TFs was assembled using

information from the HPRD database [54]. We compared TFs

(obtained by using the GO term 0003700, transcription factor

activity) that at least interact with one other TF according to the

HPRD data with those TFs that do not interact with any other TF.

The TFs were mapped to available protein structures, as obtained

from the GTOP database [55]. DNA contacting residues were

defined using a cutoff of 10 Å (using 5 Å instead did not change

the results). Conservation was assessed on sequences obtained by

using blast [56] vs. the NR database and keeping one randomly

chosen sequence per species (with a blast E-value cutoff of 1E-25).

As a measure of conservation, sequence entropy was calculated.
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not change upon mutation (Dmut,Dsmall). Fraction of
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interactions (Fregint) equals 2.0 or 4.0. Blue, protein interaction

mutations (only for cases with Fdim.0); red, regulatory mutations.

(A) Fraction activating interactions 0.25. (B) Fraction activating
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(TIF)

Table S1 Robustness against protein interaction vs.
regulatory interaction mutation.

(PDF)

Table S2 Robustness against mutations in repressive
vs. activating regulators.

(PDF)

Author Contributions

Conceived and designed the experiments: ADJvD. Performed the

experiments: ADJvD. Analyzed the data: ADJvD SvM RCHJvH. Wrote

the paper: ADJvD SvM RCHJvH.

References

1. van Dijk AD, Morabito G, Fiers M, van Ham RC, Angenent GC, et al. (2010)

Sequence motifs in MADS transcription factors responsible for specificity and

diversification of protein-protein interaction. PLoS computational biology 6:

e1001017.

2. van Dijk AD, ter Braak CJ, Immink RG, Angenent GC, van Ham RC (2008)

Predicting and understanding transcription factor interactions based on

sequence level determinants of combinatorial control. Bioinformatics 24: 26–33.

3. Grigoryan G, Reinke AW, Keating AE (2009) Design of protein-interaction

specificity gives selective bZIP-binding peptides. Nature 458: 859–U852.

4. Amoutzias GD, Robertson DL, de Peer YV, Oliver SG (2008) Choose your

partners: dimerization in eukaryotic transcription factors. Trends in Biochemical

Sciences 33: 220–229.

5. Bundschuh R, Hayot F, Jayaprakash C (2003) The role of dimerization in noise

reduction of simple genetic networks. Journal of Theoretical Biology 220:

261–269.

6. Smolen P, Baxter DA, Byrne JH (2000) Mathematical modeling of gene

networks. Neuron 26: 567–580.

7. Buchler NE, Louis M (2008) Molecular Titration and Ultrasensitivity in

Regulatory Networks. Journal of Molecular Biology 384: 1106–1119.

8. Geisel N, Gerland U (2011) Physical Limits on Cooperative Protein-DNA

Binding and the Kinetics of Combinatorial Transcription Regulation.

Biophysical Journal 101: 1569–1579.

9. Kauffman S, Peterson C, Samuelsson B, Troein C (2004) Genetic networks with

canalyzing Boolean rules are always stable. Proceedings of the National

Academy of Sciences of the United States of America 101: 17102–17107.

10. Pomerance A, Ott E, Girvan M, Losert W (2009) The effect of network topology

on the stability of discrete state models of genetic control. Proceedings of the

National Academy of Sciences of the United States of America 106: 8209–8214.

11. Kwon YK, Cho KH (2007) Analysis of feedback loops and robustness in network

evolution based on Boolean models. Bmc Bioinformatics 8.

12. Munteanu A, Sole RV (2008) Neutrality and Robustness in Evo-Devo:

Emergence of Lateral Inhibition. Plos Computational Biology 4.

13. Prill RJ, Iglesias PA, Levchenko A (2005) Dynamic properties of network motifs

contribute to biological network organization. Plos Biology 3: 1881–1892.

Mutational Robustness of Gene Regulatory Networks

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e30591



14. Hornung G, Barkai N (2008) Noise propagation and signaling sensitivity in

biological networks: A role for positive feedback. Plos Computational Biology 4.
15. Morishita Y, Kobayashi TJ, Aihara K (2005) Evaluation of the performance of

mechanisms for noise attenuation in a single-gene expression. Journal of

Theoretical Biology 235: 241–264.
16. Kwon YK, Choi SS, Cho KH (2007) Investigations into the relationship

between feedback loops and functional importance of a signal transduction
network based on Boolean network modeling. Bmc Bioinformatics 8.

17. Daniels BC, Chen YJ, Sethna JP, Gutenkunst RN, Myers CR (2008) Sloppiness,

robustness, and evolvability in systems biology. Current Opinion in Biotechnol-
ogy 19: 389–395.

18. Wu YL, Zhang XM, Yu JL, Ouyang Q (2009) Identification of a Topological
Characteristic Responsible for the Biological Robustness of Regulatory

Networks. Plos Computational Biology 5.
19. Sakata A, Hukushima K, Kaneko K (2009) Funnel Landscape and Mutational

Robustness as a Result of Evolution under Thermal Noise. Physical Review

Letters 102.
20. Kaneko K, Furusawa C (2008) Relevance of phenotypic noise to adaptation and

evolution. Iet Systems Biology 2: 234–246.
21. Kitano H (2004) Biological robustness. Nature Reviews Genetics 5: 826–837.

22. Ciliberti S, Martin OC, Wagner A (2007) Innovation and robustness in complex

regulatory gene networks. Proceedings of the National Academy of Sciences of
the United States of America 104: 13591–13596.

23. Aldana M, Balleza E, Kauffman S, Resendiz O (2007) Robustness and
evolvability in genetic regulatory networks. Journal of Theoretical Biology 245:

433–448.
24. Ciliberti S, Martin OC, Wagner A (2007) Robustness can evolve gradually in

complex regulatory gene networks with varying topology. Plos Computational

Biology 3: 164–173.
25. Isalan M, Lemerle C, Michalodimitrakis K, Horn C, Beltrao P, et al. (2008)

Evolvability and hierarchy in rewired bacterial gene networks. Nature 452:
840–U842.

26. Homann OR, Dea J, Noble SM, Johnson AD (2009) A Phenotypic Profile of the

Candida albicans Regulatory Network. Plos Genetics 5.
27. Hinman VF, Yankura KA, McCauley BS (2009) Evolution of gene regulatory

network architectures: Examples of subcircuit conservation and plasticity
between classes of echinoderms. Biochimica Et Biophysica Acta-Gene

Regulatory Mechanisms 1789: 326–332.
28. Townsend JP, Cavalieri D, Hartl DL (2003) Population genetic variation in

genome-wide gene expression. Molecular Biology and Evolution 20: 955–963.

29. Nuzhdin SV, Wayne ML, Harmon KL, McIntyre LM (2004) Common pattern
of evolution of gene expression level and protein sequence in Drosophila.

Molecular Biology and Evolution 21: 1308–1317.
30. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, et al. (2005) A gene

expression map of Arabidopsis thaliana development. Nature Genetics 37:

501–506.
31. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, et al. (2009) BioGPS: an

extensible and customizable portal for querying and organizing gene annotation
resources. Genome Biology 10.

32. Leclerc RD (2008) Survival of the sparsest: robust gene networks are
parsimonious. Molecular Systems Biology 4.

33. Tan K, Shlomi T, Feizi H, Ideker T, Sharan R (2007) Transcriptional regulation

of protein complexes within and across species. Proceedings of the National
Academy of Sciences of the United States of America 104: 1283–1288.

34. Shou C, Bhardwaj N, Lam HYK, Yan KK, Kim PM, et al. (2011) Measuring
the Evolutionary Rewiring of Biological Networks. Plos Computational Biology

7.

35. Balaji S, Babu MM, Aravind L (2007) Interplay between network structures,
regulatory modes and sensing mechanisms of transcription factors in the

transcriptional regulatory network of E-coil. Journal of Molecular Biology 372:

1108–1122.

36. Tsong AE, Tuch BB, Li H, Johnson AD (2006) Evolution of alternative

transcriptional circuits with identical logic. Nature 443: 415–420.

37. Tuch BB, Galgoczy DJ, Hernday AD, Li H, Johnson AD (2008) The evolution

of combinatorial gene regulation in fungi. Plos Biology 6: 352–364.

38. McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, et al. (2010)

Regulatory divergence in Drosophila revealed by mRNA-seq. Genome

Research 20: 816–825.

39. Tirosh I, Reikhav S, Levy AA, Barkai N (2009) A Yeast Hybrid Provides Insight

into the Evolution of Gene Expression Regulation. Science 324: 659–662.

40. Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the

response times of transcription networks. Journal of Molecular Biology 323:

785–793.

41. Becskei A, Serrano L (2000) Engineering stability in gene networks by

autoregulation. Nature 405: 590–593.

42. Wagner A (2000) Robustness against mutations in genetic networks of yeast.

Nature Genetics 24: 355–361.

43. Ihmels J, Collins SR, Schuldiner M, Krogan NJ, Weissman JS (2007) Backup

without redundancy: genetic interactions reveal the cost of duplicate gene loss.

Molecular Systems Biology 3.

44. Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, et al. (2003) Role of

duplicate genes in genetic robustness against null mutations. Nature 421: 63–66.

45. Doniger SW, Fay JC (2007) Frequent gain and loss of functional transcription

factor binding sites. PLoS computational biology 3: e99.

46. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, et al. (2010) An

Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell

140: 744–752.

47. Chen L, Wu G, Ji H (2011) hmChIP: a database and web server for exploring

publicly available human and mouse ChIP-seq and ChIP-chip data. Bioinfor-

matics 27: 1447–1448.

48. Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, et al. (2010) Five-

Vertebrate ChIP-seq Reveals the Evolutionary Dynamics of Transcription

Factor Binding. Science 328: 1036–1040.

49. Muino JM, Hoogstraat M, van Ham RC, van Dijk AD (2011) PRI-CAT: a web-

tool for the analysis, storage and visualization of plant ChIP-seq experiments.

Nucleic Acids Research 39: W524–527.

50. Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal

structure of the yeast transcriptional regulatory network. Nature Genetics 31:

60–63.

51. Cavelier G, Anastassiou D (2004) Data-based model and parameter evaluation

in dynamic transcriptional regulatory networks. Proteins-Structure Function and

Bioinformatics 55: 339–350.

52. Buchler NE, Gerland U, Hwa T (2005) Nonlinear protein degradation and the

function of genetic circuits. Proceedings of the National Academy of Sciences of

the United States of America 102: 9559–9564.

53. Calzone L, Fages F, Soliman S (2006) BIOCHAM: an environment for

modeling biological systems and formalizing experimental knowledge. Bioinfor-

matics 22: 1805–1807.

54. Prasad TSK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, et al. (2009)

Human Protein Reference Database-2009 update. Nucleic Acids Research 37:

D767–D772.

55. Kawabata T, Fukuchi S, Homma K, Ota M, Araki J, et al. (2002) GTOP: a

database of protein structures predicted from genome sequences. Nucleic Acids

Research 30: 294–298.

56. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local

Alignment Search Tool. Journal of Molecular Biology 215: 403–410.

Mutational Robustness of Gene Regulatory Networks

PLoS ONE | www.plosone.org 9 January 2012 | Volume 7 | Issue 1 | e30591


