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The rise of neuroimaging in research and clinical practice, together with the development

of new machine learning techniques has strongly encouraged the Computer Aided

Diagnosis (CAD) of different diseases and disorders. However, these algorithms are often

tested in proprietary datasets to which the access is limited and, therefore, a direct

comparison between CAD procedures is not possible. Furthermore, the sample size is

often small for developing accurate machine learning methods. Multi-center initiatives

are currently a very useful, although limited, tool in the recruitment of large populations

and standardization of CAD evaluation. Conversely, we propose a brain image synthesis

procedure intended to generate a new image set that share characteristics with an

original one. Our system focuses on nuclear imaging modalities such as PET or SPECT

brain images. We analyze the dataset by applying PCA to the original dataset, and then

model the distribution of samples in the projected eigenbrain space using a Probability

Density Function (PDF) estimator. Once the model has been built, we can generate

new coordinates on the eigenbrain space belonging to the same class, which can be

then projected back to the image space. The system has been evaluated on different

functional neuroimaging datasets assessing the: resemblance of the synthetic images

with the original ones, the differences between them, their generalization ability and the

independence of the synthetic dataset with respect to the original. The synthetic images

maintain the differences between groups found at the original dataset, with no significant

differences when comparing them to real-world samples. Furthermore, they featured a

similar performance and generalization capability to that of the original dataset. These

results prove that these images are suitable for standardizing the evaluation of CAD

pipelines, and providing data augmentation in machine learning systems -e.g. in deep

learning-, or even to train future professionals at medical school.

Keywords: Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Neuroimaging, Synthesis, density estimation, data
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1. INTRODUCTION

With the rise of neuroimaging in research and practice and
the development of the machine learning paradigm, there has
been an exponential trend in computer-aided methodologies
(Frisoni et al., 2010; Martinez-Murcia et al., 2016; Rathore et al.,
2017). Many Computer Aided Diagnosis (CAD) systems are
being developed with application to structural and functional
imaging in different diseases and disorders, such as Alzheimer’s
Disease (AD) (Stoeckel et al., 2004; Illán et al., 2011; Khedher
et al., 2015) or Parkinson’s Disease (PD) (Eckert and Edwards,
2007; Spetsieris et al., 2009; Segovia et al., 2016). However, these
algorithms are usually tested in proprietary datasets to which the
access is limited. This causes a series of problems in the evaluation
of these systems, since a direct performance comparison is not
enough to ensure validity. Furthermore, the false discovery rate
(type I error) is often high in these studies due to a small
sample size, significantly affecting reproducibility (Raudys and
Jain, 1991; Poldrack et al., 2017).

A useful solution to perform direct comparison between
different CADs is the use of multi-center datasets, and it
has already been used in several challenges, such as the
CAD Dementia challenge (Bron et al., 2015) or a recent
Mild Cognitive Impairment (MCI) prediction challenge from
Magnetic Resonance Imaging (MRI) at Kaggle (Sarica et al.,
2016). Multi-center initiatives, such as the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (Weiner et al., 2012), the
Autism Brain Imaging Data Exchange (ABIDE) (Di Martino
et al., 2014) or the Parkinson’s Progressions Markers Initiative
(PPMI) (Marek et al., 2011) provide large image samples that
reduce the type I error and ease a direct comparison between
systems. However, this approach poses some fundamental
limitations. First of all, although open data is gaining support
in the community (Poldrack and Gorgolewski, 2014), access
to these large datasets requires the approval of principal
investigators or their teams, a common problem in neuroscience
(Ferguson et al., 2014). Secondly, focusing on one, static dataset
such as the aforementioned ADNI or PPMI might increase
overfitting, reducing their generalization ability. And finally,
inhomogeneities in scanner, population, or techniques might
cause the apparition of false positives that are not related to the
signal (Pearlson, 2009; Van Horn and Toga, 2009).

For its part, synthetic datasets have been widely used in
the pattern recognition community in different ways. Synthetic
images have all the information about how they have been
generated, and so can be used as a ground truth for automatic
systems (Black et al., 2003; Ros et al., 2016; Varol et al., 2017).
They can also significantly increase the sample size in a procedure
commonly known as data augmentation, via analysis-synthesis
(Cui et al., 2004) or performing deformations (Krizhevsky et al.,
2012). This is a key feature that allowed a faster development of
deep learning approaches that need huge amounts of data to build
models.

In neuroimaging, some of the previous approaches have
already percolated research practices. Recent machine learning
challenges such as the aforementioned Kaggle MCI-MRI (Sarica
et al., 2016), included synthesized morphological data to prevent

overfitting and ad-hoc model training. There are initiatives to
build ground-truth phantoms for developing and studying new
scanner technologies (Jan et al., 2004; Segars et al., 2010; Stute
et al., 2011), to study generative models of functional activation
in fMRI (Yarkoni et al., 2011; Erhardt et al., 2012) or to evaluate
segmentation procedures such as the BrainWeb initiative (Kwan
et al., 1999). However, brain image synthesis algorithms are
rarely used for standardization or data augmentation, with
few examples of spatial transformations and deformations in
MRI (Zhu et al., 1994; Xue et al., 2006) or SPECT-DaTSCAN
(Ronneberger et al., 2015; Martinez-Murcia et al., 2017).

In this work, we provide a novel brain synthesis technique (see
Figure 1) to address the data augmentation and the ground truth
problems in neuroimaging by generating a new set of images that
share characteristics with a known dataset. Our system performs
an analysis of that existing database and extracts a common
orthogonal “eigenbrain” basis of a multidimensional space where
the different subjects are represented as a coordinate vector, using
Principal Component Analysis (PCA), as in many neuroimaging
analysis and synthesis papers (Zhu et al., 1994; Markiewicz
et al., 2009; Illán et al., 2011; Khedher et al., 2015). In contrast
to them, our methodology creates per-class/modality models
of the statistical distribution of the coordinates in this space.
Together with a random sampling based on the Cumulative
Density Function (CDF), it allows us to draw new uncorrelated
coordinates from each model, thus setting the ground truth. This
is of special importance where class clusters overlap due to the
progression of the disease (e.g., MCI and AD), providing samples
for standardizing the evaluation of CAD systems.

We have tested this generation approach against two widely
used datasets: a Positron Emission Tomography (PET) dataset
from the ADNI initiative, and a Single Photon Emission
Computed Tomography (SPECT) dataset using the drug
DaTSCAN, from the Parkinson’s Progression Markers Initiative
(PPMI). Our purpose is to assess that the intrinsic properties
of each class in these modalities is kept, while providing
uncorrelated images that can effectively predict real-world
samples, thus reducing bias in the evaluation of new CAD
methods. Additionally, the educational use of synthetic images to
train future professionals is an inviting possibility yet to explore.

2. METHODOLOGY

2.1. Databases and Preprocessing
We tested our synthesis methodology on two large datasets
comprising AD and PD:

2.1.1. Alzheimer’s Disease Neuroimaging Initiative

(ADNI)
The first dataset used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of Mild Cognitive Impairment (MCI)
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FIGURE 1 | Schema of the proposed synthesis procedure.

and Alzheimer’s Disease (AD). For up-to-date information on the
data used, the recruitment process and the image properties, see
www.adni-info.org and Weiner et al. (2012).

For this work, we focus on the 18F-FDG PET images available.
This radiopharmaceutical is a glucose analog, and its distribution
of the brain can be used to trace glucose metabolism, and by
extension, brain function. The ADNI PET subset here contains
N = 403 images: 95 images from individuals affected by
AD, 207 images from MCI subjects and 101 images from
Controls (NOR).

2.1.2. Parkinson’s Progression Markers Initiative

(PPMI)
Another large multi-center dataset used in the preparation of this
article was obtained from the Parkinson’s Progression Markers
Initiative (PPMI) database (www.ppmi-info.org/data). For
up-to-date information on the study, visit www.ppmi-info.org
and (The Parkinson Progression Marker Initiative, 2010;
Marek et al., 2011). The dataset contains SPECT images
obtained using the radiopharmaceutical ioflupane, also
known as its trade name DaTSCAN, which binds to the
dopamine transporters at the striatum. This allows to
quantify the dopaminergic deficit associated to Parkinson’s
Disease (PD). In this study we use 269 DaTSCAN
images belonging to 111 NOR and 158 subjects affected
by PD.

2.1.3. Database Preprocessing
The aforementioned datasets have been preprocessed to account
for spatial and intensity differences. A spatial normalization, also
known as registration, has been applied to ensure that the same
MNI coordinate corresponds to the same spatial position inside
the brain. We have used the SPM8 software (Friston et al., 2007)
to perform this task, using either the included PET template (for
the ADNI dataset) and a custom template (Salas-Gonzalez et al.,
2015) for the PPMI and VDLN.

Later, intensity normalization was applied to ensure that a
direct comparison of the image function encoded in the voxel
intensities (dopamine transporters density in DaTSCAN and
glucose metabolism in FDG-PET) is possible. This corrects the
individual differences (e.g., drug uptake, exposition time, etc.)
that affect these values, and is also key since the subsequent
analysis needs directly comparable values to quantify variance.
We have applied a normalization to the maximum strategy
(Saxena et al., 1998) in the form I′ = I/In, where the image
intensity I is divided by In, the average of the top 3% intensities.
This normalization was proven very useful in Illán et al. (2011,
2012) and Martínez-Murcia et al. (2012, 2014).

2.2. Principal Component Analysis (PCA)
Principal Component Analysis (PCA) is used to establish a
common reference, or basis, to generate new images. It is very
extended in analysis and feature extraction in neuroimaging
(Markiewicz et al., 2009; Illán et al., 2011; Khedher et al., 2015),
and also was used with the same purpose of obtaining a common
neuroimaging reference in Zhu et al. (1994).

Intuitively, PCA defines a new space where the first spatial
direction is defined so that it explains the maximum variance
in the data. The subsequent directions will try to explain the
remaining variance in decreasing order. All these directions,
or components, are meant to be uncorrelated. This way, the
maximum information about the data is contained in the first
components, and the remaining can be considered noise.

Mathematically (Brown, 2009), PCA works as an orthogonal
transformation that maps a correlated set of observations X (in
this work, our set of zero-rated images, of size K × N containing
K images of length N) into a set of uncorrelated data S that
contains K vectors in a M-dimensional space, defined by W, a
vector whose M columns contains the basis of the new space.
That way, the mapping is obtained by:

S = XW (1)
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where the columns of W contain the eigen-values of XTX, the
empirical covariance matrix of X.

This is done, ideally, by obtaining the eigen-value
decomposition of the empirical covariance matrix of the
data. A very extended and fast way of computing W, the
matrix of eigenvectors, also known as “eigenbrains” in the
neuroscience literature (Illán et al., 2011), is via the Singular
Value Decomposition (SVD) of X:

X = U6V∗ (2)

whereU is aK×K orthogonal matrix,6 is aK×M non-negative
real diagonal matrix, and the M ×M unitary matrix V∗ denotes
the conjugate transpose of the M × M unitary matrix V. Using
this decomposition, we can rewrite Equation (1) as:

S = XW = U6 (3)

Given that the conjugate transpose of a unitary matrix is its
inverse, the matrix W is equivalent to V. A truncated version of
the decomposition can also be performed, by retaining the first L
components (ranked by their eigen-values):

SL = XWL (4)

where SL is the truncated estimate of size K×L, andWL contains
only the L first columns of W. Since PCA does not account for
random noise in its model, the noise is included as different
components. Therefore, a choice for L can eliminate random
noise and increase the signal to noise ratio of our model. In this
work, when not stated, we will use the first L = K components
(where K is the number of samples in the dataset).

2.3. Density Estimation
Once the images have been projected to the eigenbrain space,
we want to generate new samples in this new space, in order to
synthesize new images. To do so, we assume that the coordinates
of the subjects of a certain class in the eigenbrain space are
different realizations of a randomprocess with a given Probability
Density Function (PDF).

In order to estimate the PDF of the process that generates the
coordinates of each class, we use two different density estimation
procedures: a multivariate approach under the assumption of a
normal distribution and a per-component estimation of density
using the empirical Kernel Density Estimation.

2.3.1. Multivariate Normal Distribution (MVN)
The Multivariate Normal Distribution (MVN, also known as
Multivariate Gaussian Distribution) is a generalization of the
random normal distribution to n dimensions.

Let us note Sc the matrix containing only the coordinates
in the eigenbrain space of the Kc individuals belonging to class

c. We can estimate its multivariate PDF f̂ cmvn(x) by computing
the class mean µc and its class covariance matrix 6c. The
estimation of 6c is performed via shrinkage, which consists in
reducing the ratio between the smallest and the largest eigen-
value of the empirical covariance matrix using a shrinkage
parameter α. In this work we used the method proposed in

Ledoit andWolf (2004) to estimate an optimum α that minimizes
the Mean Squared Error between the estimated and the real
covariance matrix. The multivariate PDF for class c would
be:

f̂ cmvn(x) =
1

(2π)Kc/2 |6c|1/2
exp

(
(x− µc)T6−1

c (x− µc)

2

)
(5)

2.3.2. Kernel Density Estimation (KDE)
Kernel Density Estimation (KDE) is an increasingly used method
to estimate the PDF of a set of data (Botev et al., 2010;
Simonoff, 2012). In this case, we perform a per-component
estimation of the PDF. This approach disregards conditional
probabilities between components and uses each component’s
modeling as independent.While this is not theoretically accurate,
the components extracted in PCA are uncorrelated by definition,
and in practice the conditional terms are very small.

On the other hand, the per-component KDE is less prone to
overfitting by disregarding these constraints. Additionally, the
KDE can empirically account for heavy-tailed distributions that
are sometimes more common in pathological models (Salas-
Gonzalez et al., 2012), which might make this model more
suitable.

An estimation of the PDF of the lth coordinate of class c is
defined using KDE as:

f̂ l,c
kde

(x) =
1

Kc

Kc∑

i=1

Gh

(
x− Si,c

l

)
=

1

Kch

Kc∑

i=1

G

(
x− Si,c

l

h

)
, (6)

where i = 1, . . .Kc, with Kc the number of subjects belonging to
class c, h is the bandwidth and Si,c

l
contains the lth coordinate of

the ith subject of class c. The kernel G(x) is a function of Rn that
must define a probability:

∫
· · ·

∫

Rn
G(x)dx = 1 (7)

It also must be centered:
∫

· · ·

∫

Rn
xG(x)dx = 0 (8)

and its covariance matrix must be close to identity:

∀u ∈ R
n, ‖u‖ = 1

∫

R

t2G(tu)dt ≈ 1 (9)

In this work, we use a gaussian kernel G(x) = 1/(2π) exp(− 1
2x

2)
for the estimate. Estimation of the bandwidth h is performed
using the diffusion approximation proposed by Botev et al.
(2010).

2.4. Brain Image Synthesis
After estimating the empirical PDF of the coordinates, we aim
to generate a new set of coordinates for class c Ŝc that match
the distribution of the originals. To do so, we compute the
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Cumulative Distribution Function (CDF) from the PDF that we
estimated previously as:

F(x) =

∫ x

−∞

f (t)dt (10)

Afterwards, we can use a random number generator to provide
uniformly distributed random numbers in the interval [0, 1].
These numbers are in the range of the CDF (from 0 to 1),
and therefore we can consider them as F(x), from which we
could obtain the value x. In practice, we perform a numerical
approximation to the problem, in which we calculate the full CDF
in a wide range of x, and then interpolate the value of x using the
generated F(x) as query point.

This procedure is repeated for all coordinates i = 1, . . .K as
many times as the number of subjects of class c that we want
to synthesize. Then, the new set of images can be reconstructed
using the eigenbrain basisW and the new matrix of scores Ŝc.

X̂c = ŜcW−1 (11)

The synthesis procedure defined here is available via the
brainSimulator python package at https://github.com/SiPBA/
brainSimulator, under the GPL-3+ license.

2.5. Validation
Validation of a synthetic dataset is still a matter of discussion. It
depends heavily on the specific application of the synthesis. For
example, for synthetic phantoms (Jan et al., 2004; Segars et al.,
2010; Stute et al., 2011) and automatic segmentation methods
(Ma et al., 1993; Kwan et al., 1999), visual inspection was used.
Additionally, some studies performed measures of accuracy of
segmentation, but that is not our case. Other studies applied
spatial deformations for data augmentation (Zhu et al., 1994;
Xue et al., 2006; Ronneberger et al., 2015; Martinez-Murcia et al.,
2017), mostly without validating the deformed images.

The main purpose of this work is to generate images that
could have been drawn from the same population of a given
dataset, sharing relevant characteristics and, at the same time,
being independent from the existing samples. Assessing this is
not trivial. Therefore, we use two kinds of analyses:

• The well-known Statistical Parametric Mapping analysis
(SPM) (Friston et al., 2007), to obtain a visual identification of
the differences and similarities between classes and datasets. In
particular, mass-univariate two-sample t-maps were obtained
using the SPM12 software, using Family-wise error (FWE)
correction t-threshold for a p < 0.05, with nomasking applied.

• A classification analysis using Voxel as Features (VAF)
(Stoeckel et al., 2004), which yields classification performance
on different experimental setups. We cross-validate (10-fold)
a Support Vector Machine Classifier (SVC) with linear kernel
where the voxel intensities are used as features. To estimate
the SVM regularization parameter (C), we perform a grid
search in an inner 5-fold cross-validation loop on the training
set. The following performance values are provided: accuracy
(acc), sensitivity (sens), specificity (spec), and their standard
deviations (SD).

These analyses will be applied to evaluate the:

• E1: Similarity and generalization ability of the synthetic
datasets via three different approaches:

• E1.1. Assessing the differences between classes in both
the original and the synthetic images using SPM and
classification analysis. Similar performance results and SPM
significant areas is expected if the original datasets are
accurately modeled. We also study here the dependence of
the synthetic images on the model parameters L (number of
components) and N (number of generated subjects).

• E1.2. Assessing the differences between original and

synthetic datasets, using both SPM and classification
analysis. If we assume that the synthetic datasets are a new
sampling of the population from which the original datasets
were drawn, there should be no significant differences
between them.

• E1.3. Evaluating the predictive power of the synthetic

images on the original datasets. In this case, we use the
synthetic images as a training set and test de trained model
on real-world samples.

• E2: Independence of the synthetic images. To assess how
much the synthesis procedure depends on the original dataset
we choose a strategy based on the resubstitution error (Neto
andDougherty, 2015). Resubstitution (using the training set as
test set) estimates the performance loss in the training. We will
obtain the resubstitution error of the original training set and
a synthetic dataset derived from that original training set. If
this performance loss is similar to the performance loss in the
original test set (E1.1), this means that we can consider that
our synthesis algorithm produces images independent from
the original set.

3. RESULTS

3.1. E1: Similarity and Generalization Ability
of the Synthetic Datasets
3.1.1. E1.1: Differences between Classes
The first approach we used to verify whether the synthetic images
are similar to their original counterparts is to quantify and
localize differences between classes in both the original and the
synthetic datasets. We assess this similarity using both a map
of the statistical differences between classes in all these datasets
(SPM) and the classification performance when using the original
and the synthetic images.

In Figure 2, we can look at the differences (t-maps, FWE
corrected, p < 0.05) between AD and NOR images with the
original, and two synthesized datasets with 200 samples per
class, using either MVN or KDE modeling. In these maps, the
differences are located in similar places in both synthesized
databases, that are as well, although less intense, represented in
the SPM analysis of the original dataset. The aforementioned
regions such as the precuneus, angular, mid-temporal lobe,
hippocampus, amygdala, among others, are represented in both
the original and synthetic datasets, with a special mention of the
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FIGURE 2 | SPM analysis of the ADNI dataset (AD vs. NOR), Family-Wise Error (FWE) corrected, with p = 0.05, for the original and the synthetic images.

cingulum, which also is the main difference in the MCI vs. NOR
scenario (see Supplementary Material).

In the PPMI dataset, the SPM analysis revealed (Figure 3)
that the main differences are located in the posterior part of the
striatum, specifically at the posterior part of the putamen and
globus pallidus. This behavior is consistent in both original and
synthesized images, although with more statistical significance
in the case of the MVN model, and a more homogeneous
distribution of the negative differences under the KDE model.

The choice of these two datasets was not random. They
represent two extremes of the nuclear imaging spectrum: a very
specific radiotracer (DaTSCAN) in two distinguishable states of a
disease (PPMI) and a general radiopharmaceutical (FDG PET) in
a progressive neurodegenerative disorder with very overlapping
classes (ADNI). The separation between AD and NOR should
be, therefore, higher than between the intermediate MCI and
the two better-defined classes. However, even the AD and NOR
classes overlap in the original dataset, perhaps due to a lower
specificity of the biomarker (glucose metabolism) and noise in
the diagnostic tests used to label the patients (Chapman et al.,
2016).

A more descriptive analysis can be performed via the VAF
performance of the original and synthetic datasets. These results

can be used to quantify the impact of some model parameters
(for example, the number of subjects generated N or the
number of components L used in the model) on the differences
between classes. To do so, we first establish a baseline: the VAF
performance of the original dataset, that can be checked at
Table 1.

Now, two of the model parameters, L and N have been varied
to explore their impact on the synthetic images. First, we vary L,
the number of components used to synthesize images. It is logic
to assume that a small number of components will be insufficient
to acknowledge all variance in the original dataset, therefore
producing low-quality images. On the other hand, a large number
of components could lead to overfitting, especially in the MVN
model, which takes into account not only the component scores’
distribution, but also the relations between components.

This evolution is assessed in Figure 4, compared to the VAF
performance of the original dataset (black dashed line) and
standard deviation (shadowed area). There, we can check that our
assumptions were accurate. Small Ls lead to inaccurate models
where the VAF performance is low. On the other hand, larger Ls
have a stronger impact on the MVN modeling, while the KDE
performance remains almost unaltered after a certain L-value.
This behavior might be an indication that the MVN approach
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FIGURE 3 | SPM analysis of the PPMI dataset (PD vs. NOR), Family-Wise Error (FWE) corrected, with p = 0.05, for the original and the synthetic images.

TABLE 1 | Original VAF performance of the two datasets, including MCI scenario

in ADNI.

Database Scenario acc [SD] sens [SD] spec [SD]

PET ADNI AD vs. NOR 0.882 [0.012] 0.865 [0.091] 0.901 [0.118]

MCI vs. NOR 0.698 [0.042] 0.791 [0.064] 0.504 [0.179]

MCI vs. AD 0.702 [0.117] 0.444 [0.219] 0.822 [0.258]

DAT PPMI PD vs. NOR 0.923 [0.057] 0.929 [0.090] 0.918 [0.088]

converges faster to an optimum modeling (approximate error
0.15 in ADNI and 0.08 in PPMI), and afterwards starts to produce
more concentrated data clusters in the eigenbrain space due to
the restrictions imposed by its L-dimensional nature. The larger
the number of components L is, the more concentrated the data
clusters might be, a possible indication of overfitting.We can also
observe that the MVN surpasses the original VAF performance
with a smaller L, which points to the fact that the variability in
DaTSCAN imaging is far smaller than in PET, and therefore, less
components are needed for an accurate model.

We can assume that the optimum model uses the L that
produces the more detailed images while maintaining a similar

performance to the original dataset. In this work we propose
to choose the highest L whose average performance remains
within 1 standard deviation of the original dataset performance.
In our case, it would be L = 40 for the FDG-PET and L = 24
for DaTSCAN. Now, by fixing these two Ls, we will analyze
how the VAF performance changes when increasing the number
of synthetic images. We may assume that increasing N would
reduce progressively the standard deviation of the performance
estimates, converging toward the original VAF performance.

Figure 5 shows that, while the VAF performance of the MVN
modeling increases and reduces its variance, eventually reaching
the original performance, the KDE estimation hardly varies after
a decent sample size (100 subjects, 50 subjects per class) has been
reached.

3.2. E1.2: Differences between Original and
Synthetic Images
It is now important to ensure that the synthetic images
statistically belong to the same population from which the
original images were drawn. To do so, we perform a SPM analysis
(massive univariate t-test with FWE corrected with p = 0.05) that
compares the original datasets to:
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FIGURE 4 | Evolution of the accuracy when varying the number of components L.

FIGURE 5 | Evolution of the accuracy when varying the number of synthetic images N.

• KDE-synthetic (with maximum L) datasets.
• KDE-synthetic (with L = 40/24 for ADNI/PPMI) datasets.
• MVN-synthetic (with maximum L) datasets.
• MVN-synthetic (with L = 40/24 for ADNI/PPMI) datasets.

Therefore, eight analyses were performed (four per dataset).
None of these analyses yielded significant (p < 0.05, FWE)
differences between the two populations, regardless of the
model type (MVN or KDE) or database. Therefore, the group
differences between original and synthetic images were relatively
sparse and of small effect sizes. This might indicate that both
the original and the synthetic images belong to the same
population.

3.3. E1.3: Generalization Ability of the
Synthetic Images
In the first experiment, we test how a model trained with
synthetic images is able to predict real-world images. We do this
by generating a synthetic training set from the original training
set within the cross-validation loop, as seen in Figure 6. We
tested this approach on the PET ADNI and the DAT PPMI

datasets, using all PDF estimators and different L-values. In
each cross-validation iteration we synthesize a new set with 200
samples per class. Results are shown at Table 2.

The prediction accuracy, sensitivity and specificity are higher
when using theMVN estimator than with the KDE in both ADNI
and PPMI. The MVN modeling performance is also closer to the
original baseline performance (see previous section), especially
when using the suggested L = 40 for AD and L = 24 for
PD. The KDE performance, however, degrades significantly when
reducing the number of components.

Regarding the PET ADNI dataset, we tested three different
scenarios: AD vs. NOR, MCI vs. NOR, and MCI vs. AD.
The higher performance is obtained in the AD vs. NOR, but
when including MCI subjects, the results vary. In the case
of the MVN estimator, the MCI vs. NOR scenario performs
slightly better than the MCI vs. AD. On the other hand, when
using the KDE, MCI vs. AD obtains better results than MCI
vs. NOR. However, the big difference among them is that,
whereas the MVN estimator achieves similar performance to the
baseline, the KDE-synthetic images lead to smaller predictive
power.
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FIGURE 6 | Outline of the experimental setup for E1.3 to test the generalization ability of the synthetic images.

TABLE 2 | Performance of E1.3, demonstrating the predictive ability of the synthetic images over the real dataset.

Database Est. L Scenario acc [SD] sens [SD] spec [SD]

PET ADNI MVN 403 AD vs. NOR 0.852 [0.078] 0.804 [0.151] 0.900 [0.137]

MCI vs. NOR 0.688 [0.067] 0.743 [0.108] 0.572 [0.169]

MCI vs. AD 0.675 [0.121] 0.468 [0.192] 0.774 [0.224]

40 AD vs. NOR 0.790 [0.084] 0.813 [0.165] 0.770 [0.207]

MCI vs. NOR 0.496 [0.139] 0.374 [0.359] 0.750 [0.392]

MCI vs. AD 0.622 [0.152] 0.563 [0.298] 0.651 [0.320]

KDE 403 AD vs. NOR 0.770 [0.114] 0.747 [0.153] 0.790 [0.169]

MCI vs. NOR 0.642 [0.044] 0.726 [0.098] 0.472 [0.188]

MCI vs. AD 0.672 [0.081] 0.484 [0.142] 0.760 [0.187]

40 AD vs. NOR 0.622 [0.114] 0.784 [0.290] 0.459 [0.394]

MCI vs. NOR 0.509 [0.152] 0.467 [0.434] 0.599 [0.450]

MCI vs. AD 0.576 [0.170] 0.522 [0.363] 0.602 [0.390]

DAT PPMI MVN 268 PD vs. NOR 0.948 [0.041] 0.948 [0.055] 0.946 [0.064]

24 PD vs. NOR 0.925 [0.047] 0.910 [0.079] 0.945 [0.083]

KDE 268 PD vs. NOR 0.914 [0.082] 0.916 [0.113] 0.909 [0.121]

24 PD vs. NOR 0.833 [0.146] 0.834 [0.292] 0.819 [0.248]

3.4. E2: Dependence on the Original
Images
In experiment 2, we will assess the dependence of the synthetic
images on the original datasets, using the resubstitution error
(Neto and Dougherty, 2015). A classifier trained and tested
on the same set (resubstitution) usually has a low error rate
(resubstitution error or training error). It is generally assumed
that the generalization error is the test error, or the error achieved
by a test set, different from the training set.

In this experiment, we first estimate the resubstitution
accuracy (1− resubstitution error) testing on the original training
set, and then use that same set to synthesize (at different Ls) a
new test set (Figure 7). Depending on the performance loss, that
could imply realistic images—different from the training set—or

images that are almost identical to the training set–overfitting.
The results for this experiment are shown at Table 3.

When using all available components (L = 402 for ADNI
and L = 268 for PPMI) we observe that the performance
loss of the MVN estimator is almost null, probably due to
the aforementioned overfitting. Conversely, the KDE model
produces more different images, increasing the prediction error
up to a 0.2 under all scenarios in ADNI and 0.15 in PPMI.

However, this situation changes completely when using the
optimal L in the MVN synthesis. In this case, the performance
loss is higher in all cases, demonstrating that the images are
different from the original training set, and less concentrated
than when using higher Ls. Moreover, whereas the KDE achieved
similar performance under all scenarios (with all Ls), the MVN
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FIGURE 7 | Outline of the experimental setup for E2 to test the resubstitution and prediction accuracies.

TABLE 3 | Performance of E2, showing the resubstitution error (resubs.) and the test error of synthetic test sets with different Ls.

Database Scenario Test (model, L) acc [SD] sens [SD] spec [SD]

PET ADNI AD vs. NOR resubs. 1.000 [0.000] 1.000 [0.000] 1.000 [0.000]

MVN 402 0.994 [0.003] 0.988 [0.006] 1.000 [0.007]

KDE 402 0.811 [0.014] 0.791 [0.021] 0.832 [0.028]

MVN 40 0.906 [0.014] 0.882 [0.020] 0.930 [0.034]

KDE 40 0.752 [0.018] 0.736 [0.026] 0.768 [0.030]

MCI vs. NOR resubs. 0.999 [0.001] 0.998 [0.002] 1.000 [0.001]

MVN 402 1.000 [0.000] 1.000 [0.000] 1.000 [0.000]

KDE 402 0.823 [0.018] 0.843 [0.024] 0.801 [0.033]

MVN 40 0.722 [0.021] 0.863 [0.024] 0.580 [0.143]

KDE 40 0.692 [0.015] 0.829 [0.023] 0.556 [0.139]

MCI vs. AD resubs. 1.000 [0.000] 1.000 [0.000] 1.000 [0.000]

MVN 402 1.000 [0.000] 1.000 [0.000] 1.000 [0.000]

KDE 402 0.820 [0.014] 0.799 [0.022] 0.841 [0.030]

MVN 40 0.775 [0.025] 0.615 [0.047] 0.934 [0.163]

KDE 40 0.706 [0.011] 0.573 [0.011] 0.840 [0.135]

DAT PPMI PD vs. NOR resubs. 1.000 [0.000] 1.000 [0.000] 1.000 [0.000]

MVN 268 0.998 [0.002] 0.997 [0.003] 1.000 [0.003]

KDE 268 0.848 [0.013] 0.809 [0.021] 0.887 [0.043]

MVN 24 0.966 [0.012] 0.961 [0.018] 0.971 [0.015]

KDE 24 0.854 [0.024] 0.839 [0.035] 0.869 [0.035]

with optimal L replicates the baseline behavior found at Table 1;
that is, a much higher discrimination ability in AD vs. NOR than
when comparing to the prodromal state MCI. This is even true
under the two MCI scenarios: the accuracy is higher under the
MCI vs. AD scenario (0.775) than in the MCI vs. NOR (0.722),
the same that occurred in the original dataset (0.702 and 0.698,
respectively).

4. DISCUSSION

In this work, we propose an brain image synthesis algorithm
that analyses a dataset, extracts its most relevant characteristics

and then generates new images that share the same properties.
The algorithm is based on PCA, which defines a new common
space for each dataset (the “eigenbrain” space), in which the
individual images are represented as points. There, it models the
distribution of these points, using them to construct a generative
model in the eigenbrain space. After generating new samples
in the eigenbrain space, these can be inversely transform to the
image space, producing new samples of the same population (see
Figure 1 for a graphical representation of the procedure).

The use of PCA for feature extraction neuroimaging
in components is widely documented (Zhu et al., 1994;
Markiewicz et al., 2009; Illán et al., 2011; Khedher et al., 2015;
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Martinez-Murcia et al., 2016). The PCA components model
different orthogonal sources of variance in the original data.
In AD, these components, or eigenbrains, represent features
that have been associated with the progression of the disease.
The contribution of each eigenbrain (or the coordinates of each
subject in the eigenbrain space) has been proven to effectively
model the advance of the disease in many works. PCA has also
been used to build up a reference of the sources of variance in a
generative model in Zhu et al. (1994), using a different simulation
strategy. Therefore, it was the optimal tool, well-known and with
proven utility, to be used in this work.

In Figure 8 we show the first four eigenbrains (zero-centered)
for the ADNI-PET dataset. The positive/negative contributions
of each eigenbrain are shown in blue/red color, respectively. Each
component accounts for different variability terms in the original
dataset, for example, a negative contribution at the cingulate
gyri, precunei, and areas around the thalamus in Component 0
(Stoeckel et al., 2004; Illán et al., 2011), contrast between the
anterior and posterior part of the brain in Component 1 and so
on. Component 2 accounts for uptake differences at the angular
gyrus and precuneus that have been linked to AD (see SPM
analysis at section 3.1.1), also present in Component 3. These
features prove that the computed eigenbrains are representative
of independent structures and activities that together can
positively influence the synthesis of new brain images via a
correct parametrization and estimation of the component scores.

The distribution of the samples in the eigenbrain space was
modeled using two estimation methods: a Multivariate Normal

Distribution (MVN) and the Kernel Density Estimation (KDE)
via diffusion. An accurate estimation of the distribution of the
scores belonging to a certain class is paramount to obtain a
reliable brain image synthesis.

In Figure 9 we compare the two PDF estimation methods in
two relevant eigenbrains: 2 and 10 (only AD and NOR groups
are shown for simplicity), setting the original classes histogram
as reference. Note that, since the MVN is multivariate in nature,
we have projected the 2nd and 10th components to a single
component for a estimated model of L = K components to
obtain a clearer visualization.

Two major features are shown in these figures: class
separability and quality of the modeling. As it can be seen, a
large proportion of the variability contained in component 2
correspond to class differences (see also Figure 8 and the positive
weights of AD-related brain regions). These class differences are
higher in the MVN model with L = 403 (more concentrated
classes) than in the KDE model. Furthermore, the KDE model
adapts better to the empirical distribution, as it can be seen in
component 10.

On the other hand, the scores distribution may not contain
class differences, as in component 10. However, in this case, the
distribution of scores in both classes is asymmetric, with longer
tails and less gaussian than component 2. So, it is easier to assume
that the KDE modeling will also perform better in this case.

Nevertheless, we cannot assume that the PCA components are
statistically independent, and therefore, the KDE per-component
model is deprecating substantial information. The multivariate

FIGURE 8 | Illustration of the first four eigenbrains (components 0 to 3) of the PET ADNI dataset.
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nature of the MVN does consider these possible dependences,
which are then included in the model. This makes it more
accurate but at the same time more prone to overfitting.

Overfitting in the MVN model means that, when L →

∞, the model would only produce the average image of each
class. So, choosing an optimum L has a strong impact on the
simulated images. A higher Lwould containmore high frequency
information, but it also overfits the model, producing images
more similar to the average. On the other hand, small Ls will
lead to more overlapped classes, more similar to the real world,
but less detail. Figure 10 shows how increasing L affects the
class overlapping, reducing the variability and eventually leading
to images that are very close to each other. In this work, we
carefully chose L = 40 for ADNI and L = 24 for PPMI
by selecting the highest number of components that obtained
similar performance to the original dataset. A significantly higher
performance might be considered overfitting. Other approaches
to select an optimum L such as the Variance of Reconstruction

Error (VRE) proposed in Mnassri et al. (2010) or the modified
Bayesian model selection criterion of Kazianka and Pilz (2016)
might be considered in the future.

A visual analysis of the synthetic images in Figures 11, 12
reveals that the synthetic images preserve similar characteristics
of the original datasets. For example, it is easy to appreciate
differences in glucose metabolism in Figure 11 typically
associated with AD, such as a smaller activity at the temporal lobe
or a less homogeneous distribution of the radiopharmaceutical
in the gray matter (Stoeckel et al., 2004; Illán et al., 2011). In the
synthetic DaTSCAN images (Figure 12) differences in shape and
intensity of the striatum, and bilateral differences (Lozano et al.,
2010; Towey et al., 2011; Illán et al., 2012; Martínez-Murcia et al.,
2014) can also be noticed, using both MVN and KDE modeling,
although variability of the PD class is perhaps better modeled in
KDE. This is again a probable case of overfitting.

When analyzing the particularities of the MVN and KDE
modeling under a classification analysis, we have already

FIGURE 9 | Comparison between the MVN and KDE PDF estimation methods for the component 2 and 10 in the PET ADNI dataset (AD and NOR groups for

simplicity), setting the histogram as reference.

FIGURE 10 | Partial PDF modeling of component 2 (AD and NOR classes) using the MVN estimator with different Ls. PDFs scaled for comparison.
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FIGURE 11 | Examples of some original and synthetic subjects from the ADNI-PET dataset.

FIGURE 12 | Examples of some original and synthetic subjects from the PPMI dataset.

demonstrated that MVN tends heavily to overfitting when the
number of components is high (L = K), but it considers
all conditional probabilities in the estimation. For its part, the
KDE modeling is more robust to overfitting, mainly due to its
univariate nature (per-component modeling), keeping a relevant
prediction ability over real-world images, at the same time that
its dependence on the original dataset is reduced. However, when
an optimum L is chosen, the MVN model resembles more the
original dataset performance in both the generalization ability
(E1.3) and the dependence of the synthetic images on the original
dataset (E2).

Each PDF estimation method has advantages and
disadvantages. The KDE modeling works “out of the box,”
producing more heterogeneous classes and images. On the
other hand, the MVN modeling requires more fine-tuning
of the L parameter, but it preserves conditional probabilities
that may add relevant information to the synthetic images.
New multidimensional PDF models, such as a multivariate
KDE estimation or alpha-stable (heavy-tailed) modeling of
the non-gaussian components, could also be used to preserve
these conditional probabilities and improve each component
modeling.

Still, evaluation and data availability are currently major
bottlenecks for assessing validity and comparing machine
learning approaches in neuroimaging, especially with the
increasingly popular deep learning approaches. Testing on large
samples of dynamically generated images that belong to the
same population as the original (as in E2) can produce more
realistic performance estimates, leading to a standardization of
the evaluation of CAD systems that provides an idea of their
generalizing capacity.

Our methodology provides functional brain images that could
be drawn from the same population as the original dataset;
images that can effectively predict real world samples at the
same time that they remain independent from the database
used in the modeling. Compared to other widely used data
augmentation procedures, such as affine or elastic deformations,
it is a more advanced paradigm that can simulate functional
patterns associated with a given disease, which could increase
the generalization ability of our models. This application is the
main purpose of this paper, but apart from this there exist
many application possibilities yet to be explored, e.g., using the
synthetic images in clinical training of future professionals, or in
standardized automatic evaluation procedures.
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5. CONCLUSIONS

In this work, we have proposed a novel brain synthesis algorithm
that could be used, among other things, in standardizing
evaluation of CAD systems or as a data augmentation procedure.
The algorithm consists of an analysis of a existing dataset using
Principal Component Analysis, building a space defined by these
principal components, or eigenbrains. In this space, we have
modeled the spatial distribution of each class, a model from
which we can derive new coordinates in the eigenbrain space that
can be projected back into the original image space.

We have tested the algorithm in two well-known databases:
one FDG-PET database from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), and a DaTSCAN SPECT
database from the Parkinson’s Progression Markers Initiative
(PPMI). A visual analysis of the synthetic images revealed
that they visually resemble the originals, sharing functional
patterns that have been associated with Alzheimer’s Disease and
Parkinson’s Disease in the literature. A Statistical Parametric
Mapping analysis revealed similar regions in both the original
and the synthetic datasets when studying the significant
differences between classes.

We tested different features of the synthetic datasets
under three experiments, aimed to prove their ability on
detecting real-world image patterns and quantifying their
dependence on the original dataset and the number of
components used in the modeling. When comparing the two
PDF estimation procedures, we found that the Multivariate
Normal distribution (MVN) was more accurate, but also more
affected by overfitting, whereas the synthesis using Kernel
Density Estimation (KDE) produced more overlapped classes
at any number of components considered, probably due to
missing information about conditional probabilities. Our system,
regardless of the PDF estimation, proved to be a useful tool
for generating synthetic images that could be used for data
augmentation, standardization of CAD system evaluation and
even educational purposes.

AUTHOR CONTRIBUTIONS

Conception or design of the work: FM-M, II, JG, and JR. Data
collection: II, JR, JG, and DS-G. Data analysis and interpretation:
FM, JG, and JR. Drafting of the article: FM-M, JG, and JR. Critical
revision of the article: FS, JG, JR, II, FS, DC-B, and DS-G. Major
revision of the article: FM-M, JR, and JG.

FUNDING

This work was partly supported by the MINECO/ FEDER under
the TEC2015-64718-R project and the Consejería de Economía,

Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under
the Excellence Project P11-TIC- 7103.

ACKNOWLEDGMENTS

Data collection and sharing for this project was funded by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National
Institutes of Health Grant U01 AG024904) and DOD ADNI
(Department of Defense award number W81XWH-12-2-0012).
ADNI is funded by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering,
and through generous contributions from the following:
AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery
Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-
Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan
Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F.
Hoffmann-La Roche Ltd and its affiliated company Genentech,
Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research & Development, LLC.; Johnson
& Johnson Pharmaceutical Research & Development LLC.;
Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics,
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;
Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is
providing funds to support ADNI clinical sites in Canada.
Private sector contributions are facilitated by the Foundation for
the National Institutes of Health (www.fnih.org). The grantee
organization is the Northern California Institute for Research
and Education, and the study is coordinated by the Alzheimer’s
Therapeutic Research Institute at the University of Southern
California. ADNI data are disseminated by the Laboratory for
Neuro Imaging at the University of Southern California.

PPMI—a public-private partnership—is funded by the
Michael J. Fox Foundation for Parkinson’s Research and funding
partners, including AbbVie; Avid Radiopharmaceuticals; Biogen;
Bristol-Myers Squibb Company; Covance; GE Healthcare;
Genentech, Inc.; GlaxoSmithKline; Eli Lilly & Co.; Lundbeck;
Merck; Meso Scale Discovery; Pfizer Inc.; Piramal Imaging;
Roche CNS group; Sanofi Genzyme; Servier; Teva; UCB; and
Golub Capital.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2017.00065/full#supplementary-material

Supplementary figures of the SPM analysis of all scenarios and
datasets, including the original montages of SPM12 and the glass
brain visualization.

REFERENCES

Black, J., Ellis, T., and Rosin, P. (2003). “A novel method for video tracking
performance evaluation,” in Proceedings of the IEEE InternationalWorkshop on

Visual Surveillance and Performance Evaluation of Tracking and Surveillance

(VS-PETS 03) (Nice), 125–132.
Botev, Z., Grotowski, J., and Kroese, D. (2010). Kernel density estimation via

diffusion. Ann. Stat. 38, 2916–2957. doi: 10.1214/10-AOS799

Frontiers in Neuroinformatics | www.frontiersin.org 14 November 2017 | Volume 11 | Article 65

www.fnih.org
https://www.frontiersin.org/articles/10.3389/fninf.2017.00065/full#supplementary-material
https://doi.org/10.1214/10-AOS799
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Martinez-Murcia et al. Functional Brain Imaging Synthesis Based

Bron, E. E., Smits, M., Van Der Flier, W. M., Vrenken, H., Barkhof, F., Scheltens,
P., et al. (2015). Standardized evaluation of algorithms for computer-aided
diagnosis of dementia based on structural MRI: the caddementia challenge.
Neuroimage 111, 562–579. doi: 10.1016/j.neuroimage.2015.01.048

Brown, J. D. (2009). Principal components analysis and exploratory factor
analysis—definitions, differences, and choices definitions, differences, and
choices. Shiken JALT Test. Eval. SIG Newslett. 13, 26–30.

Chapman, K. R., Bing-Canar, H., Alosco, M. L., Steinberg, E. G., Martin, B.,
Chaisson, C., et al. (2016). Mini mental state examination and logical memory
scores for entry into Alzheimer’s disease trials. Alzheimers Res. Ther. 8:9.
doi: 10.1186/s13195-016-0176-z

Cui, J., Wang, Y., Huang, J., Tan, T., and Sun, Z. (2004). “An iris image synthesis
method based on PCA and super-resolution,” in Proceedings of the 17th

International Conference on Pattern Recognition, 2004. ICPR 2004, Vol. 4
(Cambridge, UK: IEEE), 471–474.

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K.,
et al. (2014). The autism brain imaging data exchange: towards a large-scale
evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19,
659–667. doi: 10.1038/mp.2013.78

Eckert, T., and Edwards, C. (2007). The application of network mapping in
differential diagnosis of parkinsonian disorders. Clin. Neurosci. Res. 6, 359–366.
doi: 10.1016/j.cnr.2007.05.001

Erhardt, E. B., Allen, E. A.,Wei, Y., Eichele, T., and Calhoun, V. D. (2012). SimTB, a
simulation toolbox for fMRI data under a model of spatiotemporal separability.
Neuroimage 59, 4160–4167. doi: 10.1016/j.neuroimage.2011.11.088

Ferguson, A. R., Nielson, J. L., Cragin, M. H., Bandrowski, A. E., and Martone,
M. E. (2014). Big data from small data: data-sharing in the’long tail’ of
neuroscience. Nat. Neurosci. 17, 1442–1447. doi: 10.1038/nn.3838

Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P., and Thompson, P. M. (2010).
The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6,
67–77. doi: 10.1038/nrneurol.2009.215

Friston, K., Ashburner, J., Kiebel, S., Nichols, T., and Penny, W. (2007). Statistical
Parametric Mapping: The Analysis of Functional Brain Images. London, UK:
Academic Press.

Illán, I., Górriz, J., Ramírez, J., Segovia, F., Jiménez-Hoyuela, J., andOrtega Lozano,
S. (2012). Automatic assistance to Parkinsons disease diagnosis in DaTSCAN
SPECT imaging.Med. Phys. 39, 5971–5980. doi: 10.1118/1.4742055

Illán, I. A., Górriz, J. M., Ramírez, J., Salas-Gonzalez, D., López, M. M., Segovia,
F., et al. (2011). 18F-FDG PET imaging analysis for computer aided Alzheimer’s
diagnosis. Inform. Sci. 181, 903–916. doi: 10.1016/j.ins.2010.10.027

Jan, S., Santin, G., Strul, D., Staelens, S., Assie, K., Autret, D., et al. (2004).
Gate: a simulation toolkit for pet and spect. Phys. Med. Biol. 49:4543.
doi: 10.1088/0031-9155/49/19/007

Kazianka, H., and Pilz, J. (2016). A corrected criterion for selecting the
optimum number of principal components. Aust. J. Stat. 38, 135–150.
doi: 10.17713/ajs.v38i3.268

Khedher, L., Ramírez, J., Górriz, J., Brahim, A., and Segovia, F. (2015). Early
diagnosis of Alzheimer’s disease based on partial least squares, principal
component analysis and support vector machine using segmentedMRI images.
Neurocomputing 151, 139–150. doi: 10.1016/j.neucom.2014.09.072

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems (Stateline, NV), 1097–1105.
Kwan, R.-S., Evans, A. C., and Pike, G. B. (1999). MRI simulation-based evaluation

of image-processing and classification methods. IEEE Trans. Med. Imaging 18,
1085–1097. doi: 10.1109/42.816072

Ledoit, O., and Wolf, M. (2004). A well-conditioned estimator for large-
dimensional covariance matrices. J. Multivar. Anal. 88, 365–411.
doi: 10.1016/S0047-259X(03)00096-4

Lozano, S. O., Torres, M. M. d. V., Moreno, E. R., Viedma, S. S., Raissouni, T. A.,
and Jiménez-Hoyuela, J. (2010). [Quantitative evaluation of SPECT with FP-
CIT. Importance of the reference area]. Rev. Espa. Med. Nucl. 29, 246–250.
doi: 10.1016/j.remn.2010.03.006

Ma, Y., Kamber, M., and Evans, A. (1993). 3D simulation of pet brain
images using segmented mri data and positron tomograph characteristics.
Comput. Med. Imaging Graphics 17, 365–371. doi: 10.1016/0895-6111(93)
90030-Q

Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., et al.
(2011). The Parkinson Progression Marker Initiative (PPMI). Progr. Neurobiol.
95, 629–635. doi: 10.1016/j.pneurobio.2011.09.005

Markiewicz, P., Matthews, J., Declerck, J., and Herholz, K. (2009). Robustness of
multivariate image analysis assessed by resampling techniques and applied to
FDG-PET scans of patients with Alzheimer’s disease. Neuroimage 46, 472–485.
doi: 10.1016/j.neuroimage.2009.01.020

Martinez-Murcia, F., Górriz, J., and Ramírez, J. (2016). “Computer aided diagnosis
in neuroimaging,” inComputer-aided Technologies - Applications in Engineering

and Medicine, ed R. Udroiu (London, UK: InTech), 137–160.
Martínez-Murcia, F., Górriz, J., Ramírez, J., Moreno-Caballero, M., Gómez-Río,

M., Initiative, P. P.M., et al. (2014). Parametrization of textural patterns in 123I-
ioflupane imaging for the automatic detection of Parkinsonism. Med. Phys.

41:012502. doi: 10.1118/1.4845115
Martínez-Murcia, F., Górriz, J., Ramírez, J., Puntonet, C., and Salas-González,

D. (2012). Computer aided diagnosis tool for Alzheimer’s disease based
on Mann-Whitney-Wilcoxon U-test. Exp. Syst. Appl. 39, 9676–9685.
doi: 10.1016/j.eswa.2012.02.153

Martinez-Murcia, F. J., Ortiz, A., Górriz, J. M., Ramírez, J., Segovia, F., Salas-
Gonzalez, D., et al. (2017). “A 3D convolutional neural network approach for
the diagnosis of Parkinson’s disease,” in International Work-Conference on the

Interplay BetweenNatural and Artificial Computation, Vol. 10337, Lecture Notes

in Computer Science, eds J. Ferrández Vicente, J. Álvarez Sánchez F. de la
Paz López, J. Toledo-Moreo, and H. Adeli (A Coruña: Springer), 324–333.

Mnassri, B., Ouladsine, M., El Adel, E. M., and Ananou, B. (2010). “Selection of the
number of principal components based on the fault reconstruction approach
applied to a new combined index,” in 2010 49th IEEE Conference on Decision

and Control (CDC) (Atlanta, GA: IEEE), 3307–3312.
Neto, U. M. B., and Dougherty, E. R. (2015). Error Estimation for Pattern

Recognition. Hoboken, NJ: John Wiley & Sons.
Pearlson, G. (2009). Multisite collaborations and large databases in psychiatric

neuroimaging: advantages, problems, and challenges. Schizophr. Bull. 35, 1–2.
doi: 10.1093/schbul/sbn166

Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M.,
Munafò, M. R., et al. (2017). Scanning the horizon: towards transparent
and reproducible neuroimaging research. Nat. Rev. Neurosci. 18, 115–126.
doi: 10.1038/nrn.2016.167

Poldrack, R. A., and Gorgolewski, K. J. (2014). Making big data open: data sharing
in neuroimaging. Nat. neurosci. 17, 1510–1517. doi: 10.1038/nn.3818

Rathore, S., Habes, M., Iftikhar, M. A., Shacklett, A., and Davatzikos, C.
(2017). A review on neuroimaging-based classification studies and associated
feature extraction methods for Alzheimer’s disease and its prodromal stages.
Neuroimage 155, 530–548. doi: 10.1016/j.neuroimage.2017.03.057

Raudys, S., and Jain, A. (1991). Small sample size effects in statistical pattern
recognition: recommendations for practitioners. IEEE Trans. Patt. Anal. Mach.

Intell. 13, 252–264. doi: 10.1109/34.75512
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: convolutional networks

for biomedical image segmentation. arXiv preprint arXiv:1505.04597.
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and Lopez, A. (2016). “The

SYNTHIA Dataset: a large collection of synthetic images for semantic
segmentation of urban scenes,” in 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (Las Vegas, NV: IEEE), 3234–3243.
Salas-Gonzalez, D., Gorriz, J., Ramirez, J., Martinez, F., Chaves, R., Segovia, F., et al.

(2012). “Intensity normalization of FP-cit spect in patients with parkinsonism
using the α-stable distribution,” in Nuclear Science Symposium and Medical

Imaging Conference (NSS/MIC), 2012 IEEE (New York, NY: IEEE), 3944–3946.
Salas-Gonzalez, D., Górriz, J. M., Ramírez, J., Illán, I. A., Padilla, P.,

Martínez-Murcia, F. J., et al. (2015). Building a FP-CIT SPECT brain
template using a posterization approach. Neuroinformatics 13, 391–402.
doi: 10.1007/s12021-015-9262-9

Sarica, A., Cerasa, A., Quattrone, A., Calhoun, V., and for the Alzheimer’s Disease
Neuroimaging Initiative (2016). A machine learning neuroimaging challenge
for automated diagnosis of mild cognitive impairment. J. Neurosci. Methods.

Available online at: https://www.kaggle.com/c/mci-prediction
Saxena, P., Pavel, D. G., Quintana, J. C., and Horwitz, B. (1998). “An automatic

threshold-based scaling method for enhancing the usefulness of Tc-HMPAO
SPECT in the diagnosis of Alzheimer’s disease,” in Medical Image Computing

Frontiers in Neuroinformatics | www.frontiersin.org 15 November 2017 | Volume 11 | Article 65

https://doi.org/10.1016/j.neuroimage.2015.01.048
https://doi.org/10.1186/s13195-016-0176-z
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1016/j.cnr.2007.05.001
https://doi.org/10.1016/j.neuroimage.2011.11.088
https://doi.org/10.1038/nn.3838
https://doi.org/10.1038/nrneurol.2009.215
https://doi.org/10.1118/1.4742055
https://doi.org/10.1016/j.ins.2010.10.027
https://doi.org/10.1088/0031-9155/49/19/007
https://doi.org/10.17713/ajs.v38i3.268
https://doi.org/10.1016/j.neucom.2014.09.072
https://doi.org/10.1109/42.816072
https://doi.org/10.1016/S0047-259X(03)00096-4
https://doi.org/10.1016/j.remn.2010.03.006
https://doi.org/10.1016/0895-6111(93)90030-Q
https://doi.org/10.1016/j.pneurobio.2011.09.005
https://doi.org/10.1016/j.neuroimage.2009.01.020
https://doi.org/10.1118/1.4845115
https://doi.org/10.1016/j.eswa.2012.02.153
https://doi.org/10.1093/schbul/sbn166
https://doi.org/10.1038/nrn.2016.167
https://doi.org/10.1038/nn.3818
https://doi.org/10.1016/j.neuroimage.2017.03.057
https://doi.org/10.1109/34.75512
https://doi.org/10.1007/s12021-015-9262-9
https://www.kaggle.com/c/mci-prediction
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Martinez-Murcia et al. Functional Brain Imaging Synthesis Based

and Computer-Assisted Intervention - MICCAI, Vol. 1496, Lecture Notes in

Computer Science, (Cambridge MA: Springer), 623–630.
Segars, W., Sturgeon, G., Mendonca, S., Grimes, J., and Tsui, B. M. (2010). 4D

XCAT phantom formultimodality imaging research.Med. Phys. 37, 4902–4915.
doi: 10.1118/1.3480985

Segovia, F., Gorriz, J., Ramírez, J., and Salas-Gonzalez, D. (2016). “Multiclass
classification of 18 F-DMFP-PET data to assist the diagnosis of Parkinsonism,”
in 2016 InternationalWorkshop on Pattern Recognition in Neuroimaging (PRNI)

(Trento: IEEE), 1–4.
Simonoff, J. S. (2012). Smoothing Methods in Statistics. New York, NY: Springer

Science & Business Media.
Spetsieris, P. G., Ma, Y., Dhawan, V., and Eidelberg, D. (2009). Differential

diagnosis of Parkinsonian syndromes using functional PCA-based imaging
features. Neuroimage 45, 1241–1252. doi: 10.1016/j.neuroimage.2008.12.063

Stoeckel, J., Ayache, N., Malandain, G., Koulibaly, P. M., Ebmeier, K. P.,
and Darcourt, J. (2004). “Automatic classification of SPECT images of
Alzheimer’s disease patients and control subjects,” inMedical Image Computing

and Computer-Assisted Intervention - MICCAI, Vol. 3217, Lecture Notes in

Computer Science (St. Malo: Springer), 654–662.
Stute, S., Carlier, T., Cristina, K., Noblet, C., Martineau, A., Hutton, B., et al.

(2011). Monte Carlo simulations of clinical PET and SPECT scans: impact
of the input data on the simulated images. Phys. Med. Biol. 56, 6441–6457.
doi: 10.1088/0031-9155/56/19/017

The Parkinson ProgressionMarker Initiative (2010). Imaging Technical Operations

Manual, 2nd Edn. PPMI.
Towey, D. J., Bain, P. G., and Nijran, K. S. (2011). Automatic classification of

123I-FP-CIT (DaTSCAN) SPECT images. Nucl. Med. Commun. 32, 699–707.
doi: 10.1097/MNM.0b013e328347cd09

Van Horn, J. D., and Toga, A. W. (2009). Multi-site neuroimaging trials. Curr.
Opin. Neurol. 22, 370–378. doi: 10.1097/WCO.0b013e32832d92de

Varol, G., Romero, J., Martin, X., Mahmood, N., Black,M. J., Laptev, I., et al. (2017).
“Learning from synthetic humans,” in 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR 2017) (Honolulu, HI).
Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Green,

R. C., et al. (2012). The Alzheimer’s Disease Neuroimaging Initiative: a review of
papers published since its inception. Alzheimers Dement. 8(1 Suppl.), S1–S68.
doi: 10.1016/j.jalz.2011.09.172

Xue, Z., Shen, D., Karacali, B., Stern, J., Rottenberg, D., and Davatzikos, C.
(2006). Simulating deformations of MR brain images for validation of atlas-
based segmentation and registration algorithms. NeuroImage 33, 855–866.
doi: 10.1016/j.neuroimage.2006.08.007

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., and Wager, T. D.
(2011). Large-scale automated synthesis of human functional neuroimaging
data. Nat. Methods 8, 665–670. doi: 10.1038/nmeth.1635

Zhu, X. P., Hutchinson, C. E., Hawnaur, J. M., Cootes, T. F., Taylor, C. J., and
Isherwood, I. (1994). Magnetic resonance image synthesis using a flexible
model. Brit. J. Radiol. 67, 976–982.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017Martnez-Murcia, Górriz, Ramírez, Illán, Segovia, Castillo-Barnes,

and Salas-Gonzalez for the Alzheimer’s Disease Neuroimaging Initiative. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 16 November 2017 | Volume 11 | Article 65

https://doi.org/10.1118/1.3480985
https://doi.org/10.1016/j.neuroimage.2008.12.063
https://doi.org/10.1088/0031-9155/56/19/017
https://doi.org/10.1097/MNM.0b013e328347cd09
https://doi.org/10.1097/WCO.0b013e32832d92de
https://doi.org/10.1016/j.jalz.2011.09.172
https://doi.org/10.1016/j.neuroimage.2006.08.007
https://doi.org/10.1038/nmeth.1635
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases
	1. Introduction
	2. Methodology
	2.1. Databases and Preprocessing
	2.1.1. Alzheimer's Disease Neuroimaging Initiative (ADNI)
	2.1.2. Parkinson's Progression Markers Initiative (PPMI)
	2.1.3. Database Preprocessing

	2.2. Principal Component Analysis (PCA)
	2.3. Density Estimation
	2.3.1. Multivariate Normal Distribution (MVN)
	2.3.2. Kernel Density Estimation (KDE)

	2.4. Brain Image Synthesis
	2.5. Validation

	3. Results
	3.1. E1: Similarity and Generalization Ability of the Synthetic Datasets
	3.1.1. E1.1: Differences between Classes

	3.2. E1.2: Differences between Original and Synthetic Images
	3.3. E1.3: Generalization Ability of the Synthetic Images
	3.4. E2: Dependence on the Original Images

	4. Discussion
	5. Conclusions
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References




