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The aimof the paper is to identify the breastmalignant and benign lesions using the features of apparent diffusion coefficient (ADC),
perfusion fraction 𝑓, pseudodiffusion coefficient 𝐷∗, and true diffusion coefficient 𝐷 from intravoxel incoherent motion (IVIM).
There are 69 malignant cases (including 9 early malignant cases) and 35 benign breast cases who underwent diffusion-weighted
MRI at 3.0 T with 8 b-values (0∼1000 s/mm2). ADC and IVIM parameters were determined in lesions. The early malignant cases
are used as advanced malignant and benign tumors, respectively, so as to assess the effectiveness on the result. A predictive model
was constructed using Support Vector Machine Binary Classification (SVMBC, also known Support Vector Machine Discriminant
Analysis (SVMDA)) and Partial Least Squares Discriminant Analysis (PLSDA) and compared the difference between them both.
The 𝐷 value and ADC provide accurate identification of malignant lesions with 𝑏 = 300, if early malignant tumor was considered
as advanced malignant (cancer). The classification accuracy is 93.5% for cross-validation using SVMBC with ADC and tissue
diffusivity only. The sensitivity and specificity are 100% and 87.0%, respectively, 𝑟2cv = 0.8163, and root mean square error of
cross-validation (RMSECV) is 0.043. ADC and IVIM provide quantitative measurement of tissue diffusivity for cellularity and are
helpful with the method of SVMBC, getting comprehensive and complementary information for differentiation between benign
and malignant breast lesions.

1. Introduction

Breast cancer is the most prevalent cancer among women
worldwide. However, current imaging approaches (such as
mammography) often do not provide enough information
for proper lesion management, which sometimes results
in unnecessary invasive treatments. Magnetic resonance
imaging (MRI) and measurements of the apparent diffusion
coefficient (ADC) have proven useful in the detection and
characterization of cancer [1]. The ADC is sensitive to tissue
cellularity and is usually lower in malignant tumors, in which
water diffusion is more restricted because of the increased
cell density and reduced extracellular space compared to
the normal tissue. DW images may also reflect perfusion

effects, as the microscopic blood flow in a randomly oriented
capillary network creates a pseudodiffusion contribution to
the DW signal.

DWI (diffusion-weighted imaging) is a functional mag-
netic resonance imaging (fMRI) of noninvasive examination;
it can directly reflect the water molecule’s Brownian motion
in body’s tissues. It can obtain physiological characteristics
in body’s tissues based on the quantitative analysis of water
molecule’s apparent diffusion coefficient (ADC). DWI has
been widely used clinically, and it is through monoexponen-
tial model to calculate the ADC value, which contains two
kinds of information of microcirculation perfusion and the
watermolecule diffusion of the organization.Therefore, ADC
value of monoexponential model has been overestimated due
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to themicrocirculation perfusion and it does not really reflect
microstructure change of organization. In 1986, LeBihan et al.
[2] separated microcirculation perfusion and water molecule
diffusion within the organization using biexponential model,
to calculate separately perfusion fraction 𝑓, water molecule
diffusivity (𝐷, Slow ADC), pseudodiffusion (𝐷∗, Fast ADC),
and total apparent diffusion coefficient (ADC-total). In recent
years, intravoxel incoherent motion (IVIM) has been widely
used in a variety of well-vascularized tissues: they are head
and neck [2–5], nose pharynx [6], lung [7, 8], liver [9, 10],
kidney [11, 12], cervical [13], prostate [14], and the like. IVIMs
are positively studying tumors in these aspects of blood
perfusion, the identification between benign and malignant,
scope of infringement, and curative effect evaluation.

The research of breast cancer has long been a contentious
issue (𝑏 = 3∼2500 s/mm2) over the number and selection of
b-value as ADC rely highly on selection of b-value when
scanning for IVIM. If b-value is between 0 and 200 s/mm2,
IVIMs represent the information of microcirculation perfu-
sion; the initial slope of perfusion fraction is counted by b-
value, which between 0 and 100 s/mm2; with the increase
of b-value, the ADC for sensitivity of perfusion is decrease;
therefore, b-value selection should make little contribution
to perfusion. Some researchers [15–20] believe that 𝐷∗ for
the contribution to signal strength is very little when b-value
is larger than 200 s/mm2; D represent pure diffusion, almost
all of researchers get the same result that signal attenuation
of malignant is more quick than benign and normal gland;
and 𝐷 and 𝑓 play an important role in malignant and
benign identification. Moreover, 𝐷 is more sensitive than
ADC (b = 0 and 1000 s/mm2), but 𝐷∗ make little sense to
identification of malignant and benign tumor. When b-value
is between 200 and 1000 s/mm2, IVIM represents diffusion
information of water molecule; if b-value is larger than
1000 s/mm2, DKI (diffusion kurtosis imaging) reflects the
non-Gauss diffusion movement of water molecule; for this
reason, some researchers choose large-scale b-value model
(b = 0∼2500 s/mm2) and non-Gauss diffusion model. Iima
et al. [15] and Suo et al. [17] use large-scale b-value model
as well as b-value > 200 s/mm2 to identify malignant and
benign tumor; for the former, the result shows that the ADC0
(apparent diffusion coefficient of diffusion kurtosis imaging)
in malignant lesions was significantly lower than that in
benign lesions and normal tissue, below traditionADC value,
too. ADC0 and 𝐷 are significantly high to identify benign
and malignant, which is similar to most of researchers with
biexponential model of IVIM; besides, another non-Gauss
parameter of diffusion kurtosis model, mean kurtosis, is
added to identification. For the latter, the result shows that
the parameter of IVIM relied on different mathematical
computing according to the comparison of 3 different b-
values.Therefore, in order to evaluate the effect with different
b-value, in this study, we choose 3 b-values (150, 200, and 300)
to test.

Along with b-value increase, the diffusion time of water
molecule is extended gradually; at the same time, the clinic
examination time will extended. At present, the lack of
standard and optimization in b-value selection gives rise to

several problems; little is known about clinical significance
of different b-value parameter between 200 and 1000 s/mm2.
Also, the reliability of the IVIM measurements achievable in
clinical practice and their usefulness in cancer diagnosis need
to be further evaluated. The purpose of this study was to use
DWMRI at 3.0 T and

(1) to extract parameters corresponding to different b-
value in biexponential model;

(2) to find out the clinical significance of benign and
malignant tumor identification based on big b-value
of biexponential model in IVIM;

(3) to assess the ability of the IVIM parameters and
ADC to differentiate malignant lesions from benign
lesions and, furthermore, to compare the difference
of identification between two conditions, which are
whether the early malignant is regarded as cancer or
not.

2. Materials and Methods

2.1. Patient Selection. This is a retrospective study; therefore,
Ethics Committee agreed to give informed consent. Based on
our selection criteria, 78 patients were identified and their
MRI studies were reviewed by an experienced radiologist
and pathologist who had access to all patient information
and analyzed the biopsy specimens and identified the tumor
histological type as well as the tumor histological grade and
nuclear grade. Between March and November in 2015, a total
of 78 patients (mean age: 48.9 years; range: 15–70 years) with
MRI (including multi-b-value DWI) and dynamic contrast-
enhanced (DCE)were collected in this study; all patientswere
first to see doctor and no treatment is performed. In every
patient, a single largest lesion in each breast was selected;
examination revealed 72 positive patients and 6 cases with
normal glands, of which 98 lesions were found, including
60 advanced invasive ductal carcinomas (IDC), 9 ductal
carcinomas in situ (DCIS), and 29 benign lesions (includ-
ing 7 cysts, 6 fibroadenomas, 1 hamartoma, 1 intraductal
papilloma, 5 adenoses of breast, and 9 apocrine metaplasia
cases). Lesions were excluded if their in-plane dimensions
were smaller than 8mm or if their diffusion-weighted MR
images contained artifacts, such as poor fat suppression or
susceptibility artifacts from biopsy and surgical clips. The
final diagnoses are as follows: all malignant tumors were
confirmed on the basis of histopathology and immunohis-
tochemistry. The 6 normal glands were confirmed based on
magnetic resonance imaging and 7 cysts were confirmed
based on ultrasonic, mammography according to BI-RADS
(breast imaging reporting and data system) of assessing
mode.The left benign tumors were confirmed by surgery and
pathology.

2.2. MR Image Acquisitions. MR imaging was performed by
a 3.0-T MR imager (Siemens 3.0 T, Siemens Verio 3.0,
Germany) equipped with a 16-channel SENSE breast coil
in prone position. All patients are fasted 6 hours before
examining, and we checked both breasts at the same time
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Figure 1: IVIM (a) and DCE-T3 (b) images of patient case.

with prone position of head first.MRI routine scan parameter
was as folllows: (1) T2-TSE-TRA-FS: TR 5800ms, TE 84ms,
flip angle 150.0, slice thickness 5.0mm, slice gap 6.0mm,
FOV 320mm ∗ 320mm, reconstruction matrix 320mm ∗
224mm, and scan time 1min 33 seconds; (2) T1-TSE-TRA:TR
704ms, TE 10.0ms, flip angle 150.0, slice thickness 5.0mm,
slice gap 6.0mm, FOV 320mm ∗ 320mm, reconstruction
matrix 320mm ∗ 224mm, and scan time 39 seconds; (3) 2d
EPI-diff-IVIM: TR6600ms, TE 67.0ms, flip angle 90, slice
thickness 5.0mm, slice gap 6.5mm, FOV 350mm ∗ 188mm,
reconstruction matrix 112mm ∗ 60mm, 8 b-values: 0, 50,
100, 150, 200, 300, 400, 800, and 1000 s/mm2, b-values being
carried out in the diffusion gradient direction of𝑋, 𝑌,𝑍with
3 times of excitation, and scan time 5min and 50 seconds; (4)
DEC: T1-fl3d-TRA-FS: TR4.5ms, TE1.6ms, flip angle 10, slice
thickness 1.2mm, slice gap 1.2mm, FOV340mm ∗ 340mm,
and reconstruction matrix 448mm ∗ 300mm.

Contrast material is required after precontrast (about 20
seconds delay) and 5 consecutive time points after adminis-
tration of gadolinium (Gd-DTPA, 25mL) by high pressure
injector. After that, 25mL normal saline was injected as well
with the injection speed of 2.0mL/s; the duration lasted for
4min 57 seconds.

2.3. MRI Analysis. The accuracy of ADC is closed related to
experience of observer other than the region of ROI [21];
the IVIM image is not clearly compared to DCE (Figure 1),
so to get reliable results, in this study, 25-year and 5-year
experienced radiologists read theMRI database, to determine
the largest slices and the largest substantial tumor in MRI
according to T1WandT2Wat the exclusion of bleed, necrosis
and cystic lesion, and edema region at first; then to get the
region and scale of ROI, every case is determined by 3 ROIs;
if the diameter of focus is less than 1.5 cm, only one ROI is
used.

The IVIM features are got by an open-source software
of MITK (German cancer research center, MITK diffusion

2014.10.02). IVIM analysis: the biexponential model from an
IVIM sequence was expressed by the following equation, as
described by Le Bihan et al. [22]:

𝑆𝑏𝑆0 = (1 − 𝑓) exp (−𝑏 × 𝐷) + 𝑓 exp [−𝑏 × (𝐷 + 𝐷∗)] , (1)

where 𝑆𝑏 is the signal intensity in the pixel with diffusion
gradient b, 𝑆0 is the signal intensity in the pixel without
diffusion gradient, 𝐷 is the true diffusion as reflected by
puremolecular diffusion,𝑓 is the fractional perfusion related
to microcirculation, and 𝐷∗ is the pseudodiffusion coeffi-
cient representing perfusion-related diffusion or incoherent
microcirculation. To get consecutive IVIM parameter, differ-
ent b-values are chosen, which are 150, 200, and 300 s/mm2;
the three parameters were calculated consecutively in which𝐷 was obtained by a simplified linear fit equation (𝑆𝑏 =𝑆0×exp(−𝑏𝐷))when b-values are larger than 200 s/mm2.This
was based on the assumption that 𝐷∗ is significantly greater
than𝐷 such that its influence on signal decay can be neglected
for b-values > 200 s/mm2. 𝑓 and𝐷∗ were calculated by using
a nonlinear regression algorithm for all b-values.

Parameters mapping is got by loading IVIM into MITK.
The choice of ROI is controversial; some researchers chose
ROI according to the level of maximum transverse diameter
of lesions [18]. But small ROIs show less overlap in ADC
values and higher ADC reproducibility, suggesting that this
method may improve lesion discrimination. Interobserver
variability was low for both methods [20]. Therefore, in
this study, ROI was manually placed on each lesion using
small ROIs, consistent with minimal contaminations from
surrounding unintended tissues. The value of ROI is an
average from 3 ROIs so as to get more reliable value. ADC
values were measured on ADC maps produced by equation(ADC = In(𝑆1/𝑆2)/(𝑏2 − 𝑏1)) from b = 0 and 1000 s/mm2
using client software of Siemens and the ROIs were kept as
close as possible to those on IVIM parametric maps. For the
contralateral healthy breast tissues, the sizes of ROIs were



4 BioMed Research International

Table 1: Extracted features of individual tumor region.

Number Code Feature explanation Formula or description
1 D Tissue diffusivity

IVIM features2 f Perfusion fraction
3 𝐷∗ Pseudodiffusion coefficient
4 ADC Apparent diffusion coefficient Measure of the magnitude of diffusion

in a range of 10∼25 pixel points and excluded large vessels
and ducts. 𝐷, 𝑓, 𝐷∗, and ADC values were measured by two
independent observers with experiences of 5 and 25 years
(the author of this manuscript: Juan Zhang) of breast MRI
diagnosis.

The features detailed description of IVIMare as follows:𝐷
(the true diffusion as reflected by pure molecular diffusion),𝑓 (the fractional perfusion related to microcirculation), and𝐷∗ (the pseudodiffusion coefficient representing perfusion-
related diffusion or incoherent microcirculation). Those
IVIM features can be obtained from the software of MITK.
Also, the lists of features and the explanation were given in
Table 1.The image and data analyses package were developed
by MATLAB (Version 7.9, The Mathworks Inc., Natick, MA).

2.4. Dataset Construction and Preprocessing. There are sev-
eral methods that have been developed for predicting and
identifying, such as Fang et al.’s study [23], which used feature
selection algorithms to identify 16 features, out of a total
of 560 physicochemical properties, presumably important to
protein aggregation. Two predictors (ProA-SVM and ProA-
RF) using selected features are built for predicting peptide
aggregation propensity and identifying aggregation prone
regions in proteins. Both methods are compared favorably to
other state-of-the-art algorithms in cross-validation. We can
gain a great deal of enlightenment from the article.

In this paper, several steps are carried out for analysis,
which consist of normalization, ROC analysis, identification
method description, and the result of identification. All sta-
tistical tests were conducted at the two-sided 5% significance
level using MATLAB 2014 and SPSS 19.

2.4.1. Normalization. At first, it was necessary to scale the
dataset. The main advantage of scaling the dataset was to
avoid attributes in greater numeric ranges dominating those
in smaller numeric ranges. Numerically, a variation in ADC
between 300 and 500 is much greater than a variation in 𝑑∗
between 0.01 and 0.1. However, the effect of each of these
variables on the system of interest may be very similar. For
that reason, it may be advisable to scale the data.

Another advantage was to avoid numerical difficulties
during the calculation. Also, our experiments have shown
that feature value scaling could increase the accuracy. Gener-
ally, each feature can be linearly scaled to the range [−1, +1] or

[0, 1]. In this work, we chose the range [0, 1] by the following
formula:

𝑋 = 1𝑛
𝑛∑
𝑖=1

𝑥
𝑖

𝑆 = √ 1𝑛 − 1
𝑛∑
𝑖=1

(𝑥
𝑖
− 𝑋)2

𝐹 (𝑥) = 𝑥𝑖 − 𝑋𝑆 ,
(2)

where𝑥 is the original feature, 𝑆 is the standard deviation, and𝐹 is the final value of normalization.

2.4.2. ROC Analysis. Region of concern (ROC) analyses was
used to assess the diagnostic utility, for the detection of
malignant lesions or lesions characterized as positive for a
givenmarker.The area under the ROC curve (AUC)was used
to assess the diagnostic utility for the detection of lesions
characterized as positive as well. Sensitivity, specificity, and
overall accuracy were computed at the threshold value of
each measure that maximized the Youden index in an ROC
analysis.

Here, sensitivity (also called the true positive rate, TPR)
and specificity (also called the true negative rate, TNR)
are statistical measures of the performance of a binary
classification test, also known in statistics as classification
function; the Youden index (sensitivity + specificity − 1) is a
frequently used summarymeasure of the ROC curve. It, both,
measures the effectiveness of a diagnosticmarker and enables
the selection of an optimal threshold value (cutoff point)
for the marker; Matthews correlation coefficient (MCC) is
also an important index, expressed by (3). It takes into
account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if
the classes are of very different sizes. The MCC is in essence
a correlation coefficient between the observed and predicted
binary classifications; it returns a value between −1 and +1. A
coefficient of +1 represents a perfect prediction, 0 is no better
than random prediction, and −1 indicates total disagreement
between prediction and observation:

MCC

= TP × TN − FP × FN√(TP + FP) (TP + FN) (TN + FP) (TN + FN) ,
(3)
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where TP is the number of true positive samples; TN is true
negative; FN is the number of false negative samples; FP is
the number of false positive samples; and TP is the number
of true positive samples.

2.4.3. Identification Methods. In order to get more accuracy
of benign and malignant identification, several methods are
used to try to get the best method. This study makes an
attempt on combining chemometrics and cancer identifica-
tion.

Chemometrics methods can highlight the chemical dif-
ferences between samples and reduce variation due to phys-
ical effects. The combination of cancer features and chemo-
metrics methods was investigated for qualitative analysis.
Multivariate analyses including PLSDA and SVMBC proven
to be effective in many applications [24] were used in the
present study to classify benign and malignant tumor with
different features. The success of these methods depends
on the choice of proper case and the number of variables
employed in the calibration model.

PLSDA. In this study, ADC and IVIM features were used
to establish models in PLSDA for the discriminant analysis
of benign and malignant tumors. Each case was assigned a
dummy variable 1 or 2 as a reference value for the class labels;
the prediction result will indicate whether the sample belongs
to a particular group or not [25]. Here, malignant samples
were assigned a numeric value of 2, and those of benign
assigned 1. After assigning the reference value for each case,
the PLSDAmodel was then developed. If the predicted values
lay on the same side of the threshold (mid value between
two labels normally) of the assigned values, the case was
considered to be correctly categorized [26]. If the predicted
value was between 0.5 and 1.5, the benign tumor sample was
classified correctly; else the sample was classified as wrong.
Similarly, if the predicted value was between 1.5 and 2.5,
it was malignant tumor sample [25]. It is expected to have
ideal models with the lower root mean square error of cross-
validation (RMSECV), and the higher correlation coefficient
of calibration and cross-validation, 𝑅

𝑐
and 𝑅cv, respectively

[27].

SVMBC. SVM is a supervised learningmodel with associated
learning algorithms that analyze data used for classification
and regression analysis, was introduced byCortes andVapnik
in the late 1960s on the foundation of statistical learning
theory [28]. It is a way to create nonlinear classifiers by
applying the kernel trick to maximum-margin hyperplanes.
The optimal separating hyperplane is determined by giving
the largest margin of separation between different classes.
For the two-class (binary classification, just for malignant
and benign discrimination) case in SVMmodel, this optimal
hyperplane bisects the shortest line between the convex hulls
of the two classes.

Cross-Validation. The last step for estimating the prediction
error is cross-validation, which is a model validation tech-
nique for assessing how the results of a statistical analysis
will generalize to an independent dataset, and one wants

to estimate how accurately a predictive model will perform
in practice. Leave-one-out cross-validation (LOOCV) is a
common method to do so. In this validation, all cases except
one are used to construct a model; the remained cases are
used to predict.This is repeated on all ways to cut the original
case on a validation set.The advantages of cross-validation are
that all of the test cases were independent and the reliability
of the results could be improved. The dataset is divided into
two subsets for cross-validation.

3. Result and Discussion

Previous studies had demonstrated that ADC and 𝐷 value
are very useful in the differential diagnosis of breast lesions.
In this study, Receiver Operating Characteristic curves, with
statistics were calculated for ADC and IVIM features under
the condition of 3 𝑏-value.

The ROC analyses to assess diagnostic utility for the
detection of malignant lesions reveals that the average ADC
and 𝐷 values had higher AUC values (0.942 and 0.921,
resp.), Youden index (0.7839 and 0.7834, resp.), andMatthews
correlation coefficient (0.7579 and 0.7493, resp.) when 𝑏-
value = 300. It is obvious that ADC and 𝐷 on 𝑏 = 300
contribute to the identification of malignant and benign
tumor (Table 2).

From Table 2, we obtained similar results to the other
researchers. While the AUC values for 𝐷 and ADC were not
significantly different, 𝑓 and𝐷∗ values showed a lower AUC
than those of ADC and𝐷 value.

However, the difference is not very obvious among 3 b-
values based on ADC and 𝐷, in order to get more detailed
results; in the next step, we try to analyze early malignant
tumor and cancer separately using chemometrics, which is
applied to solve both descriptive and predictive problems in
experimental natural sciences.

3.1. Chemometrics Analysis. In many cases, it is very neces-
sary to find early malignant tumor. The sooner the cancer is
diagnosed and treated, the better the person’s chance is for a
full recovery. In its early stages, soft tissue malignant tumors
rarely cause any symptoms. Because soft tissue is very elastic,
the tumors can grow quite large before they are felt. The first
symptom is usually a painless lump. As the tumor grows and
begins to press against nearby nerves and muscles, pain or
soreness can occur.

As we know, early malignant tumor is difficult to recog-
nize and the treatment has been highly effective the general
prognosis. So, in this study, early malignant tumors are used
as different group to analyze; firstly, early malignant cases
are as malignant tumor together with advanced malignant
tumor; secondly, earlymalignant cases are analyzed as benign
tumor cases. There are 60 malignant tumor cases, 9 early
malignant tumor cases, and 35 benign tumor cases. That
means, at first, the number of malignant cases is 69 and
benign is 35; secondly, the number of malignant cases is 60
and benign is 44.

Besides early malignant cases, IVIM features also are
disputed. Cho et al. [29] conclude that the average values
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Table 2: The ROC results of IVIM and ADC.

𝑏-value AUC Std. error Asymptotic Sig. Youden index MCC
ADC 0.942 0.029 0.000 0.7839 0.7579

𝐵 = 150 f 0.291 0.055 0.001 0 0
D 0.918 0.033 0.000 0.7545 0.7178𝐷∗ 0.415 0.064 0.157 0.0559 −0.1562

𝐵 = 200 f 0.308 0.057 0.001 0.0137 −0.33
D 0.918 0.033 0.000 0.7545 0.7178𝐷∗ 0.414 0.064 0.154 0.0828 −0.21

𝐵 = 300 f 0.297 0.055 0.001 0.0282 −0.1383
D 0.921 0.033 0.000 0.7834 0.7493𝐷∗ 0.337 0.061 0.007 0 0

Table 3: Results of PLSDA for tumor analysis with ADC and IVIM features (early malignant as advanced malignant).

Data treatment 𝑏-value Sensitivity Class. Err RMSE 𝑅2
Benign Malignant

Calibration
150 0.783 0.935 0.1413 0.3263 0.5207
200 0.783 0.978 0.1196 0.3266 0.520
300 0.870 0.978 0.0761 0.2809 0.6450

Cross-validation
150 0.739 0.935 0.1630 0.3536 0.4451
200 0.696 0.978 0.1630 0.3612 0.4285
300 0.870 0.978 0.0761 0.3100 0.5712

Prediction
150 0.917 0.870 0.1069 0.3532 0.5676
200 0.917 0.870 0.1069 0.276 0.01565
300 0.583 0.826 0.29529 0.3989 0.3024

of the ADC and IVIM biomarkers, tissue diffusivity, and
perfusion fraction showed significant differences between
benign andmalignant lesions. Liu et al. [19] believe that tissue
diffusivity and ADC values demonstrated higher sensitivity
and specificity in differentiating benign lesions andmalignant
tumors. So, we try to use different features combination to get
the best result. Firstly, ADC and all IVIM features (including𝑓,𝐷,𝐷∗) are taken as input to build model and predict, and,
then, the input features are replaced with ADC and tissue
diffusivity to deal with them again.

Another question is b-value; as opinions vary, no unani-
mous conclusion can be drawn. Here, we try to use 3 b-values
(𝑏 = 50, 200, 300 s/mm) to assess the effectiveness of benign
and malignant identification.

3.2. Identification

3.2.1. Early Malignant Analysis as Advanced Malignant. In
this section, there are two methods to identify those cases
with different b-value, which are PLSDA and SVMBC. Each
method processes data with two different input features, one
is ADC and 3 IVIM features, and another is ADC and tissue
diffusivity.

PLSDA. Table 3 is the result of tumor analysis using PLSDA
models on the ADC and IVIM features with different 𝑏-
values (150, 200, and 300) under the condition that early
malignant cases are considered as advanced malignant. The

results consist of several parts, the analysis steps include
calibration, cross-validation, and prediction, and the eval-
uation items comprise sensitivity, class error, RMSE, and
correlation. Among other things, the sensitivity of benign
and malignant is a pair of relative quantity, if the index of
benign is sensitivity, which is also the specificity ofmalignant.
Likewise, the sensitivity of malignant is the specificity of
benign. The results indicate that no matter which data
treatment it is, the results are the best when b-value is
300 for sensitivity, specificity, and accuracy at the stage of
calibration and cross-validationwith 0.870, 0.978, and 0.0761.
Besides, the correlation RMSEC and RMSECV are also good
in performance with high correlation coefficient and low root
mean square error. But for prediction, the result is the best
when the select b-value is 200 for sensitivity, specificity, class
error, and RMSEP. However, the correlation coefficient is
low. Therefore, it is necessary to balance calibration, cross-
validation, and prediction; otherwise, it is difficult to find a
best method.

SVMBC. Table 4 shows that the best result is unclear.
Although the sensitivity of malignant, class error, RMSECV,
and correlation are the best among three b-values, the
sensitivity of benign is the lowest, only 0.565.

Using ADC and Tissue Diffusivity Only. Because some re-
searchers believe that just ADC and tissue diffusivity are the
most useful features, so, here we try to use only 2 features to
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Table 4: Results of SVMBC for tumor analysis with ADC and IVIM features (early malignant as advanced malignant).

Data treatment b-value Sensitivity Class. Err RMSE 𝑅2
Benign Malignant

Cross-validation
150 0.826 0.978 0.0978 0.05797 0.69
200 0.565 1 0.2174 0.08696 0.4642
300 0.783 1 0.01087 0.05797 0.7058

Note. Here, some results are 100% in this model; (the same as in Tables 5–10).

Table 5: Results of PLSDA for tumor analysis with ADC and tissue diffusivity (early malignant as advanced malignant).

Data treatment 𝑏-value Sensitivity Class. Err RMSE 𝑅2
Benign Malignant

Calibration
150 0.739 0.935 0.1630 0.3279 0.5160
200 0.783 0.978 0.1196 0.3337 0.4987
300 0.87 0.978 0.076 0.2809 0.6449

Cross-validation
150 0.739 0.935 0.1630 0.3494 0.4574
200 0.739 0.957 0.1522 0.3602 0.4258
300 0.87 0.978 0.076 0.2989 0.59972

Prediction
150 0.917 0.652 0.2156 0.3556 0.5606
200 0.917 0.783 0.1504 0.3313 0.6095
300 0.583 0.826 0.2952 0.3996 0.2999

Table 6: ADC and tissue diffusivity.

Data treatment 𝑏-value Sensitivity Class. Err RMSE 𝑅2
Benign Malignant

Cross-validation
150 0.652 0.913 0.2174 0.075 0.3558
200 0.870 0.891 0.1196 0.0725 0.5568
300 0.870 1 0.0652 0.043478 0.8163

analysis those data. Table 5 shows the best results of sensitivity
and specificity are 0.87 and 0.978, respectively; the result is the
same as before that the input features are ADC and 3 IVIM
features.

SVMBC. Table 6 shows that when b-value is 300, no matter
which index, it can get the best result; the sensitivity of benign
and malignant cases is 0.87 and 1, the accuracy is 93.48%, the
RMSECV is 0.0435, the correlation is 0.8163, so, and the result
is ideal.

3.2.2. EarlyMalignant Analysis as BenignMalignant. In order
to prove the influence of early tumor on the result, early
tumor is regrouped as benign tumor and reanalyzed once
using the same methods above. Tables 7–10 show the result
of PLSDA, which is similar to that of Section 3.2.1. There is
no obvious difference between them. For SVMBC, see Tables
8 and 10; for usingADCand tissue diffusivity only, see Table 9.

In conclusion, the difference between advanced malig-
nant and benign cases with early tumor is subtle. Table 1 is
the statistics for benign and malignant cases using PLSDA
models on the IVIM and ADC features with different
treatments. The results indicate that SVMBC can improve
accuracywhen classifying earlymalignant tumor as advanced
malignant, compared with another b-value; the ADC and

tissue diffusivity with b = 300 had the best results, where𝑟
𝑐
= 0.8163, the sensitivity is 1 (I think it is happened to get),

specificity is 0.870, RMSECV is 0.0435, and accuracy is 93.5%.
In this study, there are several limitations; the first is

the biased patient cohort with a small range of diseases
types, which may obscure the identification of benign and
malignant cases. Then, the number of b-values’ selections for
IVIM is still unknown; how many 𝑏 values and which one or
ones are suitable? Thirdly, there are just 4 features (3 IVIMs
and ADC); it is difficult to extract useful features to identify
among them.

4. Conclusion

This study shows that differences between benign and malig-
nant tumor do exist and groups are apparent. ADC and IVIM
combined with multivariate analysis have been proved to be
a very powerful tool for judgment of the relative pattern of
the objects that have very similar properties. Like ADC value,𝐷 also can be used to differentiate benign and malignant
lesions and had the highest specificity. Combining with 𝑓 or𝐷∗ value,𝐷 value can increase diagnostic sensitivity andmay
have a vital role in screening breast MRI in high-risk women.

The results of this study show that an excellent classifica-
tion can be obtained by SVMBC, with accuracy about 100%
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Table 7: Results of PLSDA for tumor analysis with IVIM (early malignant as benign tumor).

Data treatment 𝑏-value Sensitivity Class. Err RMSE 𝑅2
Benign Malignant

Calibration
150 0.739 0.950 0.15544 0.33135 0.5264
200 0.783 0.900 0.1587 0.3417 0.4963
300 0.870 0.925 0.1027 0.3212 0.5549

Cross-validation
150 0.739 0.900 0.18044 0.377528 0.4088
200 0.696 0.900 0.2022 0.4063 0.3421
300 0.783 0.900 0.2655 0.3564 0.4613

Prediction
150 0.714 0.900 0.1929 0.3800 0.4616
200 0.714 0.900 0.1929 83.6087 0.0274
300 0.619 0.850 0.2655 0.4154 0.3915

Table 8: ADC and IVIM features.

Data treatment 𝑏-value Sensitivity Class. Err RMSE 𝑅2
Benign Malignant

Cross-validation
150 0.739 0.900 0.1804 0.0952 0.4261
200 0.565 0.900 0.2674 0.1111 0.2546
300 0.826 0.925 0.1245 0.1270 0.5754

Table 9: Results of PLSDA for tumor analysis with tissue diffusivity (early malignant as benign tumor).

Data treatment 𝑏-value Sensitivity Class. Err RMSE 𝑅2
Benign Malignant

Calibration
150 0.783 0.925 0.1462 0.3338 0.5193
200 0.826 0.950 0.1120 0.3538 0.4600
300 0.696 0.900 0.2022 0.3373 0.5091

Cross-validation
150 0.783 0.925 0.1462 0.3659 0.4379
200 0.783 0.900 0.1587 0.3926 0.3605
300 0.696 0.900 0.2022 0.3540 0.4615

Prediction
150 0.762 0.900 0.1690 0.375 0.4730
200 0.762 0.950 0.1440 0.3666 0.4977
300 0.667 0.900 0.2167 0.4035 0.4672

Table 10: ADC and tissue diffusivity features.

Data treatment 𝑏-value Sensitivity Class. Err RMSE 𝑅2
Benign Malignant

Cross-validation
150 0.913 0.825 0.1310 0.0794 0.5114
200 0.870 0.875 0.1277 0.0794 0.5369
300 0.696 1 0.1522 0.09524 0.5920

(the accuracy is very high in this method as the reason of
sample data selection; I think, in order to get more reliable
result, it should collect much more cases.). The methods
got comprehensive and complementary information to dis-
tinguish benign and malignant tumors. Further studies are
needed to use more parameters expressing features of tumor
and more discriminant analysis methods to develop valuable
and robust models to discriminate other tumors.
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