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Abstract
Background: ChIP-chip data are routinely used to identify transcription factor binding targets.
However, the presence of false positives and false negatives in ChIP-chip data complicates and
hinders analyses, especially when the binding targets for a specific transcription factor are
compared across conditions or species.

Results: We propose an Expectation Maximization based approach to infer the underlying true
counts of "positives" and "negatives" from the observed counts. Based on this approach, we study
the effect of false positives and false negatives on inferences related to transcription regulation.

Conclusion: Our results indicate that if there is a significant degree of association among the
binding targets across conditions/species (log odds ratio > 4), moderate values of false positive and
false negative rates (0.005 and 0.4 respectively) would not change our inference qualitatively (i.e.
the presence or absence of conservation) based on the observed experimental data despite a
significant change in the observed counts. However, if the underlying association is marginal, with
odds ratios close to 1, moderate to large values of false positive and false negative rates (0.01 and
0.2 respectively) could mask the underlying association.

Background
Transcription factors play an important role in gene regu-
lation by binding to specific DNA sequences in the regu-
latory regions of their targets. Accurate identification of
the binding targets of the transcription factors is para-
mount to the understanding of the regulatory mechanism.
Chromatin immunoprecipitation (ChIP) experiments are
commonly used to identify the regulatory targets in
prokaryotes and eukaryotes. ChIP-chip experiments pro-
vide us with information about the binding targets of a
particular regulator at the genome level [1-4].

The output of ChIP-chip experiments are often summa-
rized in binary forms. Using replicate data, the statistical
evidence for a gene being the binding target of a transcrip-
tion factor is typically summarized as a p-value. A thresh-
old for the p-value, e.g. 0.001 is then chosen, and genes
with p-values less than the threshold are considered the
binding targets for the transcription factor. Thus, for a
transcription factor, we can enumerate a list of genes
which are "positives", i.e. binding targets and a list of
genes which are "negatives", i.e. non-binding targets. If
the threshold is set at a very stringent level to control the
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number of false positives, this will be achieved at the
expense of high false negatives. A more relaxed threshold
will reduce the number of false negatives, but will end up
with more false positive results. Over the past few years,
ChIP-chip data has formed the basis of many transcrip-
tion regulatory mechanism studies. Several groups have
compared the binding of a regulator across multiple
experimental conditions to determine condition depend-
ence of binding [5-7]. Similarly, binding data of specific
transcription factors across species has been used to inves-
tigate the presence of conserved binding targets [8].
Unfortunately, the presence of noise, in the form of false
positives and false negatives as discussed above, may lead
to inaccurate inference of the binding targets, and thus
biased results and potentially incorrect conclusions on
key aspects of transcription regulation, e.g. preservation of
regulation targets across conditions and species. In this
article, we develop a statistical approach to analyzing
ChIP-chip data, appropriately incorporating false posi-
tives and false negatives. Based on our approach, we inves-
tigate the effect of false positives and false negatives on the
inference of conservations of binding targets based on
ChIP-chip data.

Methods
Summarizing Contingency Tables
As discussed above, the output of ChIP-chip experiments
is typically summarized into binary forms and results
across different experiments for the same transcription
factor can be crosstabulated into a contingency table. A
common question asked is whether a transcription factor
has similar binding targets across conditions, and this is
reflected as the dependency of outcome among the condi-
tions. In the following, we give a brief discussion on two
statistical measures that we will use to summarize the
degree of dependency in a contingency table.

For the sake of clarity, we will focus on ChIP-chip experi-
ments involving two different conditions or two species.
The number of target genes in the two conditions/species
can be cross tabulated into a 2 by 2 contingency table. We
use two metrics to summarize such contingency tables –
Odds Ratio and Positive specific agreement [9,10].

Table 1 gives an illustration of a 2 by 2 contingency table.
The goal is to identify whether a relationship, or associa-
tion exists between the two categorical variables. In our
scenario, it would correspond to whether the transcrip-
tion factor exhibits condition dependent binding or con-
dition independent binding. For such a contingency table,
the odds ratio is a commonly used measure to quantify
association among the categorical variables. An odds is
defined as the ratio of the frequency of being in one cate-
gory and the frequency of not being in that category. For

example, from Table 1, the odds that a particular gene is a
binding target in experimental condition 1 is equal to (c +
d)/(a + b). This odds is called marginal odds, obtained
from the total frequencies in one margin of the table, dis-
regarding the effects of the other variable. Conditional
odds are the chances of the transcription factor binding
relative to not binding in one experimental condition,
given a particular level (binding state) in the other exper-
imental condition. The variables are deemed to be unas-
sociated if the conditional odds are equal or close to each
other, and hence equal to the marginal odds. To compare
directly the two conditional odds, a single summary statis-
tic, obtained by dividing the first conditional odds by the
second is called odds ratio. Thus, for the data in Table 1,
the odds ratio is defined as: Odds Ratio = (a/c)/(b/d) = ad/
bc. Odds ratio takes only positive values and has no upper
limit. An odds ratio of 1 indicates no relationship among
the variables. In addition to the odds ratio, its logarithm
is also commonly used. Logarithmic transformation of
data has a number of advantages – the variation of log
transformed data tends to be less dependent on the mag-
nitude of values, while taking logs also reduces the skew-
ness of the distributions. After log transformation, data
tends to be spread out more evenly, also making it easier
to examine visually.

Other measures of dependency are also often used in psy-
chological and medical research. For example, the prob-
lem can be formulated as follows: Suppose two raters
classify each subject in a sample from some target popula-
tion according to the presence or absence of some charac-
teristic of interest. The resulting data can then be
summarized into a 2 by 2 table. The agreement between
raters can be quantified by the metric simple agreement,
which is defined as the proportion of cases for which both
raters agree, or (a + d)/(a + b + c + d). However, if a is large,
this would approach 1 regardless of the performance on
positive cases. Positive specific agreement provides insight
when the positive cases are rare. It estimates the condi-
tional probability that one rater will agree that a case is
positive given the other one rated it positive, where the

Table 1: Simple 2 by 2 contingency table.

Condition 2

0 1

Condition 1 0 a b

1 c d

The categorical variables Condition 1 and Condition 2 each has two 
levels. The cell values are counts at each combination of two 
condition variables.
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role of the two raters is selected randomly. Positive spe-
cific agreement, ppos is defined as: ppos = 2d/(2d + b + c).
Both (log) odds ratio and positive specific agreement will
be considered in our following discussion.

Model Setup

Consider an experiment with a binary outcome. Let p0

denote the proportion of true negatives, while p1 be the

proportion of true positives. We denote p = (p0, p1)t as the

vector of true proportions. Due to false positives and false
negatives, the observed proportions likely differ from the

true proportions. Let  denote the vector of the

observed proportions. The relationship between p and

E( ) can be written as:

where s is the false positive rate and t is the false negative
rate. Denoting the transformation matrix as M, Equation
(1) can be written as:

Thus, for different values of false positive and false nega-
tive rates, different observed proportions will be obtained
based on Equation (2). If the false positive and false neg-
ative rates are known, the true proportions may be
inferred based on the observed experimental proportions.
Multiplying both sides of Equation (2) by M-1 gives us:

However, due to chance variations, p obtained through

this approach based on the observed  may have nega-

tive components, leading to uninterpretable results.
Instead, we propose to estimate the true proportions using
an Expectation Maximization (EM) based approach
explained in detail in the following subsection.

Often, we are interested in the analysis of the binding of a
particular transcription factor in multiple experimental
conditions or across different species. In either case, we
are interested in counts of similarity of binding across
conditions or organisms. This would correspond to an
extension of Equation (2) into a higher dimension. For
simplicity, we present our analysis for a 2-dimensional
case. For example, if we consider the binding targets of a
transcription factor across two experimental conditions,

the vector of true proportions can be represented as p =
(p00, p01, p10, p11)t. Here p00 denotes the proportion of

genes which are not targets of the regulator in either con-
dition, p01 denotes the proportion of genes which are tar-

gets of the regulator in the second condition but not in the
first, p10 denotes the proportion of genes which are targets

of the regulator in the first condition but not in the sec-
ond, while p11 denotes the proportion of genes which are

targets of the regulator in both conditions. Similarly, the
vector for the observed proportions can be denoted as

. The relationship between the

observed and true proportions can be then written as:

If we consider Equation (2) to correspond to a 1-dimen-
sional case, for the n-dimensional case, the new transfor-
mation matrix would simply be obtained by taking the
tensor product of M with itself n times. Here we assume
that the false positive and false negative rates to be the
same across two conditions. In general that may not be
the case. In such a scenario, for a 2-dimensional case,
Equation 4 takes the general form:

where M1 and M2 are the transformation matrices for the
first and second conditions respectively.

EM Algorithm
Given a vector of observed proportions which we obtain
from experimental output, for different values of false
positive rates and false negative rates, we aim to infer the
true proportions. This would give us an idea about how
the observed and true proportions differ for different lev-
els of noise in the form of false positives and false nega-
tives. We infer the true proportions from the observed
proportions using an EM based approach which we now
discuss in detail.

Let us consider the binding patterns for a transcription
factor in experimental conditions c1 and c2. We define the
vector for the true binary binding pattern of a particular
gene G as b = (b1, b2), where b1 and b2 take binary value 1
or 0 depending on whether the gene is a true binding tar-
get for the transcription factor in c1 and c2 respectively.
Thus, for the experimental conditions c1 and c2, this
binary binding pattern vector can take four possible val-
ues, {(0, 0), (0, 1), (1, 0), (1, 1)}. For example, a binary
binding pattern vector equal to (1, 1) indicates that the
gene is a binding target for the transcription factor in both
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c1 and c2. We aim to infer this true binary binding pattern
for all the genes and thus obtain the true binary counts.
Due to experimental errors, we have the observed counts
as the experimental output.

We denote the observed binding pattern for a particular
gene as g = (g1, g2), where each component is either 0 or 1
denoting whether the gene is observed to be the binding
target of the particular transcription factor in c1 and c2
respectively, based on the experimental output. Thus, the
vector g represents the observed data. The probability of
the observed binding data is then given by

Thus, for N genes, the probability of the observed data is

In this article, we propose to estimate the P(b) to maxi-
mize P(g1, g2, ..., gN) using the EM algorithm, by treating
b as the missing data as follows.

E-Step: In the Expectation step, the conditional distribu-
tion of the missing data given the observed data is evalu-
ated. We evaluate the posterior probabilities of each true
binding state given the observed binding pattern. Thus,
for every gene G with observed binding pattern g, we esti-
mate:

where b(m) is the estimate of the true binding state b prob-
ability at the m-th step. Since b(m) can have four possible
values, at each step, we estimate four probabilities. The
probability P(g|b(m)) can be expanded as:

where  and  are the first and second components

of the estimate b(m) and take binary value 0 or 1.

The second equation in (9) results from the independence
assumption for the data from two separate ChIP-chip
experiments. Thus, the probability of observing g1 would

be independent of the estimate of binding state ,

while the probability of observing g2 would be independ-

ent of the estimate of binding state . There are four

possible cases for the expression  in Equation

(4). From Equation (1), they can be enumerated as:

Thus, for each gene, we start with a set of estimates P(b(m))
and obtain estimates of the posterior probabilities
P(b(m)|g) for each gene at the E-step.

M-Step: In the Maximization step, the parameters P(b) are
re-estimated to maximize the likelihood of the complete
data. After obtaining P(b(m)|g) for each gene, we cross-tab-
ulate a two-way contingency table, with the "count" for
each of the four values {(0, 0), (0, 1), (1, 0), (1, 1)} being
the sum of the probabilities for that particular value across
all the genes. These counts are then used to obtain
updated P estimates for P(b). For example,

.

We iterate between the E-Step and the M-Step until con-
vergence. The convergence criterion was set as: |P(b(m)) -
P(b(m-1))| < 10-12.

Results and discussion
In this section, we study the effect of false positives and
false negatives on inferring regulatory target conservation
across conditions/species through both simulations and
real data analyses.

We consider an experiment involving the binding of a
transcription factor in two different conditions with a
total of 1000 genes. We consider the odds ratio as our
metric of interest. For fixed true odds ratios, and different
values of false positive and false negative rates, we plot the
surface of the observed odds ratio in Figure 1. The
observed odds ratio is obtained from Equation 4. It can be
seen that the observed odds ratio is the largest for low val-
ues of false positive and false negative rates and its value
decreases with increasing false positive and false negative
rates. To visualize this phenomenon in two-dimensions,
we fix the false negative rate, and plot the observed odds
ratio as the false positive rate varies (Figure 2). We observe
that with increasing false positive rates, the observed odds
ratio decreases. This is expected, as with an increasing false
positive rate, a larger number of true negatives are
detected as positives. This reduces the count of genes
which are observed negatives in both conditions, i.e. the
cell in the contingency table corresponding to "00". Thus,
there is a reduction in the observed odds ratio value. Sim-
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ilarly, we observe that for a fixed false positive rate with an
increasing false negative rate, the observed odds ratio also
decreases. This is also expected, as with increasing false
negative rate, a larger number of true positives are
detected as negatives. This reduces the number of genes

which are observed positives in both conditions, i.e. the
cell in the contingency table corresponding to "11",
thereby causing a reduction in the observed odds ratio
value. To study the effect of asymmetry between p01 and
p10, we repeated this simulation for differing values of p01
and p10. We observed similar trends of decreasing
observed odds ratios for increasing false positive rate for a
fixed false negative rate and a fixed true odds ratio.

In the following, we give an analytical proof for the reduc-
tion in the observed odds ratio for increasing false positive
rates, with the false negative rate being fixed. Equation 4
can be expanded as:

The observed odds ratio is:

where from Equation 11 we get,

We show that for a true odds ratio greater than 1 and for s
< 1/2 and s + t < 1, ∂ (OOR)/∂s is negative. These are rea-
sonable assumptions for real data, where the false posi-
tives are low and false negatives are not very high. The
denominator of ∂ (OOR)/∂s is always positive as it is a
squared number. The numerator can be written as:

F = F1 * F2 * F3

where,

F1 = (p01p10 - p00p11)(-1 + s + t),

F2 = (1 - s)(p01 + p10 + 2p00s) + (-p01 - p10 + 2p11 + 2(p01 +
p10)s)t - 2p11t2,

F3 = (1 - p00)(-1 + t)t + p00(-1 + t - s(-2 + s + 2t)).

Let us consider each term separately.
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Surface of the Observed Odds Ratio for different values of false positive rate and false negative rate and different values of True Odds RatioFigure 1
Surface of the Observed Odds Ratio for different val-
ues of false positive rate and false negative rate and 
different values of True Odds Ratio. We observe that 
the surface is highest for low values of the false positive rate 
and false negative rate, and falls for increasing values of the 
false positive rate and false negative rate.
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If the true odds ratio is greater than 1 and s + t < 1, then
p01p10 <p00p11 and (-1 + s + t) < 0. Thus, we have F1 > 0. F2
can be simplified as:

F2 = (1 - s)(p01 + p10 + 2p00s) + (p01 + p10)(-1 + 2s)t + 2p11t(1
- t).

Thus, if (-1 + 2s) < 0, i.e. s < 1/2, then all the three product
terms in F2 are positive. Thus, for s < 1/2, F2 > 0. F3 can
be simplified as:

F3 = (-1 + t)(t(1 - p00) + p00) - p00s(-2 + s + 2t) = -p00s2 +
2p00s(1 - t) + (-1 + t)(t(1 - p00) + p00).

Thus, F3 is a quadratic function of s. Since the coefficient
of s2 is negative, if the discriminant of the quadratic is neg-
ative, F3 is always negative. The discriminant D is given
by:

Simplifying, we get,

 which is clearly

negative. Thus, F is negative for true odds ratio greater
than 1, s < 1/2 and s + t < 1.

Simulation Results
To study the effect of false positives and false negatives on
statistical inference of dependence between two condi-
tions, we consider a similar setting in which the binding
of a regulator in two conditions is studied for 1000 genes.
We simulated data for a fixed true odds ratio, and fixed the
false positive and false negative rates. We randomly added
false positives and false negatives to the data based on the
false positive rate and false negative rate. This manifests
itself as the observed data, and we repeated this 1000
times. We performed a chi-squared test for independence
between the two conditions and counted the number of
times the null hypothesis was rejected at a significance
level of 0.001. Further, for each observed dataset, we
inferred back the true data using our EM algorithm. The
inferred true counts are almost equal to the true counts
before false positives and false negatives were randomly
added. This is because the false positives and false nega-
tives were randomly added based on the fixed false posi-
tive rate and false negative rate. These fixed rates are used
in our EM algorithm to obtain the inferred true counts.
For example, for a true odds ratio of 2, the vector of true
counts was (800, 100, 80, 20)t. We fixed the false positive
rate to 0.01 and the false negative rate to 0.2. The vector of
inferred true counts was determined to be (799.87,
101.92, 78.55, 20.66)t. The EM algorithm was initialized
by giving equal weights to each possible true binding pat-

tern for each gene. We used the chi-squared test and
counted the number of times the null hypothesis was
rejected for the inferred true data at the same level of sig-
nificance. We repeated this analysis for different values of
the true odds ratio and different values of false positive
and false negative rates. Figure 3 shows the plot of the
number of null rejections versus the odds ratio for both
the observed and inferred true data. Our results indicate
that the number of null rejections for the inferred true
data is consistently larger than that for the observed data.
We also note that as the odds ratio increases, the differ-
ence between the number of null rejections for the
inferred true data and observed data also increases.
Instead of using the chi-squared test, we also used used
thresholds for the odds ratio and positive specific agree-
ment to ascertain the number of null rejections for
observed and inferred true data. Thus, for each simula-
tion, we rejected the null hypothesis if the odds ratio was
greater than some threshold. We repeated this by applying
a threshold to the positive specific agreement. The results
are shown in Figures 4 and 5. Thus, in addition to the chi-
squared, thresholds for the odds ratio and positive specific
agreement also provide evidence that the number of null
rejections for the inferred true data is consistently larger
than that for the observed data.

Real Datasets
We considered two ChIP-chip datasets. Harbison et al. [5]
described the binding profiles of 204 transcription factors
for S. Cerevisiae in Rich medium, and 84 of these tran-
scription factors were also profiled in at least one other
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Simulation results showing the plot of the number of 
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observed and inferred true data. The number of null 
rejections for the inferred true data is consistently larger 
than that for the observed data.
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experimental condition. In their study, transcription fac-
tors were selected for profiling in a particular environment
if they were essential for growth in that environment, or if
there was other evidence suggesting their role in gene reg-

ulation in that environment. Borneman et al. [8]. studied
the divergence of binding sites of regulators Ste12 and
Tec1 in the yeasts S. cerevisiae, S. mikatae and S. bayanus
under pseudohyphal conditions. They listed genes which
showed differing degrees of conservation across the three
species, i.e. genes which were targets in only one species,
the targets in two species, and the targets all three species.

For ChIP-chip data from Harbison et al. [5], we focussed
on the binding data for the transcription factors Ste12 and
Tec1 in three different experimental conditions – Rich
medium, Filamentation inducing and Mating inducing.
We used a p-value threshold of 0.001 to obtain the bind-
ing targets for these two regulators. For a pair of experi-
mental conditions, we cross-tabulated the binding targets
and created a 2 by 2 contingency table. The odds ratio was
quite high, hence we used the log odds ratio and positive
specific agreement as metrics to summarize the contin-
gency tables. Thus, given the observed log odds ratio and
observed positive specific agreement, for different values
of the false positive rate and false negative rate, we
inferred the underlying true log odds ratio and the true
positive specific agreement using our EM based approach.

In the section describing the model setup, we stated that
multiplication of the vector of the observed proportions
with the inverse of the transformation matrix could lead
to inferred true proportions with negative components.
Here we illustrate the scenario. For the regulator Ste12, in
Rich Medium and Mating inducing condition the vector
of the observed proportions is p = (0.9761, 0.0144,
0.0040, 0.0056)t. For a false positive rate of 0.001 and a
false negative rate of 0.2, multiplying p by the inverse of
the transformation matrix results in the vector of the

inferred true proportions  = (0.9743, 0.0150, 0.0020,

0.0087)t. However, for a false positive rate of 0.002 and a
false negative rate of 0.3, the vector of the inferred true

proportions is  = (0.9748, 0.0144, -0.0005, 0.0113)t.

Similarly, for a false positive rate of 0.004 and a false neg-
ative rate of 0.4, the vector of the inferred true proportions

is  = (0.9793, 0.0113, -0.0061, 0.0154)t. Thus, the

inferred true proportions obtained by simply multiplying
the observed proportions with the inverse of the transfor-
mation matrix could contain negative components.

Table 2 shows how the inferred true proportions change
for different values of the false positive rate and false neg-
ative rate. The vector of the observed proportions is
(0.976, 0.014, 0.004, 0.006)t. Table 3 gives the calculation
of the inferred true odds ratios from the inferred true pro-
portions. Figure 6 shows how the surface of the inferred
true log odds ratio varies with different values of false pos-
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Simulation results showing the plot of the number of null rejections versus the odds ratio for both the observed and inferred true dataFigure 4
Simulation results showing the plot of the number of 
null rejections versus the odds ratio for both the 
observed and inferred true data. The number of null 
rejections are obtained by applying a threshold of 1.5 to the 
Odds ratio. The number of null rejections for the inferred 
true data is consistently larger than that for the observed 
data.
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Simulation results showing the plot of the number of null rejections versus the odds ratio for both the observed and inferred true dataFigure 5
Simulation results showing the plot of the number of 
null rejections versus the odds ratio for both the 
observed and inferred true data. The number of null 
rejections are obtained by applying a threshold of 0.15 to the 
Positive specific agreement. The number of null rejections for 
the inferred true data is consistently larger than that for the 
observed data.
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itive rate and false negative rate. We notice that as the false
positive rate and false negative rate increase, the inferred
true log odds ratio differs quite significantly from the
observed log odds ratio. We observe similar trends when
we use positive specific agreement as the metric of interest
(Table 4 and Figure 7). Harbison et al. reported that the
false discovery rate in their data was likely to be approxi-
mately 4%, while the false negative rate was around 24%
for a p-value threshold of 0.001. For binding data from
Harbison et al., typically the number of "negatives" was
close to 6000, while the number of "positives" was about
100 to 200 at a p-value threshold of 0.001. Thus, the false
positive rate was close to 0.001. For our analysis, we stud-
ied the variation of observed and true outcomes by vary-
ing the false positive rate from 0.001 to 0.005, and the

false negative rate from 0.2 to 0.4. Thus, our range of false
positive rates would correspond to about 6 to 30 false pos-
itives, and about 20 (100 * 0.2) to 80 (200 * 0.4) false
negatives, which appears to be quite reasonable. From
Table 3, we see that for a false positive rate of 0.001 and
false negative rate of 0.20, the inferred true log odds ratio
is 5.60, while the observed log odds ratio is 4.56. Since
both the log odds ratios are quite high, our inference of
association among the two experimental conditions
would not be affected by these values of the false positive
rate and false negative rate.

We also analyzed the results of ChIP-chip experiments
performed by Borneman et al. [8]. We obtained the counts

Table 2: Inferred true proportions of target genes of Ste12 in the 
Rich Medium and Mating Inducing conditions.

FNR

0.20 0.25 0.30 0.35 0.40

FPR = 0.001 0.974 0.973 0.972 0.971 0.969
0.015 0.015 0.016 0.106 0.017
0.002 0.002 0.001 0.001 0.001
0.009 0.010 0.011 0.013 0.014

0.20 0.25 0.30 0.35 0.40

FPR = 0.002 0.977 0.976 0.974 0.973 0.971
0.014 0.014 0.014 0.015 0.015
0.001 0.001 0.001 0 0
0.009 0.010 0.011 0.012 0.013

0.20 0.25 0.30 0.35 0.40

FPR = 0.003 0.979 0.978 0.976 0.975 0.973
0.013 0.013 0.013 0.014 0.014
0 0 0 0 0
0.009 0.009 0.010 0.011 0.013

0.20 0.25 0.30 0.35 0.40

FPR = 0.004 0.980 0.979 0.978 0.977 0.975
0.011 0.012 0.012 0.012 0.013
0 0 0 0 0
0.008 0.009 0.010 0.011 0.012

0.20 0.25 0.30 0.35 0.40

FPR = 0.005 0.982 0.981 0.980 0.979 0.977
0.010 0.011 0.011 0.011 0.011
0 0 0 0 0
0.008 0.009 0.010 0.010 0.012

For different values of false positive and false negative rates, the four 
inferred proportions of the target genes of Ste12 in Rich Medium and 
Mating Inducing are tabulated. The observed vector of proportions is 
(0.976, 0.014, 0.004, 0.006)t.

Table 3: Inferred true log odds ratios for target genes of Ste12 in 
the Rich Medium and Mating Inducing conditions.

FNR

0.20 0.25 0.30 0.35 0.40

FPR 0.001 5.60 5.98 6.50 7.28 8.44

0.002 7.24 7.55 8.54 10.11 12.18

0.003 12.93 14.63 16.98 19.78 22.88

0.004 25.68 29.10 32.83 36.74 40.73

0.005 45.21 50.03 54.92 59.77 64.51

Inferred true log odds ratio values for different values of false positive 
rate and false negative rate for the binding targets of Ste12 in the Rich 
Medium and Mating Inducing conditions. The Observed log odds ratio 
is obtained from cross-tabulation of the binding targets in the two 
conditions, and is equal to 4.56.

Table 4: Inferred positive specific agreement for target genes of 
Ste12 in the Rich Medium and Mating Inducing conditions.

FNR

0.20 0.25 0.30 0.35 0.40

FPR 0.001 0.50 0.54 0.57 0.60 0.63

0.002 0.55 0.58 0.60 0.62 0.64

0.003 0.57 0.59 0.61 0.63 0.64

0.004 0.59 0.60 0.62 0.64 0.65

0.005 0.61 0.62 0.64 0.66 0.67

Inferred positive specific agreement values for different values of false 
positive rate and false negative rate for the binding targets of Ste12 in 
the Rich Medium and Mating Inducing conditions. The Observed 
positive specific agreement is obtained from cross-tabulation of the 
binding targets in the two conditions, and is equal to 0.38.
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of genes which were the binding targets of the regulators
Ste12 and Tec1 in one, two and all three species. We
repeated our analysis as described in the previous para-
graph for a pair of species (Tables 5, 6 and 7; Figures 8 and
9). Here too, we notice a considerable difference between
the observed and inferred outcomes as the false positive
rate and false negative rate increases. For example, for a

false positive rate of 0.001 and a false negative rate of 0.2,
compared to the observed log odds ratio of 4.50, the
inferred true log odds ratio is 5.48; however, for a false
positive rate of 0.005 and a false negative rate of 0.4, the
inferred true log odds ratio is as high as 17.36. Further, we
attempted to test the notion that genes falling under sim-
ilar functional categories tend to be the conserved binding
targets across the three species. We listed all the ortholo-
gous genes in Yeast. For all these genes, we used SGD GO
Slim finder http://db.yeastgenome.org/cgi-bin/GO/goS
limMapper.pl to categorize the genes into broad func-
tional categories. For the top categories which contained
the largest number of genes, we cross-tabulated the genes
and created a 2 by 2 contingency table based on counts of
the genes which are binding targets (Tables 8, 9, 10, 11).
For the genes falling in major categories, we notice that

Surface of the inferred true log odds ratio for different values of false positive rate and false negative rate for real dataFigure 6
Surface of the inferred true log odds ratio for differ-
ent values of false positive rate and false negative 
rate for real data. Observed log odds ratio is obtained 
from cross-tabulation of the binding targets of Ste12 in Rich 
Medium and Mating Inducing condition.
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Surface of the inferred positive specific agreement for differ-ent values of false positive rate and false negative rate for real dataFigure 7
Surface of the inferred positive specific agreement 
for different values of false positive rate and false 
negative rate for real data. Observed positive specific 
agreement value is obtained from cross-tabulation of the 
binding targets of Ste12 in Rich Medium and Mating Inducing 
condition.
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Table 5: Inferred true proportions of target genes of Ste12 under 
the pseudohyphal condition in S. cerevisiae and S. mikatae.

FNR

0.20 0.25 0.30 0.35 0.40

FPR = 0.001 0.956 0.954 0.953 0.952 0.950
0.006 0.005 0.003 0.002 0.001
0.015 0.014 0.013 0.012 0.011
0.023 0.026 0.030 0.034 0.038

0.20 0.25 0.30 0.35 0.40

FPR = 0.002 0.958 0.957 0.956 0.954 0.953
0.005 0.004 0.002 0.001 0
0.014 0.013 0.012 0.011 0.010
0.023 0.026 0.030 0.034 0.038

0.20 0.25 0.30 0.35 0.40

FPR = 0.003 0.961 0.960 0.958 0.957 0.955
0.003 0.002 0.001 0 0
0.012 0.012 0.011 0.010 0.008
0.024 0.026 0.030 0.033 0.037

0.20 0.25 0.30 0.35 0.40

FPR = 0.004 0.964 0.962 0.961 0.959 0.957
0 0 0 0 0
0.011 0.010 0.009 0.008 0.007
0.024 0.026 0.029 0.032 0.036

0.20 0.25 0.30 0.35 0.40

FPR = 0.005 0.966 0.965 0.963 0.961 0.959
0 0 0 0 0
0.10 0.009 0.008 0.007 0.006
0.024 0.026 0.029 0.032 0.035

For different values of false positive and false negative rates, the four 
inferred proportions of the target genes of Ste12 under the 
pseudohyphal condition in S. cerevisiae and S. mikatae are tabulated. 
The observed vector of proportions is (0.959, 0.010, 0.017, 0.015)t.
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the log odds ratios are considerably high, indicating con-
siderable degree of binding conservation. For example, for
the 565 genes found to be enriched for Hydrolase activity,
551 were not the binding targets of Ste12 in either S. cer-
evisiae or S. mikatae. Of the 14 genes which were the
binding targets in at least one of the two species, 5
(YNL053W, YDR452W, YGL163C, YIL118W, YMR305C)
were the binding targets in both species. Of the remaining
9 genes, 5 (YIR027C, YER133W, YNL180C, YOR049C,
YDL047C) were targets in only S. cerevisiae, while 4
(YNL141W, YHR005C, YOR126C, YOL011W) were tar-
gets in only S. mikatae.

Conclusion
In this article, we have studied the effect of false positives
and false negatives in the analysis and interpretation of
ChIP-chip data. We have derived a relationship between
the observed and the underlying true binary outcomes.
Given the observed binary outcome of an experiment, we
have developed an EM based approach to infer the under-
lying true binary outcome for given values of false positive
and false negative rates.

A common limitation with finding binding targets from
ChIP-chip data is that typically an arbitrary threshold, e.g.
0.001, is applied to the data, and all genes with p-values
less than this threshold are considered binding targets.
The false positive rate and false negative rate for the bind-
ing data change with the threshold applied [5]. Datta and
Zhao [11] proposed a statistical procedure to determine
the binding targets without imposing a simple threshold
to the ChIP-chip data. However, their approach relies on
accurate inference of false discovery rate [12], which is a
non-trivial task.

To summarize data in contingency tables we utilized two
commonly used metrics – Odds Ratio and Positive specific

Table 6: Inferred true log odds ratios for target genes of Ste12 
under the pseudohyphal condition in S. cerevisiae and S. 
mikatae.

FNR

0.20 0.25 0.30 0.35 0.40

FPR 0.001 5.48 5.88 6.43 7.22 8.37

0.002 5.88 6.26 6.93 7.92 9.35

0.003 6.56 6.79 7.60 8.87 10.65

0.004 8.16 8.00 8.90 10.51 12.69

0.005 11.07 11.36 12.67 14.75 17.36

Inferred true log odds ratio values for different values of false positive 
rate and false negative rate for the binding targets of Ste12 under the 
pseudohyphal condition in S. cerevisiae and S. mikatae. The Observed 
log odds ratio is obtained from cross-tabulation of the binding targets 
in the two organisms, and is equal to 4.50.

Table 7: Inferred positive specific agreement values for target 
genes of Ste12 under the pseudohyphal condition in S. cerevisiae 
and S. mikatae.

FNR

0.20 0.25 0.30 0.35 0.40

FPR 0.001 0.69 0.73 0.78 0.83 0.87

0.002 0.72 0.76 0.81 0.85 0.88

0.003 0.76 0.79 0.83 0.87 0.90

0.004 0.81 0.83 0.86 0.88 0.91

0.005 0.83 0.85 0.87 0.90 0.92

Inferred positive specific agreement values for different values of false 
positive rate and false negative rate for the binding targets of Ste12 
under the pseudohyphal condition in S. cerevisiae and S. mikatae. The 
Observed positive specific agreement is obtained from cross-
tabulation of the binding targets in the two organisms, and is equal to 
0.53.

Table 8: Cross-tabulation of orthologous genes in functional 
category Hydrolase activity.

S. mikatae

0 1

S. cerevisiae 0 551 4

1 5 5

Cross-tabulation of orthologous genes in Yeast which fall into the GO 
Slim category Hydrolase activity, based on whether they are the 
binding targets of Ste12 in S. cerevisiae and S. mikatae respectively. We 
notice that there is a significant association, with log odds ratio = 4.93 
and ppos = 0.53, indicating conservation of the binding targets across 
the two organisms.

Table 9: Cross-tabulation of orthologous genes in functional 
category Tranferase activity.

S. mikatae

0 1

S. cerevisiae 0 491 7

1 5 5

Cross-tabulation of orthologous genes in Yeast which fall into the GO 
Slim category Transferase activity, based on whether they are the 
binding targets of Ste12 in S. cerevisiae and S. mikatae respectively. We 
notice that there is a significant association, with log odds ratio = 4.25 
and ppos = 0.45, indicating conservation of the binding targets across 
the two organisms.
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agreement. Both these metrics are widely used to study
dependency among categorical variables. Since we are
interested in quantifying association among two catego-
rial variables, i.e. whether there is association across two
different conditions/species, the Odds Ratio and Positive
specific agreement are appropriate metrics of interest. In our
simulation, we used the chi-squared test of independence
to test the null hypothesis that the binding targets are
independent. Instead of using the chi-squared test, we
could also use the Fisher's exact test to test the independ-
ence assumption on the two-way contingency table. The
resulting p-values from both tests indicate the statistical
evidence against the independence assumption. However,
they do not provide a meaningful summary of the degree
of dependence as they are also dependent on the sample
size.

In general, for independently performed real world exper-
iments, such as two separate ChIP-chip experiments, the
independence assumption of equation (9) should hold.
This is because we can assume that data points in a partic-
ular experiment are independent identically distributed
random variables. However, for experiments with closely
associated results, it is possible that the false positive and

false negative data points for the experiments are not
entirely independent. This could result in an under-esti-
mation of the underlying association after the EM proce-
dure.

Table 10: Cross-tabulation of orthologous genes in functional 
category Protein binding.

S. mikatae

0 1

S. cerevisiae 0 338 3

1 5 3

Cross-tabulation of orthologous genes in Yeast which fall into the GO 
Slim category Protein binding, based on whether they are the 
binding targets of Ste12 in S. cerevisiae and S. mikatae respectively. We 
notice that there is a significant association, with log odds ratio = 4.21 
and ppos = 0.43, indicating conservation of the binding targets across 
the two organisms.

Table 11: Cross-tabulation of orthologous genes in functional 
category Transporter activity.

S. mikatae

0 1

S. cerevisiae 0 225 3

1 6 4

Cross-tabulation of orthologous genes in Yeast which fall into the GO 
Slim category Transporter activity, based on whether they are the 
binding targets of Ste12 in S. cerevisiae and S. mikatae respectively. We 
notice that there is a significant association, with log odds ratio = 3.91 
and ppos = 0.47, indicating conservation of the binding targets across 
the two organisms.

Surface of the inferred true log odds ratio for different values of false positive rate and false negative rate for real dataFigure 8
Surface of the inferred true log odds ratio for differ-
ent values of false positive rate and false negative 
rate for real data. Observed log odds ratio is obtained 
from cross-tabulation of the binding targets of Ste12 under 
the pseudohyphal condition in S. cerevisiae and S. mikatae 
respectively.
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Surface of the inferred positive specific agreement for differ-ent values of false positive rate and false negative rate for real dataFigure 9
Surface of the inferred positive specific agreement 
for different values of false positive rate and false 
negative rate for real data. Observed positive specific 
agreement value is obtained from cross-tabulation of the 
binding targets of Ste12 under the pseudohyphal condition in 
S. cerevisiae and S. mikatae respectively.
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Due to the limited degrees of freedom of the data, our EM
algorithm cannot be used to estimate the false positive
rate and false negative rate in experimental data. At each
step in the EM algorithm, we estimate three parameters,
and we have three equations to solve for them. If we also
wish to estimate the false positive and false negative rates,
we would have two additional parameters, but the
number of equations would still be three. This would lead
to an identifiability problem.

We initialized the EM algorithm by different initial esti-
mates of the parameters. For each initial estimate of the
parameters, the algorithm converged. The convergence
criteria for the EM algorithm require that the log likeli-
hood of the parameters l(b|g) be continuous and differen-
tiable in the parameter space. Unfortunately, the M-step
of our algorithm does not have a closed form. Hence, it is
difficult to evaluate the gradient of the log likelihood
function.

Harbison et al. performed their ChIP-chip experiments
using microarrays consisting of spotted polymerase chain
reaction (PCR) products representing all the intergenic
regions of Saccharomyces cerevisiae. To obtain the binding
targets a p-value threshold was applied to the binding
intensities associated with the probes. One of the draw-
backs of PCR based arrays is the low resolution of the
DNA elements in the microarray chip. For PCR arrays
designed for Yeast, the typical resolution achieved is less
than 1 kb. In recent years, high density oligonucleotide
arrays, comprising of large numbers (40, 000 to more
than 6, 000, 000) of short oligonucleotides have been uti-
lized for ChIP-chip studies [13-16]. A number of statistical
algorithms have also been developed to determine the
binding targets from such large scale tiling arrays [17-20].
Borneman et al. used high density oligonucleotide arrays
to perform their experiment. The binding targets were
obtained using Tilescope [21]. Since they report the target
genes in each organism, we simply used their results to
obtain the counts of target genes in each of the three
organisms.

Our analysis can be applied to any experimental setting
with binary outcomes. However, for the sake of simplicity,
we have illustrated its application for ChIP-chip experi-
ments. By applying our algorithm to ChIP-chip data from
Harbison et al. and Borneman et al., we observe that for
different values of the false positive and false negative rate,
the observed and true metrics for the binary data can differ
quite dramatically. However, we notice that when the true
log odds ratio is greater than 4, i.e. there is a significant
degree of association among the binding targets across
conditions/species, such differences in the observed and
true metrics would not change our inference. On the other
hand, our simulation results indicate that when the true

odds ratio is close to 1, i.e. for cases when the underlying
association is marginal, moderate values of false positive
and false negative rates (0.01 and 0.2 respectively) may
not be able to provide conclusive evidence of any under-
lying association or independence.
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