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Abstract
When memories share similar features, this can lead to interference, and ultimately forgetting. With experience, however, 
interference can be resolved. This raises the important question of how memories change, with experience, to minimize 
interference. Intuitively, interference might be minimized by increasing the precision and accuracy of memories. However, 
recent evidence suggests a potentially adaptive role for memory distortions. Namely, similarity can trigger exaggerations of 
subtle differences between memories (repulsion). Here, we tested whether repulsion specifically occurs on feature dimensions 
along which memories compete and whether repulsion is predictive of reduced memory interference. To test these ideas, 
we developed synthetic faces in a two-dimensional face space (affect and gender). This allowed us to precisely manipulate 
similarity between faces and the feature dimension along which faces differed. In three experiments, participants learned to 
associate faces with unique cue words. Associative memory tests confirmed that when faces were similar (face pairmates), 
this produced interference. Using a continuous face reconstruction task, we found two changes in face memory that pref-
erentially occurred along the feature dimension that was “diagnostic” of the difference between face pairmates: (1) there 
was a bias to remember pairmates with exaggerated differences (repulsion) and (2) there was an increase in the precision of 
feature memory. Critically, repulsion and precision were each associated with reduced associative memory interference, but 
these were statistically dissociable contributions. Collectively, our findings reveal that similarity between memories triggers 
dissociable, experience-dependent changes that serve an adaptive role in reducing interference.
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Introduction

When episodic memories are similar, this can lead to inter-
ference and forgetting. A critical point of emphasis in theo-
ries of episodic memory has been to not only characterize 
the contexts and situations in which interference occurs, but 
to consider the mechanisms that resolve interference (Ander-
son, 2003; Anderson et al., 1994; Anderson & Spellman, 
1995; Crowder, 2014; Fawcett & Hulbert, 2020; Smith & 
Hunt, 2000). To the extent that similarity is a root cause of 
interference, one potentially powerful way to reduce interfer-
ence is to accentuate subtle differences between memories 

(Hulbert & Norman, 2015; Smith & Hunt, 2000). However, 
there is surprisingly little evidence characterizing whether or 
how the contents of episodic memories change as an adap-
tive response to interference.

One way to accentuate differences between similar mem-
ories is by increasing memory precision. For example, if two 
students look similar, more precise memories for the fea-
tures of those students’ faces (e.g., their specific eye colors) 
should render those memories more distinct. This concept 
is similar to the idea from perceptual learning that stimu-
lus dimensions are “stretched” to allow more fine-grained 
perceptual discriminations (Goldstone, 1998; Nosofsky, 
1986). Analogously, increasing memory precision should 
expand the space between similar memories, thereby reduc-
ing interference.

An alternative, though not mutually exclusive, possibility 
is that differences between similar events are accentuated 
by misremembering event features as being more differ-
ent than they actually were. For example, a pair of recent 
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studies demonstrated that when otherwise identical objects 
were associated with slightly different colors, the color dif-
ference between those objects was systematically exagger-
ated in memory (Chanales et al., 2021; Zhao et al., 2021). 
Critically, this memory repulsion only emerged with exten-
sive practice and coincided with reductions in interference-
related memory errors. In fact, during early stages of learn-
ing, there was an “attraction” in color memory (Chanales 
et al., 2021). Notably, repulsion-like biases have also been 
observed in working memory (Bae & Luck, 2017; Chun-
haras et al., 2018; Chunharas et al., 2019; Golomb, 2015) 
and visual attention (Chen et al., 2019; Won et al., 2020; Yu 
& Geng, 2019).

To the extent that episodic memory interference triggers 
changes in precision or bias, these changes should be most 
likely to occur (or most beneficial) along feature dimensions 
that are diagnostic of differences between similar memories. 
For example, if two students have identical hair color but 
slightly different eye color, then eye color would represent 
a diagnostic feature dimension. Targeted changes in dis-
crimination accuracy along diagnostic feature dimensions 
have been observed during category learning (Goldstone & 
Steyvers, 2001; Kruschke, 1996; Theves et al., 2020) and in 
working memory (Chunharas et al., 2018). Computational 
models of episodic memory interference have proposed 
that episodic memory representations also undergo targeted 
changes that specifically exaggerate differences between 
similar memories (Hulbert & Norman, 2015), but empirical 
support for this proposal remains limited.

While precision and bias may both contribute to the res-
olution of memory interference, they are orthogonal con-
structs. Whereas precision refers to a reduction in memory 
variability, bias refers to a shift in a memory distribution. 
However, both measures require that memory be expressed 
using continuous values. Additionally, calculating preci-
sion requires that individual memories be sampled multiple 
times (to observe variability in the response). Despite recent 
progress towards utilizing continuous feature measures in 
episodic memory research (e.g., Berens et al., 2020; Brady 
et al., 2013; Cooper et al., 2019; Cooper & Ritchey, 2019; 
Harlow & Donaldson, 2013; Harlow & Yonelinas, 2016; 
Nilakantan et al., 2017; Nilakantan et al., 2018; Rhodes 
et al., 2020; Richter et al., 2016), prior studies have not spe-
cifically compared the relative contributions of precision and 
bias to the resolution of episodic memory interference.

Here, using multi-dimensional stimuli (faces), we tested 
whether similarity between stimuli induces adaptive changes 
in episodic feature memory (precision and/or bias) along 
diagnostic versus non-diagnostic feature dimensions. We 
developed a set of synthetic face stimuli that were manipu-
lated on subjectively relevant dimensions (Oosterhof & 
Todorov, 2008) as well as a behavioral face reconstruction 
task that allowed participants to express face memory by 

actively adjusting the synthetic faces. We used this inno-
vative methodology across three experiments (including a 
preregistered third experiment) that each included a simple 
learning paradigm in which participants studied associa-
tions between faces and cue words (professions). Critically, 
most of the faces had a competitive pairmate that differed 
only on a counterbalanced diagnostic dimension (affect or 
gender). After extensive study and retrieval practice, we 
probed participants’ memories for both feature dimensions 
simultaneously. Our central hypothesis was that competition 
would yield adaptive changes along the diagnostic feature 
dimension. Specifically, we predicted that memory for diag-
nostic features would be biased to exaggerate differences 
between similar memories (repulsion) and that repulsion 
would be associated with lower memory interference. We 
also predicted greater precision for diagnostic features and, 
importantly, tested whether repulsion and precision were 
independently predictive of memory interference.

Methods

We conducted three experiments with the same core experi-
mental design and procedure. The only differences across the 
experiments were (1) the similarity of competitive pairmates 
increased very slightly from Experiments 1 to 2 to 3, and 
(2) the minimum number of learning rounds was increased 
from Experiment 1 to Experiments 2 and 3 to account for 
the greater similarity/difficulty. Analyses and predictions for 
Experiment 3 were preregistered (https://​osf.​io/​s2gnq) after 
analyzing data from Experiments 1 and 2. Thus, analyses are 
first reported for Experiments 1 and 2, and then, separately, 
for Experiment 3 (to test for replication). Exploratory analy-
ses that combined data across experiments are also reported.

Participants

Participants were undergraduate students from the Univer-
sity of Oregon who received course credit for participation. 
A total of 40 participants were recruited for Experiment 1. 
Four participants were excluded from analyses due to tech-
nical/procedural errors (see preregistration for full exclu-
sion criteria: https://​osf.​io/​s2gnq), resulting in a sample of 
36 participants (Mage = 19.11 ± 1.65 years, range 18–25 
years; 25 females). We sought a similar sample size in 
Experiment 2 and recruited 41 participants (Mage = 20.49 
± 2.47 years, range 18–28 years; 28 females); no partici-
pants were excluded for technical/procedural errors. Based 
on the effect sizes in Experiments 1 and 2 and corresponding 
power analyses, we recruited a sample 60 participants for a 
preregistered Experiment 3 (see https://​osf.​io/​s2gnq). Three 
participants were excluded for technical/procedural errors, 
resulting in a sample of 57 participants (Mage = 19.00 ± 
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2.41 years, range 18–22 years; 40 females). Each experi-
ment involved a single session for each participant that lasted 
90–120 min. Informed consent was obtained in accordance 
with procedures approved by the University of Oregon 
Institutional Review Board. All participants who were not 
excluded due to technical/procedural errors were included 
in our analyses of the associative memory test performance 
(see Procedure). Inclusion in all subsequent analyses was 
based on a set of performance-based exclusion criteria (see 
Performance-based exclusion criteria).

Materials

Cue words  For each participant and each experiment, the 
same set of 12 cue words was used (farmer, dentist, lawyer, 
teacher, chef, tailor, plumber, actor, artist, surgeon, judge, 
barber). Each cue word was assigned to a unique face, with 
the assignment randomized for each participant. All of the 
cue words referred to professions, consisted of one or two 
syllables, and were displayed in white with all capital letters.

Faces  Face images appeared in color with a uniform ellipse 
shape with a horizontal radius of 81 pixels and a vertical 
radius of 120 pixels. For all experiments, face images were 
generated from a set of eight base faces. The base faces were 
derived from a separate experimental procedure in which 
participants sorted a corpus of 1,008 faces into “families” 
based on subjective assessment of the likelihood that faces 
were genetically related. Clustering algorithms were applied 
to the sorting responses to identify distinct clusters (fami-
lies). Each of the eight base faces represents the mean face 
from a cluster, normalized for features not relevant to the 
grouping (see https://​osf.​io/​6cew9/ for full details of stim-
ulus-generation methods). Critically, because of the way in 
which the eight base faces were generated, the base faces 
were distinct from each other according to characteristics 
that were orthogonal to the dimensions of affect and gen-
der (which were the dimensions manipulated in the current 
experiments).

For each participant in each experiment, half of the base 
faces (four) were assigned to a competitive condition and 
half (four) were assigned to a non-competitive condition. 
The assignment of base faces to conditions was randomized 
for each participant. Base faces were manipulated along two 
dimensions – affect and gender – in order to generate the 
specific faces that participants studied (studied faces). For 
the four base faces assigned to the competitive condition, 
we created pairmates by generating two studied faces from 
each base face, with the common base being the source of 
competition. For the four faces assigned to the non-compet-
itive condition, each base face was manipulated to generate 
a single studied face. Thus, a total of 12 studied faces were 
generated and used for each experiment.

For each experiment, each studied face was manipulated 
to fall into one of four locations in a two x two (affect x 
gender) space. That is, within each experiment, each studied 
face had one of two affect values and one of two gender val-
ues. To manipulate these dimensions, we collected subjec-
tive affect and gender ratings for all of the 1,008 faces in the 
corpus (see https://​osf.​io/​znc58/) and then used regression 
analyses to learn the mapping between the gender and affect 
ratings and face image parameters (739 parameters in total) 
derived from an Active Appearance Model (AAM) (Chang 
& Tsao, 2017; Cootes et al., 2001; Edwards et al., 1998). 
Thus, the regression weights allowed for different affect and 
gender values to be translated to the 739-parameter feature 
space to manipulate the base faces. In order to maximize the 
independence of the affect and gender dimensions, for each 
of the AAM parameters, the dimension (affect or gender) 
with the highest magnitude regression weight was retained 
and the regression weight for the other dimension was set to 
0. Thus, each face dimension (affect, gender) was associated 
with a distinct set of AAM parameters.

For the non-competitive condition, the four studied faces 
corresponded to the four locations in affect-gender space 
(one face per location), with the assignment of base faces 
to locations randomly determined for each participant. For 
the competitive condition, the eight studied faces again cor-
responded to the four locations in affect-gender space (two 
faces per location), with the assignment of base faces to 
locations randomly determined for each participant. Criti-
cally, the eight faces in the competitive condition included 
four sets of pairmates. For two of those sets, the pairmates 
within each set differed on affect and were matched on 
gender (i.e., diagnostic dimension = affect, non-diagnostic 
dimension = gender). For the other two sets, the pairmates 
differed on gender and were matched on affect (i.e., diagnos-
tic dimension = gender, non-diagnostic dimension = affect) 
(see Fig. 1a). For the sets of pairmates that shared the same 
diagnostic dimension, each set corresponded to a different 
value on the non-diagnostic dimension, but the pairmates 
within each set had the same value on the non-diagnostic 
dimension. For example, for the two sets of pairmates for 
which gender was the diagnostic dimension, each set of pair-
mates would have a different value on the affect dimension, 
but the pairmates within each set would have the same value 
on the affect dimension.

For Experiment 1, the difference between competitive 
faces along the diagnostic dimension was determined based 
on subjective assessment of the authors and initial pilot 
data. The goal was for the differences to be very subtle, yet 
learnable (see Fig. 1a for examples). Note: The units for 
these differences were not meaningful and are therefore not 
reported. For Experiment 2, the difference between competi-
tive pairs was reduced by 25% relative to Experiment 1 in 
order to slightly increase the difficulty/interference. This was 
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motivated by evidence that repulsion is more likely to occur 
when discrimination is relatively more difficult (Chanales 
et al., 2021). For Experiment 3, the difference between com-
petitive pairs on the gender dimension was the same as in 
experiment 2, but the difference on the affect dimension was 
reduced by 50% relative to Experiment 1. This was moti-
vated by evidence, from Experiment 2, that interference was 
somewhat lower along the affect dimension compared to the 
gender dimension. Note that since the differences between 
competitive pairs in Experiment 1 were quite small to begin 
with, the changes across experiments were subtle. For addi-
tional consideration of differences between affect versus 
gender across experiments, see Fig. S1 in the Online Sup-
plemental Material (OSM).

Within each experiment, the difference between com-
peting faces (pairmates) on the diagnostic dimension is 
described in relative terms (scaled units), with each face 
being 1 unit from the center of face space and, therefore, 2 
units from each other. All faces were also exactly 1 unit away 
from the affect and gender borders in the response window 

(see Reconstruction phase, below). Analyses of face mem-
ory from the reconstruction phase were performed based on 
the distance, in units, between participants’ responses and 
the actual location of the studied phases.

Procedure

Each experiment consisted of two main phases: a learning 
phase and a reconstruction phase. The purpose of the learn-
ing phase was for participants to extensively study and prac-
tice remembering the cue-face associations. The reconstruc-
tion phase served as the critical memory test for measuring 
bias and precision in face memory. All experiments were 
run in Matlab, using the Psychophysics Toolbox extensions 
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). All phases 
of the experiment had a gray background.

Learning phase  The learning phase consisted of up to 12 
rounds, with each round split into two sub-rounds. Each 

Fig. 1   Experimental paradigm and design. a Examples of competitive 
pairmates from Experiment 1, with the location of the faces in affect-
gender space shown below. Top: Example of pairmates matched on 
affect (non-diagnostic dimension) but differing slightly on gender 
(diagnostic dimension). Bottom: Example of pairmates matched on 
gender (non-diagnostic dimension) but differing slightly on affect 
(diagnostic dimension). b Learning phase. Each round of the learning 
phase (up to 12 rounds total) consisted of three tasks. During study, 
participants viewed and studied associations between cue words 
and faces. During recall, participants viewed a cue word and were 
instructed to recall the corresponding face as vividly as possible; the 
correct face image then appeared. During the associative memory 
test, participants attempted to match each face image with its corre-
sponding cue word, selected from a set of six options: target, com-

petitor (the cue word of the pairmate face), and four lures (cues from 
other faces). c Face reconstruction task. Left: Participants were first 
shown a cue and instructed to visualize the corresponding face. Then, 
an altered version of that face appeared (shifted a random amount on 
the affect and gender dimensions). Center: Participants used mouse 
clicks in a two-dimensional box to search the affect-gender space 
until the reconstructed face matched their memory for the target. 
Right: Schematic of the search space showing the true location of the 
target (green dot) and competitor (red dot). Example reconstruction 
responses (open green dots) demonstrate our predictions: A bias away 
from the competitor (repulsion) on the diagnostic dimension and 
lower variability (greater precision) along the diagnostic compared to 
the non-diagnostic dimension
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sub-round included three blocks corresponding to the fol-
lowing experimental tasks, in the following order: study, 
recall, and associative memory test (Fig. 1b), with the excep-
tion that rounds one and two did not include the recall task. 
For each participant and each round of the learning phase, 
the 12 associations were randomly split into two groups 
of six associations each (four competitive, two non-com-
petitive), with each group of six associations assigned to 
a separate sub-round. In other words, in each round of the 
learning phase, half of the associations went through study/
recall/associative memory test and then the other half of the 
associations went through study/recall/associative memory 
test (with the exception, as noted above, that rounds one and 
two did not include the recall task). The rationale for split-
ting the associations into two sub-rounds was to facilitate 
learning by reducing the amount of information per block.

In the study task, participants viewed and studied the 
cue-face pairings. On each trial (2,000 ms), a cue appeared 
directly above a face image. In between trials, there was a 
fixation cross for 200 ms. Participants were instructed to 
study the cue-face pairings; no response was made. In the 
recall task, participants attempted to recall the face associ-
ated with each cue. On each trial, a cue was presented above 
a blank ellipse (representing the to-be-recalled face) for 
2,500 ms. Participants were instructed to recall the associ-
ated face image as vividly as possible. Although no response 
was made, the correct face would then appear below the cue 
for 1,000 ms as a way of providing feedback. In between 
trials, there was a 200-ms fixation cross. In the associative 
memory test, participants attempted to match face images 
with corresponding cue words. On each trial, a face image 
was presented for 2,000 ms and was then replaced by a set 
of six different cue words displayed in the bottom half of 
the screen (three cues in each of two rows with the position 
randomly determined for each trial). The cue words included 
all of the cues from the current sub-round. For faces in the 
competitive condition, the set of cues included the cor-
rect answer (target), the cue that had been paired with the 
current face’s pairmate (interference error), and four cues 
that had been paired with the other, unrelated faces (lures). 
For faces in the non-competitive condition, the set of cues 
included the correct answer (target) and five cues that had 
been paired with unrelated faces (lures). Participants made 
responses by clicking on the cue word with the mouse. After 
each response was registered, feedback indicated whether 
the response was correct (“Correct!”; 500 ms) or incorrect 
with the correct cue indicated (e.g., “Incorrect. This is the 
BARBER.”; 2,000 ms).

During the first two rounds of the learning phase, each 
study block presented each cue-face association three 
times. In subsequent rounds, each association was studied 
once per block. As noted above, there was no recall task in 
the first two rounds of the learning phase. In subsequent 

rounds, each association was recalled twice per recall block. 
Across all rounds of the learning phase, each association 
was tested three times per associative test block. For each 
task block (study/recall/associative test), the order in which 
each association was presented/tested was pseudo-randomly 
determined, with the following constraints: (1) all of the 
associations in each block were studied/presented once 
before any were repeated, (2) a given association was never 
presented/tested consecutively, (3) competing associations 
(face pairmates) were never presented/tested in consecutive 
trials. These constraints helped ensure that any comparisons 
between stimuli/associations were memory-based.

In Experiment 1, participants repeated the learning phase 
for at least nine rounds and until they reached 100% accu-
racy on the associative memory test, up to a maximum of 12 
rounds. Most participants had reached perfect accuracy after 
nine rounds (24/36), and nearly all did so after ten rounds 
(31/36). Only two participants went through all 12 rounds, 
with one achieving perfect performance and the other being 
removed for continued poor performance (see below for per-
formance-based exclusion criteria). In Experiments 2 and 3, 
all participants completed 12 rounds of the learning phase 
regardless of associative memory test performance. For each 
experiment, participants were given the opportunity to take 
a break after every two rounds, with the length of the break 
determined by the participant. Participants were instructed 
to press the space bar when ready to proceed.

Reconstruction phase  After the learning phase, participants’ 
memories for the features of the faces were probed with a 
surprise reconstruction task (Fig. 1c). On each trial in the 
reconstruction task, participants were first shown a cue (e.g., 
“What does the BARBER look like?”) above a blank ellipse 
for 2,500 ms and were instructed to bring the target face to 
mind. Next, an altered version of the target face appeared in 
the ellipse with a response box beneath the face representing 
the search space (see Reconstruction search space, below, 
for details). Participants used a mouse to click through the 
box; the face image above the box changed according to 
the location of each mouse click in the box. Although par-
ticipants were not explicitly made aware of this, the box 
represented a two-dimensional affect-gender space. Par-
ticipants were instructed to continue searching (clicking 
through the box) until the face matched their memory for 
the target face. Participants finalized their response by press-
ing the space bar. There was no limit on the response time. 
A fixation cross appeared for 200 ms between trials. Each 
of the 12 studied faces was probed (reconstructed) a total 
of four times in the reconstruction phase (48 trials total). 
The rationale for probing faces multiple times was so that 
the precision (variability) of reconstructions for each face 
could be measured. Faces were reconstructed in a pseudo-
random block order. In each of four consecutive blocks (with 
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no break or demarcation between blocks), each of the 12 
faces was reconstructed once. As in the learning phase, the 
same face was never tested consecutively and pairmate faces 
were never tested in consecutive trials. After the reconstruc-
tion phase, there was a short phase where participants were 
prompted to provide a rating on a 9-point scale for both 
affect and gender for each stimulus. Results from this task 
(which was only included for validation) are not described 
here.

Reconstruction search space  In the reconstruction task, the 
altered face presented on each trial was derived from the 
same base face as the target face, but the affect and gender 
values were randomly selected from a range of possible val-
ues. This range of possible values corresponded to the size 
of the two-dimensional search space (i.e., the size of the 
response box). Importantly, the range of the search space 
and the center of the search space were identical across all 
trials, but the mapping of the dimensions to the x and y axes 
(e.g., x axis = affect, y axis = gender) and the direction/
orientation of the axes (e.g., left = low, right = high) were 
randomly varied for each trial so that participants would not 
learn to associate a given face with a fixed spatial position 
in the response box. For each experiment, the size of the 
search space relative to the distance between pairmate faces 
was identical. That is, for each experiment the height and 
width of the search space was exactly twice the distance 
between pairmate faces on the diagnostic dimension. Thus, 
with pairmate faces 2 units apart (in our standardized units), 
the height and width of the search space was 4 units. For 
each trial, the location of the correct answer (target face) and 
the location of the pairmate face (for faces in the competi-
tive condition) always corresponded to one of four possible 
locations (the center of each quadrant) with all four of those 
locations contained in the search space (see Fig. 1a).

Analysis methods

Performance‑based exclusion criteria  For analyses that 
involved the reconstruction task data, we excluded a small 
number of participants based on performance during rounds 
9–12 of the associative memory test. Participants were 
excluded if (a) their error rate for non-competitive trials was 
greater than 20% for any of these rounds or (b) they selected 
the lure faces on greater than 20% of the competitive trials 
for any of these rounds. Based on these criteria, one partici-
pant was excluded from analysis of the reconstruction task 
data in Experiment 1 (yielding N = 35), four were excluded 
from Experiment 2 (yielding N = 37), and eight were 
excluded from Experiment 3 (yielding N = 49) (see https://​
osf.​io/​dj6q2/ for other exclusion criteria that were estab-
lished but did not apply). The rationale for having a high 
threshold for inclusion of participants in the reconstruction 

task analysis was to minimize cases where participants 
reconstructed an entirely wrong face and to instead focus 
on bias/precision in otherwise correctly remembered faces.

Measuring associative memory  As noted above, the asso-
ciative memory test was used to confirm that participants 
achieved high accuracy in associating cues with faces. The 
associative memory test also allowed for a manipulation 
check of whether the competitive condition induced inter-
ference (lower associative memory accuracy) compared to 
the non-competitive condition. Data from the associative 
memory test was first analyzed in terms of accuracy on 
competitive compared to non-competitive trials. We ran a 
separate repeated-measures ANOVA for each experiment 
with factors of condition (competitive, non-competitive) and 
learning round (1–9 for Experiment 1, 1–12 for Experiments 
2 and 3). For competitive trials, we also separated errors 
according to whether they were attributable to competition 
(interference error) or not (lures). If errors were random, 
interference errors would occur on one-fifth (20%) of the 
error trials. To test whether interference errors occurred at 
above chance levels, we therefore ran one-sample t-tests for 
each experiment, comparing the mean percentage of interfer-
ence errors (across all learning rounds) to 20%.

Measuring bias  As described above, on each trial in the 
reconstruction task the target face was located in one of four 
locations (the center of the four quadrants). Thus, for both 
the x and y axes of the search space, the target was half-
way between the center and the border of the search space 
(Fig. 1a). To measure for potential bias, for each experi-
ment all responses were aligned onto a common axis and 
rescaled onto a common scale, separately for each feature 
dimension (affect, gender). For the rescaled data, the range 
of possible responses for each dimension was -2 to 2, with 
0 being the center of the face space (i.e., the center of the 
search space). For the competitive condition, the location 
of the target face on the diagnostic dimension = 1 and the 
location of the pairmate face = -1 (Fig. 1c). Thus, a bias 
away from the pairmate face would be represented by val-
ues greater than 1, whereas a bias toward the pairmate face 
(or toward the center of face space) would be represented 
by values lower than 1. For the non-diagnostic dimension, 
the location of the target face and the pairmate face = 1. 
Although faces from the non-competitive condition were 
included in the reconstruction task, bias was not measured 
for these faces because the distinction between diagnostic 
versus non-diagnostic dimensions did not exist. Rather, non-
competitive faces were of critical importance in the associa-
tive memory test, where they served to establish an overall 
memory interference effect.

It is important to note that, for the reconstruction task, the 
response range on each trial was asymmetrically distributed 
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around the target. If the response range had been symmetri-
cally distributed around the target, then the correct response 
on each trial would have, by definition, been the center of the 
search space – which likely would have led participants to 
learn to simply respond in the center. However, the drawback 
of the approach we used is that, for the diagnostic dimension 
in the competitive condition, there was more opportunity to 
respond toward the pairmate face (values between -2 and 
1) than away from the pairmate face (values of 1 to 2). Of 
course, this asymmetry works against our predicted effect 
of repulsion (values greater than 1). Nonetheless, in order to 
account for the asymmetrically restricted response range, we 
estimated the true mean by fitting truncated normal distribu-
tions to the data. For each participant, separate models were 
run for the diagnostic and non-diagnostic dimensions, with 
each model pooling data across faces and feature dimen-
sions (affect, gender) in order to include a sufficient number 
of data points. Thus, each model included 32 data points 
(eight faces in the competitive condition × four reconstruc-
tion trials per face). Maximum-likelihood estimation was 
used to find the mean and standard deviation of a truncated 
normal distribution that best fit the data. The distributions 
were modelled using the truncnorm and MASS packages in 
R. We constrained the search space of the mean to a range 
of plausible values evenly balanced on either side of the 
target (± 1 unit) and constrained the standard deviation to 
be a maximum of 1 and a minimum of .1. Although we view 
the modelled means as a better estimate of the true means, 
there are some sources of variance that the models do not 
account for. For example, the models do not account for 
potentially unique distributions for each feature dimension 
and/or stimulus. Furthermore, there is evidence that there 
may be inherent, global biases in how face features are later 
recalled (Bülthoff & Zhao, 2020; Won et al., 2020). Criti-
cally, however, any global biases would equally influence 
the diagnostic and non-diagnostic dimensions. Therefore, 
our analysis primarily focused on differences in modeled 
means for the diagnostic versus non-diagnostic dimensions.

Measuring precision  In order to measure the precision with 
which diagnostic and non-diagnostic features were remem-
bered for each face, we calculated the standard deviation 
of responses across the four reconstruction trials for each 
face, separately for the diagnostic and non-diagnostic feature 
dimensions. We then computed the mean of these standard 
deviation values for each participant, separately for the diag-
nostic and non-diagnostic dimensions.

Measuring the relationship between reconstruction bias and 
associative interference  In order to determine whether bias 
on the diagnostic feature dimension plays an adaptive role 
in reducing memory interference, we ran a series of mixed-
effects models that focused on the relationship between bias 

measured during the reconstruction task and accuracy on the 
associative memory test (averaged across the last four rounds 
in order to capture the end state of learning). Although this 
analysis was performed at the level of individual items 
(faces), the accuracy value for each face was defined as the 
average accuracy for that face and its pairmate. As such, both 
pairmates with each set had the same accuracy value. The 
rationale for averaging accuracy across pairmates was that 
if, for example, participants associate two competing faces 
(pairmates) with the same cue word (profession), rather 
than treating one of these associations as “correct” and the 
other as “incorrect,” it is more appropriate for the error to 
be shared across the two faces.

For the analyses relating reconstruction bias to associa-
tive memory accuracy, we excluded participants who had 
perfect accuracy, across all trials, on the final four rounds of 
the associative memory test. The rationale for this exclusion 
was that, for these participants, there was no variance in 
associative memory for the model to explain. Additionally, 
we did not run this analysis for Experiment 1 given the near-
ceiling performance on the associative memory test over the 
last four rounds (11 participants (31%) had 100% accuracy; 
and the remaining participants had a mean accuracy of 95.96 
± 3.01% with an average SD within a participant of 3.62 ± 
1.70). For Experiments 2 and 3 – which used more similar 
pairmates – associative memory accuracy was lower and, 
therefore, fewer participants were excluded due to ceiling 
performance (seven participants (19%) in Exp. 2 and six 
participants (12%) in Exp. 3; mean accuracy for the remain-
ing participants, Exp. 2: M = 92.47 ± 7.58%, Exp. 3: M = 
93.56 ± 6.26%).

For these models, it was critical to compute reconstruc-
tion bias at the level of individual faces. However, the 
method described above of estimating the average bias for 
each participant by pooling across trials/faces was not fea-
sible for this analysis given the small number of observa-
tions (four trials per face). Thus, for this analysis we simply 
used the mean of the reconstruction response (across the 
four trials per face). In order to address the concern that any 
observed relationship between reconstruction bias and asso-
ciative memory accuracy might be driven by potential “swap 
errors,” our preregistered approach was to exclude any indi-
vidual responses (trials) for which the scaled response was 
between -2 and 0 and to only retain responses for which the 
scaled response was between 0 and 2. For the diagnostic 
dimension, any responses that were closer to the compet-
ing pairmate than to the target were therefore excluded. All 
remaining responses were included in the mean response 
for each face. While rare, if a face was associated with an 
excluded response on all four reconstruction trials, that 
face was entirely excluded from analysis. For Experiment 
2, this occurred for a total of four faces distributed across 
four participants; for Experiment 3, this occurred for a total 
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of six faces distributed across six participants. While this 
preregistered approach for exclusion of potential swap errors 
was intended as a conservative approach for eliminating the 
influence of extreme errors, all of our main results remained 
significant when no responses were excluded. Additionally, 
in exploratory analyses that combined data across Experi-
ments 2 and 3, instead of excluding extreme responses alto-
gether, responses between -2 and 0 were capped at a value 
of 0, which allowed for all trials to be retained in the model, 
but reduced the influence of extreme responses.

Mixed-effects models were implemented in R using the 
lme4 package (Bates et al., 2014). Likelihood ratio tests 
were used to compare models with relevant variables to null 
models that excluded those variables. In order to account 
for potential differences related to whether the diagnostic 
dimension was affect versus gender, all models included 
this categorical variable as a fixed effect. In order to allow 
the relationship between reconstruction bias and associa-
tive memory accuracy to vary for each participant, we mod-
eled the relationship between bias and associative memory 
accuracy with random intercepts and random slopes for each 
participant, where possible. Our preregistered approach to 
dealing with models that failed to converge or that reached 
a singular fit was to rerun the same model with the random 
slope for bias removed (see Barr et al., 2013). While all of 
our preregistered models did converge, an exploratory model 
that used the difference in bias on the diagnostic versus non-
diagnostic dimension as a predictor failed to converge when 
a random slope was included; thus, we removed the random 
slope. Exploratory models that included only unsigned error 
or precision as predictors (without bias) failed to converge 
when random slopes were included for these variables; thus, 
we removed random slopes for these variables. Finally, 
exploratory models that included bias along with precision 
and unsigned error as predictors also failed to converge 
when random slopes were included for all variables; when 
removing random slopes, we prioritized retaining a random 
slope for bias, which led to the exclusion of random slopes 
for precision and unsigned error.

Results

Associative memory test

To test whether associative memory accuracy differed 
between the competitive and non-competitive conditions, we 
conducted repeated-measures ANOVAs for each experiment 
with factors of condition (competitive, non-competitive) and 
round (Exp. 1: the first nine rounds; Exp. 2 and Exp. 3: 12 
rounds). For each experiment, there was a significant main 
effect of condition (Exp. 1: F(1,35) = 26.14, p < 0.001, �2

G
 

= 0.034; Exp. 2: F(1,40) = 67.43, p < 0.001, �2
G

 = 0.10; 
Exp. 3: F(1,56) = 88.21, p < 0.001, �2

G
 = 0.16), with lower 

accuracy in the competitive condition (Fig. 2a). To confirm 
that this difference specifically reflected interference, we 
considered the types of errors made. For the competitive 
condition, errors could correspond to selecting the competi-
tor face or one of the four non-competitive lures (Fig. 2b). 
If errors were random, the competitor would be selected on 
one-fifth of the error trials. However, combining error trials 
across rounds, the competitor was selected at above-chance 
levels (Exp. 1: M = 60.18 ± 19.68%, t(35) = 12.25, p < 
0.001, d = 2.04; Exp. 2: M = 71.29 ± 15.78%, t(40) = 20.82, 
p < 0.001, d = 3.25; Exp. 3: M = 78.63 ± 11.58%, t(56) = 
38.21, p < 0.001, d = 5.06), confirming that increased errors 
in the competitive condition reflected interference from the 
competitor face.

Face reconstruction accuracy

To test whether face reconstruction accuracy was above 
chance, we measured the Euclidean distance between each 
response and the target face location (in the two-dimensional 
response space; Fig. 1c). For each participant, the mean 
Euclidean distance between responses and target locations 
was compared against a permuted distribution (calculated by 
shuffling responses within participant 10,000 times). Above-
chance accuracy (better than 97.5% of the permuted means) 
was observed for every participant (Fig. 3).

Face reconstruction bias

To test our critical prediction of repulsion along the diagnos-
tic face dimension, we compared feature bias (see Methods) 
for the diagnostic versus non-diagnostic dimensions in the 
competitive condition (Fig. 4a). We first tested predictions 
in Experiments 1 and 2, and then tested for replication in 
Experiment 3. A repeated-measures ANOVA with factors 
of dimension (diagnostic, non-diagnostic) and experiment 
(Exp. 1, Exp. 2) revealed significantly greater bias toward 
repulsion on the diagnostic dimension (F(1,70) = 22.25, p 
< 0.001, �2

G
 = 0.061). There was a trend toward a significant 

interaction between dimension and experiment (F(1,70) = 
3.96, p = 0.0506, �2

G
 = 0.011), with a relatively weaker effect 

size in Experiment 1 (d = 0.27) than in Experiment 2 (d = 
0.73). As predicted, Experiment 3 replicated, with a large 
effect size and preregistered hypothesis, the greater bias 
toward repulsion on the diagnostic dimension (t(48) = 5.87, 
p < 0.001, d = 0.83).

Although our preregistered analyses focused on the 
comparison between diagnostic and non-diagnostic dimen-
sions, we also tested whether reconstructions on the diag-
nostic dimension significantly differed from the veridical 
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location of target faces. Indeed, combining data across all 
three experiments, the modeled means for the diagnostic 
dimension were significantly greater than the true value of 
1 (t(120) = 4.39, p < 0.001, d = 0.40), reflecting a bias away 
from the competing face. This effect did not significantly 
differ across experiments (F(2,118) = 2.15, p = 0.12, �2

G
 = 

0.035). In contrast, on the non-diagnostic dimension there 
was a small but significant bias toward the center of face 
space (modeled means < 1; t(120) = -2.33, p = 0.021, d = 
0.21). This effect significantly differed across experiments 
(F(2,118) = 9.56, p < 0.001, �2

G
 = 0.14). In fact, in Experi-

ment 1 responses were significantly above 1 (t(34) = 2.15, 
p = 0.039, d = 0.36), and in Experiments 2 and 3 they were 
significantly below 1 (Exp. 2: t(36) = -2.45, p = 0.019, d = 
0.40; Exp. 3: t(48) = -3.98, p < 0.001, d = 0.57). While the 
absolute values of reconstructed responses should be inter-
preted with some caution (due to potential global biases), the 
consistent bias toward repulsion on the diagnostic dimension 
supports our prediction that competition triggers targeted 
repulsion on the diagnostic dimension.

Face reconstruction precision

We next tested whether reconstruction precision dif-
fered across diagnostic versus non-diagnostic dimensions 
(Fig. 4b). We defined precision as the standard deviation 
across repeated reconstructions of the same face (see Meth-
ods). For the competitive condition, a repeated-measures 
ANOVA with factors of dimension (diagnostic, non-diagnos-
tic) and experiment (Exp. 1, Exp. 2) revealed significantly 
greater precision – i.e., lower reconstruction variability – on 
the diagnostic dimension (F(1,70) = 16.81, p < 0.001, �2

G
 = 

0.044). This effect did not interact with experiment (F(1,70) 
= 0.34, p = 0.56, �2

G
 = 0.001). The effect of greater precision 

on the diagnostic dimension was replicated (consistent with 
our preregistered prediction) in Experiment 3 (t(48) = 5.45, 
p < 0.001, d = 0.74).

Although our measure of precision was mathematically 
independent from our measure of bias, it is notable that these 
measures were correlated such that faces reconstructed with 
greater precision also tended to be associated with greater 

Fig. 2   Associative memory test accuracy across learning rounds. a 
Percent correct responses on the associative memory test during each 
round of the learning phase, separated by the non-competitive (blue) 
and competitive (orange) conditions and by experiment number. Per-
formance was significantly higher for the non-competitive compared 
to the competitive condition in each of the three experiments. For 
accuracy in the competitive condition separated according to whether 

the diagnostic dimension was affect versus gender, see Fig.  S1A 
(Online Supplemental Material). b Error rates for the competitive 
condition on the associative memory test during each round of the 
learning phase. Data are separated by error type (competitor: red; lure 
average: grey) and experiment number. Competitors (the cues associ-
ated with the pairmate faces) were selected at a rate that exceeded the 
average rate of selecting one of four lures. Error bars represent SEM
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Fig. 3   Face reconstruction accuracy. a The mean Euclidean distance 
between the reconstructed location and the target location was sig-
nificantly lower than chance for every participant as determined by 
comparing responses to a distribution of shuffled responses (10,000 
shuffles per participant). The plot is arranged from participants with 
the lowest to highest mean Euclidean distance (left to right), with 
each participant represented by an individual dot (Exp. 1: blue; Exp. 

2: orange; Exp. 3: pink). The distribution of shuffled responses for 
each participant is represented by a boxplot. b Histogram of z scores 
reflecting each participant’s mean Euclidean distance relative to 
the distribution of shuffled data (M = -6.87 ± 1.68, range = [-9.97, 
-2.59]). Lower z scores reflect better performance (lower Euclidean 
distance)

Fig. 4   Feature memory from the reconstruction task along the diag-
nostic and non-diagnostic dimensions. a There was greater bias 
towards repulsion (higher modeled mean response) on the diagnos-
tic (orange) compared to the non-diagnostic (blue) dimension. b 
There was greater precision (lower standard deviation of responses 
across the four reconstruction trials for each face) on the diagnostic 

compared to the non-diagnostic dimension. For analyses separated 
according to whether the diagnostic dimension was affect versus gen-
der, see Fig. S1B and C (Online Supplemental Material, OSM). For 
analyses comparing the diagnostic and non-diagnostic dimensions 
with the non-competitive condition, see Fig.  S3 (OSM). Error bars 
represent SEM
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bias (see Fig. S2A, OSM). Importantly, however, the effect 
of greater precision on the diagnostic versus non-diagnostic 
dimension remained significant even when high-bias items 
were excluded from analysis (see Fig. S2B, OSM).

Relationship between reconstruction bias 
and associative interference

Finally, we tested our prediction that greater reconstruc-
tion bias (repulsion) on the diagnostic dimension is associ-
ated with better associative memory test performance (less 
interference). Due to near-ceiling associative memory per-
formance in Experiment 1 (Fig. 2), we focused on Experi-
ment 2 data. We ran a mixed-effects model that predicted 
item-level associative memory accuracy with fixed effects 
of (a) bias on the diagnostic dimension (continuous variable) 
and (b) whether the diagnostic dimension was affect or gen-
der (categorical variable). Bias was modelled with random 
intercepts and slopes for each participant. Using a likeli-
hood ratio test, we compared this model to a model without 
bias. Critically, model fit was significantly better when bias 
was included (χ2(1) = 4.67, p = 0.031), with bias positively 
predicting associative memory accuracy (βbias = 3.58, SE = 
1.62). As a control, we repeated the same analysis, but with 
bias on the non-diagnostic dimension; here, bias failed to 
improve model fit (χ2(1) = 0.021, p = 0.89, βbias = -0.31, 
SE = 2.14). For Experiment 3, we predicted (using a pre-
registered analysis) a replication of the relationship between 
diagnostic dimension bias and associative memory accuracy. 
We observed a small effect in the predicted direction, but it 
was not significant (χ2(1) = 0.24, p = 0.63, βbias = 0.69, SE 
= 1.41).

In our preregistered analysis, we excluded reconstruction 
responses (trials) that were more similar to the competitor 
than to the target. The rationale for this was to ensure that 
extreme responses (potential swap errors) did not have an 
outsized influence on the model (see Methods). However, 
this approach fully eliminated these trials rather than mini-
mizing their influence. Therefore, as an exploratory analysis, 
we replaced these extreme reconstruction scores with a value 
of 0 (equal distance between the target and competitor, see 
Methods). This allowed all trials to be included, but reduced 
the influence of extreme responses (see Fig. S4 (OSM) for 
further analysis of what these extreme responses may rep-
resent). For this exploratory analysis, we combined data 
from Experiments 2 and 3, with experiment (Exp. 2, Exp. 
3) added as a fixed effect. Compared to a null model, add-
ing bias on the diagnostic dimension significantly improved 
model fit (χ2(1) = 15.88, p < 0.001), with positive bias 
(repulsion) predicting higher associative memory accuracy 
(βbias = 4.45, SE = 1.04). Adding an interaction between 
experiment and bias, did not improve model fit (χ2(1) = 
1.39, p = 0.24, βexp × bias = -2.47, SE = 2.08), indicating that 

the relationship between bias and associative memory did 
not differ across experiments. Moreover, bias significantly 
improved model fit when applied to Experiment 3 data alone 
(χ2(1) = 3.98, p = 0.046, βbias = 2.45, SE = 1.19), confirm-
ing that the relationship between bias and associative mem-
ory was not driven only by Experiment 2 data. As a control, 
we ran the same model comparison but with bias on the non-
diagnostic dimension as a predictor; there was no significant 
difference between models (χ2(1) = 0.14, p = 0.71, βbias = 
-0.40, SE = 1.08). Further, the degree of bias on the diagnos-
tic dimension relative to the non-diagnostic dimension (i.e., 
the bias difference score) also significantly improved model 
fit compared to a null model without bias,χ2(1) = 19.87, p 
< 0.001, βbias. diff = 2.71, SE = 0.60 (random slopes were 
excluded due to reaching singularity).

In an additional set of exploratory analyses that again 
combined data from Experiments 2 and 3 we tested whether 
reconstruction bias on the diagnostic dimension predicted 
associative memory accuracy beyond what was predicted 
by unsigned error (absolute distance from the target on 
the diagnostic dimension) and precision (on the diagnostic 
dimension). Note: The following analyses did not include 
random slopes for unsigned error or precision (see Meth-
ods for rationale). Using hierarchical linear regressions 
with fixed effects of experiment (Exp. 2, Exp. 3) and fea-
ture dimension (whether the diagnostic dimension was 
affect or gender), model fit was significantly improved, 
compared to a null model, when unsigned error or preci-
sion were added (unsigned error: χ2(1) = 16.42, p < 0.001, 
βunsigned. error = -5.72, SE = 1.40; precision: χ2(1) = 30.27, p 
< 0.001, βprecision = -5.91, SE = 1.06). In other words, lower 
unsigned error and greater precision were associated with 
better associative memory. Critically, however, model fit 
significantly improved when bias was added to a model that 
already included unsigned error and precision (χ2(1) = 4.39, 
p = 0.036, βbias = 2.38, SE = 1.11). Thus, bias predicted 
associative memory accuracy beyond what was explained 
by precision and unsigned error. Notably, model fit also sig-
nificantly improved when precision was added to a model 
that already included unsigned error and bias (χ2(1) = 26.51, 
p < 0.001, βprec = -5.64, SE = 1.08). Taken together, these 
exploratory analyses indicate that bias (repulsion) and preci-
sion – despite being correlated measures (Fig. S2A, OSM) 
– were independently predictive of associative memory per-
formance (Fig. 5).

Discussion

Across three experiments we found that similarity between 
long-term memories induced adaptive and feature-specific 
changes to the contents of those memories. We measured 
these changes using a two-dimensional face space (affect, 
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gender), allowing us to separately measure memory along a 
dimension that was diagnostic of differences between simi-
lar faces and a dimension that was non-diagnostic of dif-
ferences. We found that memory along diagnostic feature 
dimensions exhibited two key properties: (1) a systematic 
bias (repulsion) that exaggerated the difference between sim-
ilar memories, and (2) greater precision (lower variability). 
Finally, we found that repulsion and precision were inde-
pendently predictive of interference-related memory errors.

Although our paradigm was modeled after classic 
memory interference studies (Anderson, 2003; Anderson 
et al., 1994; Anderson et al., 2000), the repulsion effect 
we observed is distinct from classic interference effects. If 
anything, interference predicts an attraction in remembered 
features. However, an important feature of our design is that 
face memory was only tested after extensive study and prac-
tice (Chanales et al., 2021; Zhao et al., 2021). Indeed, we 
found that greater repulsion in feature memory was asso-
ciated with lower interference in the associative memory 
test. While it is important to note that this relationship 
failed to replicate using our preregistered analysis method 
in Experiment 3, we view the updated method as a better 
approach for handling extreme responses, and the relation-
ship we observed generalized across experiments and was 
independently significant in Experiment 3. The relationship 
between repulsion and associative memory accuracy is nota-
ble when considering that repulsion fundamentally reflects 

a form of memory error. However, the error we observed 
was not randomly distributed; instead, it was systematically 
biased away from competing memories, thereby increasing 
the representational distance between memories. These find-
ings complement evidence of conceptually similar biases 
in working memory (Bae & Luck, 2017; Chen et al., 2019; 
Chunharas et al., 2018; Chunharas et al., 2019; Golomb, 
2015) and visual attention (Won et al., 2020; Yu & Geng, 
2019). The ubiquity of these biases across domains sug-
gests that repulsion is a fundamental, adaptive mechanism 
for resolving interference.

A central and novel focus of the present study was to 
compare repulsion along diagnostic versus non-diagnostic 
feature dimensions. The fact that repulsion was stronger 
for the diagnostic dimension provides important evidence 
that memories were not globally exaggerated (relative to 
the center of face space) in response to competition. Criti-
cally, in studies where only one featured dimension is probed 
(Chanales et al., 2021; Zhao et al., 2021), this interpreta-
tion cannot be ruled out. It is also noteworthy that because 
the mapping between affect and gender and the diagnostic 
and non-diagnostic dimensions was counterbalanced within 
participants, our results cannot be explained in terms of a 
bias along one feature dimension that generalized across 
all faces, as might occur in category learning (Goldstone, 
1998; Goldstone & Steyvers, 2001). Finally, the relationship 
between repulsion and memory interference was selective 

Fig. 5   Relationship between reconstruction bias on the diagnostic 
dimension and associative memory accuracy. For the purpose of visu-
alization, a mixed-effects model was run with mean associative mem-
ory accuracy (from the final four rounds of the learning phase) as 
the dependent variable and with experiment number, unsigned error, 
and bias included as predictors (gender/affect and precision were 
excluded). Stronger bias towards repulsion (reconstruction bias values 

> 1 reflect repulsion) was associated with higher associative memory 
accuracy (i.e., lower interference). Each dot represents a specific face 
image, with each participant plotted with a unique color. Each line 
represents the modelled, participant-specific relationship between 
reconstruction bias and associative memory accuracy. Note: Bends in 
the lines reflect effects of absolute error
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to the diagnostic feature dimension, confirming that global 
biases were not adaptive. Thus, competition triggered tar-
geted and adaptive distortions that preferentially occurred 
along the dimension that was essential for discrimination. 
These findings provide novel support for computational 
models of memory interference that propose targeted, fea-
ture-specific changes in memory representations (Hulbert & 
Norman, 2015; Norman et al., 2006; Norman et al., 2007).

As with the repulsion effects, the precision effects we 
observed are in sharp contrast to typical interference effects. 
Specifically, whereas prior studies have shown that inter-
ference reduces precision in feature memory (Berens et al., 
2020; Pertzov et al., 2017; Sun et al., 2017), our findings 
reveal that memory interference was associated with a rela-
tive gain in memory precision when comparing the diag-
nostic versus non-diagnostic dimensions. Importantly, how-
ever, we defined precision as the standard deviation across 
repeated tests of the same memory. This measure of preci-
sion was orthogonal to repulsion (or accuracy) as it reflected 
the consistency with which faces were remembered, regard-
less of the distance between remembered and actual val-
ues (absolute error). Put another way, if each face feature 
is represented by a distribution of potentially remembered 
values, repulsion would reflect a shift in this distribution 
whereas precision would reflect reduced variance in this 
distribution (Yu & Geng, 2019). This is a key point because 
prior measures of memory precision have often assumed a 
distribution centered around the actual (veridical) memory 
value (e.g., Brady et al., 2013; Cooper & Ritchey, 2019; 
Harlow & Donaldson, 2013; Harlow & Yonelinas, 2016; 
Nilakantan et al., 2017; Nilakantan et al., 2018; Rhodes 
et al., 2020; Richter et al., 2016). While this is a reasonable 
assumption in many contexts, the current findings provide 
clear evidence, in the context of memory interference, that 
this assumption is violated.

An interesting avenue for future research will be to char-
acterize the relationship between repulsion and precision. 
Here, these measures were mathematically distinct and 
were independently predictive of associative memory inter-
ference. Yet, repulsion and precision both have the conse-
quence of increasing representational distance between 
competing memories, and may therefore serve a common 
purpose. In fact, there was a robust correlation between these 
measures, with greater repulsion predicting greater preci-
sion (Fig. S2A, OSM). Thus, it is possible that repulsion 
and precision are distinct facets of a common underlying 
mechanism.

In summary, we demonstrate that episodic memories 
are modified and distorted in targeted and adaptive ways 
in response to interference. Whereas it is intuitive to con-
ceptualize interference resolution as a reduction in memory 

errors, our findings support a distinct view in which sys-
tematic memory errors enhance discriminability between 
similar memories.
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