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Abstract. Notch 1, Notch 2, and Notch 3 are three 
highly conserved mammalian homologues of the 
Drosophila Notch gene, which encodes a transmem- 
brane protein important for various cell fate decisions 
during development. Little is yet known about regula- 
tion of mammalian Notch gene expression, and this is- 
sue has been addressed in the developing rodent tooth 
during normal morphogenesis and after experimental 
manipulation. Notch 1, 2, and 3 genes show distinct cell- 
type specific expression patterns. Most notably, Notch 
expression is absent in epithelial cells in close contact 
with mesenchyme, which may be important for acquisi- 
tion of the ameloblast fate. This reveals a previously 
unknown prepatterning of dental epithelium at early 
stages, and suggests that mesenchyme negatively regu- 
lates Notch expression in epithelium. This hypothesis 

has been tested in homo- and heterotypic explant ex- 
periments in vitro. The data show that Notch expres- 
sion is downregulated in dental epithelial cells juxta- 
posed to mesenchyme, indicating that dental 
epithelium needs a mesenchyme-derived signal in order 
to maintain the downregulation of Notch. Finally, 
Notch expression in dental mesenchyme is upregulated 
in a region surrounding beads soaked in retinoic acid 
(50-100 ~g/ml) but not in fibroblast growth factor-2 
(100-250 ~g/ml). The response to retinoic acid was seen 
in explants of l l-12-d old mouse embryos but not in 
older embryos. These data suggest that Notch genes 
may be involved in mediating some of the biological ef- 
fects of retinoic acid during normal development and 
after teratogenic exposure. 

T 
HE development of most organs in vertebrates de- 
pends on a complex set of inductive interactions be- 
tween epithelium and mesenchyme. These sequen- 

tial and reciprocal interactions lead to the determination 
of cell fate and the organization of cells into tissues and or- 
gans. In the developing tooth, changes in gene expression 
patterns of several growth factors, transcription factors, 
cell surface molecules, and structural molecules of the ex- 
tracellular matrix have been implicated during the pro- 
gressive determination of epithelial and mesenchymal cells 
(Vainio et al., 1989, 1993; Mitsiadis et al., 1992, 1995a, b; 
Mitsiadis and Luukko, 1995; Thesleff et al., 1992, 1995). 

The Drosophila Notch gene encodes a large transmem- 
brane receptor controlling cell fate decisions from clusters 
of cells with equivalent developmental potential in many 
tissues, such as the nervous system and muscle (Artavanis- 
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Tsakonas et al., 1991; Corbin et al., 1991; Fortini and Arta- 
vanis-Tsakonas, 1993). On the extracellular side Notch 
contains 36 epidermal growth factor (EGF)-like repeats 
and three Notch/lin-12 repeats, while the intracellular do- 
main contains six copies of the ankyrin repeat, a motif 
important for cell signaling (Artavanis-Tsakonas and Simp- 
son, 1991; Rebay et al., 1993; Struhl et al., 1993; Green- 
wald, 1994). Loss of the Notch gene results in overcommit- 
ment of ectodermal cells to the neural fate at the expense 
of epidermal cell formation in the fly larva. Analysis of a 
variety of mutant Notch alleles has shown that Notch is 
also involved in differentiation of many other tissues such 
as the somatic follicle cells, the eye and wing (de Cellis et 
al., 1991; Fortini et al., 1993; Rebay et al., 1993; Cummings 
and Cronmiller, 1994). Delta and Serrate are ligands for 
Notch, and bind directly to specific EGF repeats of the 
Notch receptor (Fehon et al., 1990; Rebay et al., 1991). 

Recently three highly conserved vertebrate homologues 
of the Drosophila Notch gene have been characterized: 
Notch 1, 2, and 3 (for reviews and references see Green- 
wald, 1994; Lardelli et al., 1995). Mutations in Notch genes 
result in dramatic developmental effects in vertebrates. 
Truncation of the human Notch 1 gene by chromosomal 
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translocation is associated with leukemia (Ellisen et al., 
1991) and similar truncations of the Notch-related gene 
int-3 produces breast tumors in mice (Jhappan et al., 1992; 
Robbins et al., 1992). Inactivation of the mouse Notch 1 
gene by gene targeting results in a lethal phenotype at 
embryonic day-ll.5 (Ell.5) (Swiatek et al., 1994) and in- 
activation of the Notch 2 gene leads to perinatal death, 
probably due to kidney failure (Gridley, T., personal com- 
munication). Furthermore, injection of RNA encoding a 
truncated Notch 1 gene in Xenopus produces excessive 
neural tube development (Coffman et al., 1993). 

Relatively little is yet known about regulation of Notch 
gene expression. The developing rodent tooth is a useful 
model for examination of the molecular mechanisms in- 
volved in gradual cell fate determination and the differen- 
tiation of various cell lineages (Thesleff et al., 1992, 1995), 
and has many advantages to study experimentally the in- 
fluence of tissue interactions and growth factors on gene 
regulation (Vainio et al., 1993; Mitsiadis et al., 1995a). 
Tooth development results from sequential and reciprocal 
interactions between cranial neural crest-derived mesen- 
chyme and the oral ectoderm (Thesleff and Hurmerinta, 
1981; Lumsden, 1988). The first morphological signs of 
tooth development are local thickenings in the stomodeal 
epithelium of the E l l  mouse embryo. The presumptive 
dental epithelium then invades the underlying jaw mesen- 
chyme forming a bud by El3, around which the mesenchy- 
mal cells condense. Cells of the dental papilla mesen- 
chyme lying directly under the epithelium differentiate 
into odontoblasts that secrete the organic matrix of dentin. 
Epithelial cells in close contact with the dental mesen- 
chyme differentiate into ameloblasts which produce the 
enamel matrix. Inductive interactions can be studied in 
dissected pieces of dental epithelium and mesenchyme 
cultured as recombinants. This system also allows for 
studying gene regulation with beads releasing growth fac- 
tors and signaling molecules. The effects of retinoic acid 
(RA) 1, bone morphogenetic proteins (BMPs), fibroblast 
growth factors (FGFs), and midkine (MK) on cell prolifer- 
ation and the expression of a number of genes have been 
analyzed in this way (Vainio et al., 1993; Jernvall et al., 
1994; Mitsiadis et al., 1995a). 

In this report we examine the expression of the Notch 1, 
2, and 3 genes in the developing tooth during normal de- 
velopment and in recombination explants of epithelium 
and mesenchyme. We also test the effects of cell-signaling 
molecules on the expression of Notch in dental tissue ex- 
plants. The data presented show that the three Notch 
genes exhibit distinct expression patterns in developing 
teeth and that they are regulated by epithelial-mesenchy- 
mal interactions and RA. 

Materials and Methods 

Animals and Tissue Preparation 

FI(CBA x C57BL or CBA x NMRI) mice were used at embryonic and 
postnatal stages. The age of the mouse embryos was determined according 

1. Abbreviations used in this paper:. BMP, bone morphogenetic protein; 
MK, midkine; RA, retinoic acid. 

to the vaginal plug (day 0) and confirmed by morphological criteria. Ani- 
mals were sacrificed by cervical dislocation and the embryos were surgi- 
cally removed. The heads from the embryonic day-11 (El l )  mouse em- 
bryos to the postnatal day-8 (PN8) pups were dissected in Dulbecco's 
phosphate-buffered saline, pH 7.4. Jaws and mandibular molar tooth 
germs were removed, fixed overnight at 4°C with paraformaldehyde 
(PFA) in PBS. After dehydration the tissues were embedded in paraffin 
wax, and serially sectioned at 5 Ixm on silanized slides, dried overnight, 
and stored in tight boxes at 4°C. 

Probes and Antibodies 

Probes for the three Notch genes were, in each case, derived from a region 
encoding the last six EGF-repeats and the Notch/lin-12 repeats of the 
three Notch genes, as previously described (Lardelli et al., 1994; Larsson 
et al., 1994). After linearization of the plasmid vectors, single-stranded 
sense Notch 1 (pT3), Notch 2 and 3 (pT7), and antisense Notch 1 (pT7), 
Notch 2 and 3 (pT3) cRNA probes were prepared by standard proce- 
dures, as previously described (Mitsiadis et al., 1995b). 

Polyclonal antisera to the Notch I and 2 proteins were generated in the 
following way. DNA fragments corresponding to amino acids 1274-1465 
from the Notch 1 and 1280-1474 from the Notch 2 gene were PCR ampli- 
fied, sequenced, and cloned into the bacterial expression vector pEZZ18 
to produce a fusion protein with the Z region of Staphylococcus aureus' 
protein A. The fusion protein was harvested and purified from E. coli on 
an IgG column and used to immunize rabbits (L6wenadler et al., 1987). 
Booster immunizations were given at 3 and 6 wk, and the antisera har- 
vested at 24 wk, after the initial immunization. 

In Situ Hybridization and Immunohistochemistry on 
Tissue Sections 

In situ hybridization on paraffin sections using [35S]O4-UTP-labeled (Am- 
ersham Corp., Arlington Heights, IL) single-stranded RNA probes was 
performed as described previously (Mitsiadis et al., 1995a, b). For immu- 
nohistochemistry, the deparaffinized sections were preincubated with 
0.3% H202 in absolute methanol (Mitsiadis et al., 1995a, b), followed by an 
overnight incubation at 4°C with Notch 1 or Notch 2 antiserum (dilutions 1: 
800 and 1:1,000, respectively) in 2% normal goat serum (NGS)/0.2% BSA 
in PBS, pH 7.4. Control sections were incubated either with normal rabbit 
serum (NRS) or with 2% BSA in PBS. After several washes the sections 
were incubated with biotinylated secondary goat anti-rabbit antibody (di- 
lution 1:250 in PBS), washed again and incubated with avidin-biotin-per- 
oxidase complex (Vector Vectastain Elite ABC kit; Vector Laboratories 
Inc., Burlingame, CA). Peroxidase enzyme activity was visualized by incu- 
bation with 3-amino-9-ethylcarbazole (AEC). Controls for Notch 1 and 2 
antiserum specificity were performed by adsorbing the antisera for 16 h at 
4°C with 1.14 mg/ml and 0.42 mg/ml of the fusion proteins, which had been 
preincubated in a solution of 3% human IgG and 0.25 % gelatin in PBS for 
1 h at 37°C. The slides were then washed and developed as described 
above. 
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Figure 1. Schemat ic  represen ta t ion  of  the  successive stages of  
odontogenes i s  of  the mouse  molar.  Abbrevia t ions:  e, p resump-  
tive denta l  epi thel ium; m, mesenchyme;  de, dental  epi thel ium; 
cm,  condensed  mesenchyme;  eo, enamel  organ; iee, inner  enamel  
epi thel ium; p ,  denta l  papil la  mesenchyme;  sr, stellate reticulum; 
si, s t ra tum in te rmedium;  oe, oral  epi thel ium; f, denta l  follicle. 
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Figure 2. Localization of Notch 1, 2, and 3 mRNAs by in situ hybridization in embryonic mouse molar tooth germs (Ell-El7).  (xl) 
bright-field micrographs; (x2, x3, and x4) dark-field micrographs. (a) At Ell-E12, Notch transcripts are intensely expressed in the thick- 
ened dental epithelium (de, arrow), but are absent from cells of the basal layer (asterisk). (b) All three Notch genes are expressed in ep- 
ithelium of the bud staged tooth (E13). Transcripts are absent from cells of its basal layer (asterisk) and condensed mesenchyme (cm). 
(c) During the cap stage (E14-E15), Notch 1 and 2 mRNAs are expressed in cells of the enamel organ (eo), except in cells of the basal 

Mitsiadis et al. Expression and Regulation of Notch Genes in Developing Tooth 409 



Figure 3. Localization of Notch 1, 2, and 3 m R N A s  by in situ hybridization in embryonic and postnatal  mouse molar  teeth (E19-PN6). 
(xl)  Bright-field micrographs; (x2, x3, and x4) dark-field micrographs. (a) A t  El9 ,  transcripts for all Notch genes are detected in the 
enamel organ, but  they are absent from preameloblasts (pa). Notch I and 3 m R N A  are mainly expressed in stratum intermedium (si), 
whereas Notch 2 m R N A  is also found in stellate reticulum (sr) and outer  enamel epithelium (oee). A weak hybridization signal is ob- 
served in dental papilla mesenchyme (p), but  is absent from polarizing odontoblasts  (0)" Notch 3 transcripts are also found in dental fol- 
licular mesenchyme (dr). (b) At  PN6, the expression pat tern  of Notch genes persisted in the enamel organ. No hybridization signal is 
seen in functional ameloblasts (a). In dental papilla, transcripts for all three Notch genes are absent from functional odontoblasts (o), 
but the genes are strongly expressed in dental papilla mesenchyme of the cusp area. Notch 3 transcripts are also found in dental follicu- 
lar mesenchyme (b4, arrow). Abbreviat ion:  oe, oral epithelium. Bars, 200 txm. 

Whole-mount In Situ Hybridization and 
Immunohistochemistry on Explants 
For whole-mount in situ hybridization and immunohistochemistry the ex- 
plants were fixed for 5 rain in 100% methanol at -20°C, rehydrated with 
75%, 50%, and 25% methanol in PBS, pH 7.4, washed with PBS and fixed 
overnight at 4°C with fresh 4% PFA. Whole-mount in situ hybridization 
was performed as previously described (Vainio et al., 1993; Mitsiadis et 
al., 1995a). The Notch riboprobes were labeled either with biotinylated 
UTP or digoxigenin (Boehringer Mannheim Corp., Indianapolis, IN). The 
probes were then diluted to 0.5 mg/ml in the hybridization mixture. 
Whole-mount immunohistoehemistry was performed as described earlier 
(Mitsiadis et al., 1995a, b). The explants were incubated with the primary 
Notch 1 or Notch 2 antisera diluted 1:800 in PBS. Explants were then 
placed in 50% glycerol in PBS and observed under a stereomicroscope. 

1~ssue Recombination Experiments 
The region of the molar tooth germ was carefully dissected from the rest of 
the lower jaw of Ell-E16 mouse embryos. The distal parts of the develop- 
ing hindlimb of E l l  embryos were also dissected in Dulbecco's PBS. After 
dissection, tooth germs, oral and limb tissues were incubated 3 rnin in 2.25 % 
trypsin and 0.75% pancreatin on ice, and then the epithelium was separated 
from the mesenchyme in DMEM supplemented with 10% FCS (GIBCO 
BRL, Galthersburg, MD) under a stereomicroscope. Isolated dental and 

oral epithelia were recombined with isolated dental mesenchyme of differ- 
ent embryonic ages on a polycarbonate membrane (pore size 0.1 mm; Nu- 
clepore Corp., Pleasanton, CA) supported by a metal grid (Trowel/type). 
Similarly, limb mesenchyrne was recombined to limb and dental epithelia of 
the same embryonic age (Ell). The recombinants were cultured for 1-3 d in 
DMEM with 10% FCS in a humidified atmosphere of 5% CO2 in air at 
37°C. After culture the explants were fixed overnight in 4% PFA, dehy- 
drated in ethanol and embedded in paraffin wax. Serial sections (5 ixm) 
were mounted on silanized slides, dried, and stored at 4°C. Some explants 
were used for analysis by whole mount immunohistochemistry. 

Treatment and Implantation of Beads 
Affi-gel blue agarose beads (100-200 mesh/75-150 Ixm diameter; BioRad 
Labs., Hercules, CA) and anion exchange resin beads (AG 1-x2, 100-200 
mesh/106-205 Ixm diameter; BioRad Labs.) were used as carriers of FGF-2 
and RA, respectively, as previously described (Vainio et al., 1993; Mitsia- 
dis et al., 1995a). Recombinant FGF-2 protein (Boehringer Mannheim 
Corp. ) was diluted with PBS, pH 7.4, to concentrations 100-250 i~g/ml 
and incubated with beads (50 beads/5 I~1 per tube) for 40 min at room tem- 
perature. RA was diluted with dimethylsulfoxide (DMSO; Merck) to con- 
centrations 1-100 Ixg/ml and incubated with beads (50 beads/500 ixl per 
tube) for 30 min at room temperature. Beads were washed for 15 min in 
culture medium and then placed on top of the explants. Control beads for 
FGF-2 were treated identically with 0.1% BSA in PBS, whereas DMSO 

layer. The strongest signal for Notch I is observed in cells overlying the basal layer. Notch I transcripts are also detected in dental papilla 
mesenchyme (p). Notch 3 transcripts are detected only in vascular structures (arrow), (d) A t  E l 6  (early bell stage), all three Notch genes 
are expressed in the enamel organ, but the signal is absent  from the basal layer of cells. The Notch I signal is stronger in epithelial cells 
of the cervical loop area (arrows), whereas the Notch 3 signal in cells overlying the basal layer. Notch 2 and 3 transcripts are also ob- 
served in dental papilla. (e) At  El7,  Notch I and 3 mRNAs  are found in stratum intermedium (si), whereas Notch 2 transcripts are de- 
tected in stratum intermedium, stellate reticulum (sr), and outer  enamel epithelium (oee). A hybridization signal for the Notch 2 and 3 
genes is also detected in dental papilla. Abbreviations:  iee, inner  enamel epithelium; m, mandibular  mesenchyme. Bars, 100 ~m. 
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Figure 4. Immunolocalization 
of Notch 1 and 2 proteins in 
the developing first molar of 
the mouse. (a, d, and f) Notch 
1 immunodetection; (b, e, 
and g) Notch 2 immunode- 
tection. (a and b) During the 
bud stage (El3), Notch 1 and 
2 proteins are localized in 
oral (oe) and dental (de) epi- 
thelium. The proteins are ab- 
sent from dental epithelial 
cells of the basal layer and 
condensed dental mesen- 
chyme (cm). The surround- 
ing nondental mesenchyme is 
stained only for Notch 2. (c) 
A control for Notch 2 antise- 
rum specificity. The antise- 
rum was adsorbed with fusion 
protein before immunohis- 
tochemistry to a section of a 
bud staged tooth. (d and e) 
At cap stage (E14-E15), the 
expression patterns of Notch 
1 and 2 persisted in dental 

epithelium, whereas staining for Notch is not found in dental papilla mesenchyme (p). Both proteins are detected in cells of the alveolar 
bone (b). (fand g) High magnification of the cusp region of a molar tooth germ at PN8. Notch 1 and 2 immunoreactivities are observed 
in cells forming the alveolar bone and in oral epithelium. Strong Notch 2 immunoreactivity is observed in stellate reticulum (sr) and stra- 
tum intermedium (si), whereas Notch i staining in these layers is very faint. The staining observed in enamel (e) represents nonspecific 
binding of antibodies. Abbreviations: a, ameloblasts; o, odontoblasts; d, dentin. Bars, 100 Ixm. 

Figure 6. Immunolocalization of Notch 2 in explants of recombined E16 dental epithelium and E12 mandibular mesenchyme from the 
tooth region after 24 h of culture. (a) Notch 2 immunoreactivity is found in epithelial cells, except in cells contacting the mesenchyme 
(ecru). The reactivity is absent from rnesenchymal cells. (b) Higher magnification of Fig. 6 a. Note that the immunoreactivity is localized 
on the surface of epithelial cells. Abbreviations: e, epithelium; m, mesenchyme. Bars, 50 ixm. 

beads were used as control for RA. After 24 h of culture, the explants 
were analyzed by whole mount in situ hybridization or immunohistochem- 
istry, as described above. 

Results 

The Expression Patterns of Notch Genes in the 
Developing Tooth Are Distinct and Correlate with Cell 
Fate Determination 

The expression patterns of the Notch 1, 2, and 3 genes in 

the developing mouse tooth were analyzed by in situ hy- 
bridization. The various stages of tooth development are 
schematically illustrated in Fig. 1. By E l l ,  expression of 
the Notch genes was observed in the superficial layer of 
the thickened dental epithelium (Fig. 2 a). Transcripts 
were absent f rom cells of  the basal layer which interact 
with mesenchyme at this and during subsequent develop- 
mental  stages. No hybridization signal was detected with 
sense probes at this or later developmental  stages (data 
not shown). 
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At E13 (bud stage), all three Notch genes were ex- 
pressed in the superficial cell layers of dental epithelium, 
whereas the transcripts were absent from the condensed 
mesenchyme (Fig. 2 b). During the cap stage (E14-E15), 
Notch I and 2 genes were expressed in dental epithelium, 
with the exception of its basal part, which will later differ- 
entiate into ameloblasts (Fig. 2 c). Only Notch I transcripts 
were found in the dental mesenchyme (dental papilla) 
(Fig. 2 c2). Neither dental epithelium nor mesenchyme ex- 
pressed the Notch 3 gene (Fig. 2 c4). 

By El6  the epithelium (enamel organ) acquires the bell 
configuration. During this stage (E16-E19) the expression 
patterns of the Notch genes became progressively re- 
stricted to specific subpopulations of cells of the enamel 
organ. The highest expression of Notch I was seen in cells 
located in the cervical loop area and in stratum interme- 
dium (Figs. 2, d2 and e2, and 3 a2), while Notch 2 tran- 
scripts were most abundant in stellate reticulum (Figs. 2, 
d3 and e3, and 3 a3). Notch 3 transcripts were detected 
only in cells of the stratum intermedium (Figs. 2, d4 and 
e4, and 3 a4). Transcripts of all three genes were absent in 
preameloblasts. The Notch 2 and 3 genes were expressed 
in the dental papilla mesenchyme (Figs. 2, d4, e3, and e4, 
and 3 a3), whereas the expression of Notch 1 was corre- 
lated with endothelial cells (Figs. 2, d2 and e2, and 3 a2). 

During the terminal differentiation of mesenchymal 
cells into odontoblasts and of preameloblasts into amelo- 
blasts (PN1-PN6), the expression patterns of the Notch 
genes in dental epithelium remained similar as during 
E17-E19 (Fig. 3 b). In dental papilla mesenchyme, all 
three Notch genes were transiently expressed in cells un- 
derlying differentiating odontoblasts (Fig. 3 b). We did not 
observe expression of any of the Notch genes in differenti- 
ated odontoblasts and ameloblasts. 

Figure 5. Localization of Notch 1 and 2 transcripts by in situ hy- 
bridization in explants of recombined dental epithelium and mes- 
enchyme after 24 h of culture. (xl) Bright-field micrographs; (x2, 
x3) dark-field micrographs. (a, b), Notch 1 mRNA expression; (c 
and d) Notch 2 mRNA expression. (a3, c3) Explants hybridized 
with sense Notch I and 2 riboprobes. (a and c) Recombined E12 
dental epithelium and El6 dental mesenchyme; (b and d) recom- 
bined El6 dental epithelium and El2 dental mesenchyme. (a) 
Notch I transcripts are detected in both epithelial and mesenchy- 
mal cells, but are absent in epithelial cells contacting the mesen- 
chyme (arrows). The signal found in filter (f) is an artifact. (b) 
Notch 1 transcripts are found in the two recombined tissues, but 
the signal is absent in epithelial cells adjacent to mesenchyme (ar- 
rows). The strongest signal is observed in epithelial cells contact- 
ing the layer of nonexpressing Notch I ceils. (c) An intense Notch 2 
mRNA signal is found in epithelial cells, except in cells contacting 

The Distribution Patterns o f  Notch I and 2 Proteins 
Correlate with m R N A  Expression 

To analyze Notch protein expression, we raised polyclonal 
antisera against portions of the Notch i and 2 extracellular 
domains. Immunoreactivities for Notch 1 and 2 were evi- 
dent in dental epithelium during embryonic tooth devel- 
opment, but were absent from cells adjacent to the dental 
mesenchyme (Fig. 4, a, b, d, and e). Immunoreactivity was 
found in all cell layers of the oral epithelium (Fig. 4, a and 
b). The dental mesenchyme was negative for Notch 1 and 
2. During advanced tooth morphogenesis (PN8), the two 
antisera produced distinct patterns: Notch 2 immunoreac- 
tivity was present in cells of the stellate reticulum, whereas 
these cells were negative for Notch 1 (Fig. 4, f and g). In 
control sections stained with antibodies which had first 
been incubated with the Notch 1 and 2 fusion proteins 

the mesenchyme (arrows). Some transcripts are also detected in 
mesenchyme. The signal observed in filter f is nonspecific. (b) 
Notch 2 transcripts are observed in all epithelial cells except in 
cells adjacent to mesenchyme (arrows). The signal is also absent 
from mesenchyme. Abbreviations: e, epithelium; m, mesen- 
chyme. Bar, 100 p.m, 
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Figure 7. Immunolocalization of Notch 1 and 2 proteins in explants of recombined mandibular arch epithelium and mesenchyme from 
the tooth region (E11.5-E14). (a) Notch 2 immunoreactivity is localized on the surface of all epithelial cells and some mesenchymal cells 
adjacent to the epithelium (arrowheads) in the Ell.5 recombinants cultured for 12 h. (b) Notch 2 immunoreactivity is found in epithelial 
cells, except in cells contacting the mesenchyme in the El4 recombinants cultured for 2 d. The reactivity is absent from mesenchymal 
ceils. (c) Punctuated Notch 2 immunoreactivity is found in epithelial cells in the E12 recombinants cultured for 3 d. A strong immunore- 
activity is observed in mesenchymal cells adjacent to epithelium (arrowheads). (d) Higher magnification of Fig. 7 c. Note the punctuated 
staining in epithelium (arrowheads). (e) Notch 1 immunoreactivity is found in epithelial cells, except in cells contacting the mesenchyme 
in the El2 recombinants cultured for 3 d. The staining is absent from mesenchymal cells. Abbreviations: e, epithelium; m, mesenchyme. 
Bars, 50 txm. 

used for immunization the immunoreactivities were elimi- 
nated (Fig. 4 c, and data not shown). 

Expression of Notch mRNAs and Proteins in 
Developing Tooth Is Regulated by Interactions between 
Epithelium and Mesenchyme 

The absence of Notch transcripts from the basal epithelial 
cells in close proximity to dental mesenchyme suggested 
that Notch expression may, in part, be regulated by tissue 
interactions. To address this possibility we examined Notch 
expression in explants of both homo- and heterotypic re- 
combinants. Notch expression was analyzed by in situ 
hybridization and immunohistochemistry after 0.5-3 d in 
culture. 

In homotypic recombinants from dental tissues cultured 

for 24 h, Notch mRNA expression was not observed in ep- 
ithelial cells in contact with mesenchyme (Fig. 5). This was 
the case in all epithelio-mesenchymal combinations tested, 
irrespective of the age of the tissues. For example, El2  
dental epithelium cultured in close contact with E16 den- 
tal mesenchyme behaved similarly to E l6  epithelium cul- 
tured with E12 mesenchyme in terms of suppression of 
Notch expression in epithelial cells (Fig. 5, a2-d2). Immu- 
nohistochemical analysis showed that Notch 1 and 2 stain- 
ing was absent from epithelial cells close to the mesen- 
chyme (Figs. 6 and 7 b). However, when recombinants 
were cultured for a shorter period (12 h) (Fig. 7 a), or 
when dental epithelial tissues were cultured alone (data 
not shown), the proteins were expressed in all epithelial 
cells. In the homotypic explant cultures, Notch 2, but not 
Notch 1, immunoreactivity was upregulated in the mesen- 
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Figure 8. Immunolocalization of 
Notch 1 and 2 proteins in heterotypic 
recombinants. (a, b, and c) Mandibu- 
lar arch epithelium from the tooth 
area (Ell) and limb mesenchyme 
(Ell). (d) El l  limb mesenchyme. (e) 
Oral epithelium from the diastemal 
region (E12.5) and dental mesen- 
chyme (E12.5). The explants were cul- 
tured for 12 h (a), 24-32 h (b and c), 
and 3 d (e). (a) Notch 2 reactivity is 
found in all epithelial cells and in mes- 
enchymal cells adjacent to the epithe- 
lium. (b) Notch 2 staining is observed 
in epithelial cells, except in cells con- 
tacting the mesenchyme. The staining 
is evident in mesenchymal cells adja- 
cent to the epithelium. (c) Notch 2 im- 
munoreactivity is observed in epithe- 
lium and in mesenchyme adjacent to 
the epithelium. The staining is absent 
from epithelial cells contacting the 
mesenchyme. (d) Notch 2 immunore- 
activity is absent from limb mesen- 
chyme cultured alone. (e) Notch 1 im- 
munoreactivity is absent from the 
layer of epithelial cells which are in 
close contact with the recombined 
dental mesenchyme, whereas it is lo- 
calized on the surface of epithelial 
cells overlying this layer of cells. Ab- 
breviations: e, epithelium; m, mesen- 
chyme; f, filter. Bars, 50 Ixm. 

chyme after 3 d in culture (Fig. 7, c-e). 
To learn whether the regulatory mechanisms observed 

in the homotypic recombinants were specific to tooth, or 
more general, we next examined heterotypic recombi- 
nants. E l l  limb mesenchyme, which was negative for 
Notch expression when cultured alone (Fig. 8 d), was re- 
combined with E l l  dental epithelium and cultured for 24-- 
48 h. Intense Notch 1 and 2 staining was found in the limb 
mesenchyme adjacent to dental epithelium (Fig. 8, a--c), 
and the dental epithelial cells showed a downregulation of 
Notch 1 and 2 protein expression (Figs. 8, b and c, and 
data not shown). The negative regulation exerted by mes- 
enchyme thus also seems to function in heterotypic recom- 
binants. 

Heterotypic and heterochronic tissue recombination 
studies have shown that the odontogenic potential resides 
in the presumptive dental epithelium until El2, and then 
shifts to the condensing mesenchyme (Kollar and Baird, 
1969; Mina and Kollar, 1987). We asked then if dental 
mesenchyme could downregulate Notch expression in het- 
erotypic explants with nondental epithelium. E12.5 dental 
mesenchyme was cultured for 3 d together with E12.5 non- 
dental jaw epithelium in which all cells initially showed 
Notch 1 and 2 immunoreactivities (see Fig. 4, a and b). Af- 
ter culture, the epithelium had invaded the dental mesen- 
chyme and acquired a cap-like configuration. Epithelial 
cells, except for those in close proximity to dental mesen- 

chyme, were positive for Notch 1 and 2 (Fig. 8 e, and data 
not shown), indicating that dental mesenchyme had caused 
downregulation of Notch expression in basal epithelial 
cells. This expression pattern was similar to that in the 
tooth germ in vivo. 

RA, but Not FGF-2, Induces Expression of  Notch 
Genes in Dental Mesenchyme 

While the early dental mesenchyme (El l -E l2)  does not 
express Notch genes at high levels (Fig. 2, a and b), expres- 
sion was transiently upregulated at more advanced stages 
(Figs. 2, c-e and 3 b). This indicated the possibility that 
Notch expression in dental mesenchyme is activated by ep- 
ithelium-derived signal molecules, such as retinoic acid 
(RA) and fibroblast growth factor-2 (FGF-2). 

Resin beads loaded with different concentrations of RA, 
and agarose or heparin acrylic beads soaked in FGF-2, 
were implanted into dental mesenchyme from different 
developmental stages and Notch expression was analyzed 
after 16-24 h by whole-mount in situ hybridization and 
whole-mount immunohistochemistry. In El l -E12 tissue 
recombinants, beads soaked in 50-100 i~g/ml RA induced 
expression of mRNA from all three Notch genes in cells 
adjacent to the beads (Fig. 9), while lower RA concentra- 
tions (1-5 p~g/ml) had no apparent effect on Notch gene 
expression (data not shown). Similarly, RA beads (100 }xg/ 
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Figure 9. Stimulation of the Notch 1,2, and 3 gene expression in the mandibular mesenchyme from the tooth area by retinoic acid (RA). 
Ell-E12 mesenchyme was cultured for 24 h with implanted beads soaked in RA (100 p~g/ml). The mesenchyme was cultured either 
alone (b) or in contact with presumptive dental epithelium (a and c). The expression of the three Notch genes was monitored by whole 
mount in situ hybridization (a) Notch 1, (b) Notch 2, and (c) Notch 3. Expression of all three Notch genes is found in mesenchymal cells 
surrounding the RA releasing bead. The recombined epithelium is positive but has not induced Notch mRNA expression in the adjacent 
mesenchyme. Abbreviations: e, epithelium; m, mesenchyme; b, bead. Bar, 100 Ixm. 

ml) evoked the expression of Notch 1 and 2 proteins in 
dental mesenchyme (data not shown). DMSO control 
beads had no effects on Notch expression (data not 
shown). In the E13-E14 dental mesenchyme, RA beads 
were unable to induce the expression of Notch 1 and 2 
proteins, suggesting that the response to RA is dependent 
on the developmental stage. In a similar set of experiments 
we examined the response of mesenchyme to beads 
soaked in recombinant FGF-2 (100-250 ~g/ml). We could 
not detect any Notch 1 or 2 immunoreactivity or mRNA 
expression in mesenchymal cells surrounding the FGF-2 
beads (data not shown). 

Discuss ion  

Downregulation o f  Notch Expression Is 
Associated with Determination of  Epithelial Cells into 
the Ameloblastic Lineage 

In this report we show that the Notch genes are develop- 
mentally regulated in the rodent tooth. Notch 1, 2, and 3 
exhibit overlapping but distinct expression patterns during 
tooth morphogenesis, and their expression is downregu- 
lated after completion of odontogenesis (Fig. 10 a). Notch 
genes are important for cell fate decisions in Drosophila 
and vertebrates, but the exact mechanism of Notch action 
is not yet understood. It has been postulated that the role 
of Notch is to block differentiation by maintaining the 
competence of undifferentiated cells (Coffman et  al., 1993; 
Fortini and Artavanis-Tsakonas, 1993). This implies that 
Notch expression would preferentially be found in cell 
types that are not terminally differentiated. Several ex- 
pression patterns during tooth development can be viewed 
in this light. Odontoblasts, which are highly differentiated 

mesenchymal cells, do not express detectable levels of 
Notch mRNA. In contrast, mesenchymal ceils known to 
maintain their ability to later differentiate into odonto- 
blasts upon specific signals, for example during reparative 
dentinogenesis, do express the Notch genes. In dental epi- 
thelium, the Notch expression patterns reveal a previously 
unknown prepatterning at very early stages, namely a sub- 
division of the E l l  epithelium in Notch expressing and 
non-expressing regions. Thus, the nonexpressing region, 
located close to the dental mesenchyme, contains cells that 
later give rise to ameloblasts producing the enamel matrix, 
and may reflect an early determination step in this process. 
Amelogenin, which is the main structural component of 
enamel matrix, is expressed in the epithelial cells at cap 
stage (E14) (Couwenhoven and Snead, 1994). Hence, 
downregulation of Notch genes in these cells precedes the 
cell type specific gene expression by three days. It is thus 
possible that Notch signaling in epithelial cells prevents 
them from adopting the ameloblast fate. 

Negative Regulation o f  Dental Epithelial Notch 
Expression by Mesenchyme 

The downregulation of Notch expression in epithelial cells 
in close proximity to the dental papilla mesenchyme in 
vivo was reproduced in both homotypic and heterotypic 
recombination experiments in vitro (Fig. 10 b). A zone of 
Notch-negative epithelial cells was created adjacent to the 
recombined mesenchyme, while all epithelial cells ex- 
pressed Notch when the epithelium was cultured alone. 
This suggests that the absence of Notch expression in the 
basal epithelial cells depends on negative regulation by 
mesenchymal cells. Limb mesenchyme also caused down- 
regulation of Notch protein expression in dental epithe- 
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Figure 10. (a) Schematic illustration of 
the expression patterns of the Notch 
genes in the developing first molar of 
the mouse. The expression of the 
Notch genes in epithelium (e) is indi- 
cated in orange, and in mesenchyme 
(rn) in green. (b) The design of the ex- 
periments used to analyze the regula- 
tion of the Notch genes and proteins by 
tissue interactions. Epithelia and mes- 
enchymes from the tooth, oral area, 
and limb are separated and cultured ei- 
ther alone or as recombinants (homo- 
typic = red lines, and heterotypic = 
green and blue lines). The Notch genes 
and proteins are expressed in all cells 
of the epithelia cultured alone (orange 
color), whereas they are absent from 
mesenchymes cultured alone. In re- 
combinants, Notch expression is down- 
regulated in the layer of epithelial cells 
contacting the mesenchyme after 24 h 
of culture, but never before. Further- 
more, the dental epithelium induces 
Notch expression in the adjacent den- 
tal and limb mesenchyme (green 
color). Abbreviations: de, dental epi- 
thelium; cm, condensed mesenchyme; 
oe, oral epithelium; f, dental follicle; 
eo, enamel organ; iee, inner enamel ep- 
ithelium; p, dental papilla mesen- 
chyme; st, stellate reticulum; si, stra- 
tum intermedium; oee, outer enamel 
epithelium; a, ameloblasts; o, odonto- 
blasts; d, dentin; E, embryonic day; 
PN, postnatal day. 

lium, indicating that the mesenchymal effect may not be 
specific to dental tissue. In an alternative model, the E l l  
dental epithelium could first "respecify" the limb mesen- 
chyme, which in turn could signal back to epithelium af- 
fecting Notch expression. This hypothesis may receive sup- 
port  by the fact that the downregulation of Notch protein 
expression in epithelium is seen first after 24 h of culture. 

The mechanism by which mesenchyme downregulates 
Notch expression in epithelium could involve either mes- 
enchymal secreted factors acting over a short distance or 

components of the basement membrane.  A putative se- 
creted factor may bind to the basement membrane sepa- 
rating the epithelium from the dental papilla mesenchyme, 
and exert local effects on cells contacting the basement 
membrane.  This membrane is removed when epithelium 
and mesenchyme are separated by proteolytic enzymes, 
but is rapidly restored when epithelium and mesenchyme 
are cultured in recombination (Ruch, 1987). Both epithe- 
lium and mesenchyme contribute to the formation of  the 
basement membrane and the restoration has been shown 
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to require both tissues. Several growth factors, such as 
MK, transforming growth factor beta (TGFI3), FGFs, and 
plateled-derived growth factors (PDGFs), have been shown 
to bind to basement membranes (for review see Adams 
and Watt, 1993; Mitsiadis et al., 1995a, b). Downregulation 
of Notch in early dental epithelium and mesenchyme is as- 
sociated with expression of several growth factors and ex- 
tracellular matrix molecules involved at the epithelial- 
mesenchymal interface, such as MK (Mitsiadis et al., 
1995a), BMP-2 and -4 (Vainio et al., 1993), syndecan-1, 
and tenascin (Vainio et al., 1989). Whether these or other 
molecules are involved in downregulation of Notch is be- 
ing studied. The presence of FGF-2 does not generate 
Notch expression, and our preliminary findings indicate 
that this is the case also for BMPs. These results are con- 
sistent with the tissue recombination experiments: dental 
epithelium caused the induction of Notch expression in 
dental mesenchyme only after several days of culture, 
whereas a transient expression of syndecan-1, tenascin, 
and BMPs is observed after 16-24 h of culture (Vainio et 
al., 1989, 1993) which may downregulate Notch expression 
during that period. Taken together these findings indicate 
a complex interplay of negative and positive signaling to 
establish different levels of Notch expression in regions of 
epithelial-mesenchymal interactions, which may be impor- 
tant for cytodifferentiation. 

Notch Genes as Possible Mediators of  RA  Effects 

The specific upregulation of Notch expression by exposure 
to RA, but not to FGF-2, suggests that Notch activity may 
play a role in the cellular response to RA. RA is a power- 
ful signaling molecule acting as a diffusible morphogen or 
as a local inducer (Tabin, 1991; Tickle, 1991). Exposure to 
exogenous RA during pregnancy leads to congenital mal- 
formations, including cleft palate and skeletal defects 
(Geelen, 1979). RA binds to a family of specific nuclear 
receptors (retinoic acid receptors RARs), which are tran- 
scription factors (Nagpal et al., 1993). RARs are expressed 
in the developing tooth of the mouse (Bloch-Zupan et al., 
1994), and it has been shown that the excess of retinol, 
which converts to RA, alters the pattern of odontogenesis 
in vitro, by producing supernumerary tooth buds in the di- 
astema region of the mandible (Kronmiller et al., 1994). 
Teratogenic exposure to RA leads to altered expression of 
Hox genes, which are important developmental control 
genes (Kessel and Gruss, 1991; Marshall et al., 1992). The 
induction of Notch genes by RA is particularly interesting 
in this context, since removal of Notch genes (Swiatek et 
al., 1994) as well as constitutive Notch signaling (Ellisen et 
al., 1991; Jhappan et al., 1992) produce dramatic effects 
during development. It is therefore possible that the ter- 
atogenic effects seen after RA exposure may be, in part, 
caused by ectopic induction of Notch expression. 

It is not yet known how Notch induction is mediated: it 
could be a direct effect of RARs on Notch promoters or 
require the action of Hox transcription factors. The distri- 
bution of the homeobox-containing genes msx-1 and msx-2 
show striking correlations with tooth patterning (MacKenzie 
et al., 1991, 1992), and the deficient function of the msx-1 
gene in transgenic mice inhibits tooth development (Sa- 
tokata and Maas, 1994). The expression of rnsx-1 and msx-2 

in early dental mesenchyme is regulated by epithelial-mes- 
enchymal interactions (Jowett et al., 1993) and BMP-4 
(Vainio et al., 1993), suggesting that these genes may also 
be involved in Notch downregulation. 

In conclusion, our data provide the first insights into the 
regulation of vertebrate Notch genes by RA and epithe- 
lial-mesenchymal interactions. An involvement of these 
genes in the RA signaling cascade may further increase 
our understanding of both their expression patterns and 
the biological roles of Notch molecules during the embry- 
onic development of vertebrates. 
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