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Abstract: Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases,
but the mechanisms underlying their activities have remained elusive because of the lack of
a methodology that can easily visualize the exact behavior of such small molecules. Recently,
we developed an in situ label-free imaging technique, called mass spectrometry imaging,
for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major
bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass
spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse
green tea extracts, which contain multiple phytochemicals, by focusing on their compositional
balances. This methodology allowed us to simultaneously evaluate the relative contributions of the
multiple compounds present in a multicomponent system to its bioactivity. This review highlights
small molecule-sensing techniques for visualizing the complex behaviors of herbal components and
linking such information to an enhanced understanding of the functionalities of multicomponent
medicinal herbs.

Keywords: mass spectrometry imaging; metabolic profiling; phytochemical; metabolite; medicinal
herb; green tea; catechin; food functionality

1. Introduction

Many functionality-oriented botanicals, nutraceuticals, and foods have been developed for
widespread consumption, although some have been included in health hazard evaluation reports on
the inadequate and excessive consumption of a specific ingredient with functionality [1,2]. At present,
there are few reliable quantitative evaluation methods for predicting the efficacy, safety, and dosing
of dietary components. Detailed knowledge about the exact composition of a food product or
medicinal herb, the active or inactive ingredient(s), and their metabolism and mechanism of action is
frequently lacking [3]. This issue has arisen in part because of limitations with the analytical techniques
available for detecting complex behaviors of dietary factors in the body, foods, and medicinal herbs.
To begin to overcome this, methods with improved detection sensitivity, accuracy, specificity, coverage,
and spatiotemporal resolution are required. Elucidation of specific cellular signaling pathways
mediated through a food factor- or phytochemical-sensing molecule and the spatiotemporal dynamics
of a dietary factor and its metabolites in the tissue micro-regions will enhance understanding of the
underlying mechanism of action and exact pharmacokinetics (or nutrikinetics) [4–6]. Pharmacology of
botanical-based multicomponent nutraceuticals requires a “network” approach, in which multiple
compounds interact with multiple targets in the body with interdependent activities to achieve an

Molecules 2017, 22, 1621; doi:10.3390/molecules22101621 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://dx.doi.org/10.3390/molecules22101621
http://www.mdpi.com/journal/molecules


Molecules 2017, 22, 1621 2 of 23

optimal effect. The traditional approach to understanding the pharmacology of a multicomponent
nutraceutical involves studying the effects of a single component on a single biological activity,
and gradually assembling those effects into an integrated picture. However, assembling the
results obtained from such a reductionistic approach to achieve a system-wide understanding of
a concerted pharmacological intervention has proven impractical [7]. Other methods capable of
simultaneously evaluating the relative contributions of multiple compounds in a nutraceutical to its
pharmacological activity are needed. Techniques capable of directly attributing the behavior of both
single components and multiple components in food products or medicinal herbs to physiological
function will be indispensable for clarifying the exact functions of botanicals, nutraceuticals, and foods
in multicomponent systems [8].

Tea is one of the most widely consumed beverages in the world after water. Green tea, black tea,
and oolong tea are all derived from the dried leaves of the plant Camellia sinensis. Among the teas,
green tea has been studied the most for its health benefits. Green tea (Camellia sinensis L.) is an important
medicinal herb containing low-molecular-weight compounds called phytochemicals. Over the past
two decades, it has emerged as an important agricultural product and source of dietary factor for health
maintenance and promotion, disease risk reduction, and chemotherapy [9]. Because of their beneficial
health effects, the intake of tea infusion and its phytochemicals is considered to be an inexpensive,
readily applicable, acceptable, and accessible approach to disease control and management [10].
Tea constituents exhibit various biological and pharmacological properties, such as anti-carcinogenic,
anti-oxidative, anti-allergic, anti-viral, anti-hypertensive, anti-atherosclerotic, anti-cardiovascular
disease, and anti-hypercholesterolemic activities [11–18]. The principle components responsible for
the activities of green tea extract (GTE) are catechins, which are polyphenols. The most abundant and
bioactive green tea catechin is (−)-epigallocatechin-3-O-gallate (EGCG).

In the field of biomedical and food sciences, both chemical biology and metabolomics methods
are gradually becoming recognized as powerful approaches for precise and high-resolution analysis of
small molecule behavior. This review describes two new small molecule behavior-sensing techniques
suitable for analysis in cells, tissues, foods, and medicinal herbs. These techniques can be used to
increase understanding of the functionality of the GTE multiple component system and its major small
molecule components such as EGCG.

2. In Situ Label-Free Imaging of Orally Administered Phytochemicals

2.1. Mass Spectrometry Imaging

To elucidate the precise mechanism underlying phytochemical bioactivity, high-resolution
spatiotemporal information is needed. Although some studies have visualized the tissue distributions
of phytochemicals by fluorescence imaging, cerium chloride staining, immunostaining, and radioactive
labeling assays [19–22], spatiotemporal information is lacking because of the absence of an analytical
technique that can easily detect the localization of the naïve polyphenol. Conventional molecular
imaging generally requires labeling steps that are time-consuming, expensive, and labor-intensive.
Additionally, the molecular discriminating powers of these techniques are insufficient for visualizing
the target compound and its metabolites simultaneously. A label-free molecular imaging technique
could overcome these issues, but the development of such a technique has been challenging.
Mass spectrometry imaging (MSI) is a new technology capable of determining the naïve distribution
of ionizable biological molecules in tissue sections based on their specific mass-to-charge ratios
without any labeling. This technique can theoretically detect target molecules and their metabolites
simultaneously in a single analysis, and is now widely used for in situ imaging of endogenous
and exogenous molecules such as proteins, lipids, drugs, and their metabolites [23–25]. It shows
potential tool useful for pathological analysis and the understanding of diseases or pharmaceutical
mechanisms of action. Matrix-assisted laser desorption/ionization (MALDI), a commonly available
ionization method used for MSI, is a laser desorption ionization (LDI) method that softly ionizes several
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biological molecules. The workflow for MALDI-MSI includes tissue preparation, matrix application,
MSI data acquisition, data analysis, and image construction (Figure 1). This ionization technique is
usually combined with time-of-flight (TOF)-MS. A conventional MALDI source is equipped with an
ultraviolet (UV) laser, such as a nitrogen laser (337 nm) or Nd-YAG laser (355 nm). MALDI-MSI is
typically performed at spatial resolutions of 10–200 µm in single organs. The spatial resolution is
primarily dependent on the diameter of the laser irradiated area, which is usually more than 5 µm [26].
However, because MALDI-MSI requires a matrix application step, diffusion of metabolites within the
tissue during matrix application and the heterogeneous size of crystal formation may also limit the
spatial resolution.
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Generally, matrix application is performed by spray coating [27–29] or droplet printing
deposition [30,31]. Spray deposition is typically faster and offers higher spatial resolution, but the
amount of solvent must be carefully controlled to prevent the tissue becoming overly wet. The droplet
deposition method sacrifices resolution, which is typically no better than 200 µm because of the size of
the matrix droplets. However, in this droplet deposition method, sensitivity is high because of the
high analyte extraction efficiency of the droplets and there is no risk of analyte delocalization outside
of the matrix spot. When applying the matrix dissolved in solvent, it is critical that the matrix spray
is wet enough to extract the analytes from the tissue and into the surface matrix crystals, but not so
wet that the analytes will delocalize from their original positions to neighboring regions, leading to
a loss of image spatial integrity. By contrast, dry matrix application methods have been reported
for imaging small molecules in tissues, and these methods minimize potential delocalization [32,33].
Vapor-phase deposition of the matrix through sublimation produced a homogeneous coating of matrix
across the tissue section [34–36]. These experiments showed that the lipid signal was greatly enhanced,
the laser spot-to-spot variation of secondary ion yield was reduced, and alkali metal contamination
decreased [37]. Sublimation has the desired effect of removing any nonvolatile impurities from the
matrix during the coating process [34]. However, this method has poor sensitivity because of a lack
of incorporation of the analyte into the matrix [34]. To overcome this issue, Spengler et al. separated
the matrix preparation procedure into two independent steps, leading to an improved sensitivity and
spatial resolution [38]. The first step involved dry vapor deposition of the matrix onto the sample.
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In the second step, incorporation of an analyte into the matrix crystal was enhanced by controlled
recrystallization of the matrix in a saturated water atmosphere. This approach achieved an effective
analytical resolution of 2 µm for scanning microprobe MALDI-MS. Recent work has also demonstrated
the utility of ionic liquid matrices for MALDI-MSI [39,40]. These matrices are advantageous in that
there are no crystals to limit the spatial resolution.

During its first decade of use, MALDI-MS was used for synthetic polymer or protein (peptide)
analysis. MALDI-MS is a highly sensitive analytical method that can be used to analyze low
concentrations (approximately femtomolar) of tryptic peptides. Sensitivity is an extremely important
parameter for MSI because many biological molecules are present only in very small quantities
in thin tissue section. However, MALDI-MS has rarely been used for low-molecular-weight
metabolite analysis because many matrix and/or matrix–analyte cluster ion peaks are observed
in the low-mass range (m/z < 700), which interfere with the detection of the target compounds.
Nevertheless, low-molecular-weight metabolites with distinct distributions in various tissues have
been searched from large numbers of background peaks generated by conventional matrices such
as 2,5-dihydroxy-benzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA). Representative
low-molecular-weight metabolites and phytochemicals from edible plant tissues are shown in Table 1.
γ-Aminobutyric acid (GABA) (m/z 104 [M + H]+) [41], α-tocopherol (m/z 431 [M + H]+) [42],
and several anthocyanins [43,44] have been successfully detected, and their unique distributions
on the surfaces of the plant tissue sections have been visualized. However, the low ionization
efficiencies and interference of matrix peaks from the use of conventional matrices have made it
difficult to detect other metabolites. Recently, 9-aminoacridine (9-AA) was reported as a suitable
matrix for low-molecular-weight metabolite analysis [45]. When 9-AA was used in negative ionization
mode, only a few peaks derived from the matrix were observed in the low-mass range (m/z ~500).
In addition, the excellent ionization efficiency of 9-AA for important cellular metabolites (in the order
of attomoles) was demonstrated [46,47]. Shroff et al. succeeded in visualizing the distribution of
antiherbivore glucosinolates in Arabidopsis thaliana leaves using 9-AA [48]. Their results indicated that
there were differences in the proportions of the three major glucosinolates in different parts of the
leaf, and that their distributions appeared to control the feeding preferences of Helicoverpa armigera
larvae. Recently, Nakamura et al. visualized the spatial distributions of metabolites within tissue
sections of tomato (Solanum lycopersicum L.) fruit using 9-AA-MALDI-MSI combined with a matrix
sublimation/recrystallization method [49]. Although apparent differences in the localization and
intensity of many detected metabolites were not observed between mature green and maturered
tomato fruits, the amounts of glutamate and adenosine monophosphate, which are umami compounds,
increased in both the mesocarp and locule during the ripening process. By contrast, the amount of
malate, a sour compound, decreased in both these regions. DHB-MALDI-MSI visualized more local
metabolic alteration after wounding stress. Accumulation of a glycoalkaloid, tomatine (m/z 1034
[M + H]+), and a low level of its glycosylated metabolite, esculeoside A (m/z 1270 [M + H]+),
were found in the wound region where cell death occurred. The opposite was observed in intact regions.
Furthermore, the amounts of both compounds differed in developmental stages. These observations
provided new insight into the physiological changes and responses of tomato fruit. MALDI-MSI
using 2′,4′,6′-trihydroxyacetophenone (THAP) as the matrix has been used to investigate the spatial
distribution of a class of flavonoids, (epi)catechin dimer (m/z 577 [M−H]−), during fruit development
in strawberries (Fragaria × ananassa) [50]. In most cases, fruit development led to a reduction in the
amounts of the investigated flavonoids in the fruit tissue, and as a consequence, they were exclusively
present in the skin of mature red fruits. The natural abundance of endogenous polyphenols in high
concentrations in plants, together with other UV-absorbing metabolites, allows for matrix-free UV-LDI
approaches to be employed. In these cases, the plants’ own metabolites act as the endogenous MALDI
matrix [51]. Hamm et al. detected resveratrol and linked stilbene compounds at the surface of
grapevine leaves by LDI-TOF-MS without matrix deposition [52]. A mass-microscopic atmospheric
pressure ion-source chamber for LDI imaging of freshly cut ginger rhizome sections revealed that
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6-gingerol (m/z 333 [M + K]+) and the monoterpene (m/z 191 [M + K]+), which are related to pungency
and flavor, were localized in oil drop-containing organelles [26].

Table 1. Application of laser-based MSI to analysis of phytochemicals in edible plants.

Matrix Analyte Tissue Species Ref.

DHB

γ-Oryzanol, α-tocopherol, phytic acid Seed Rice [42]
Anthocynanins, lipids Seed Black rice [44]

GABA, amino acids, sugars Fruit Eggplant [41]
Glycoalkaloids Tubers Potato [53]
Anthocyanins Fruit Blueberry [43]

Tomatine, esculeoside A Fruit Tomato [49]

CHCA

Oligosaccharides Stem Wheat [54]
Amino acids, sugars, sugar phosphates Grain Wheat [55]

Capsaicin Fruit Capsium [56]
Ginsenosides Root Ginseng [56]

Flavonoids, dihydrochalcones Fruit Apple [57]

9-AA
Amino acids, sugars, sugar phosphates Grain Wheat [55]

Caffeic acid, organic acids, amino acids, nucleotides Fruit Tomato [49]

THAP Flavonoids, organic acids Fruit Strawberry [50]

Matrix-free
Stilbenoids Leaf Grapevine [52]

6-Gingerol, monoterpene Rhizome Ginger [26]

2.2. Visualization of Orally Administered Phytochemicals within Mammalian Tissues

MSI is a rapidly emerging technology for visualizing the localization of exogenous drugs
and their metabolites in biological tissues [58]. Compared with traditional imaging and analytical
methods used in pharmaceutical research, it has several attractive advantages, especially the fact
that it is completely label free. However, careful consideration is essential to select an appropriate
methodology because drugs and metabolites are often more difficult to analyze in biological tissues
than endogenous species because of their relatively low abundances. An important early phase of
drug discovery is determining how a candidate drug is distributed and metabolized within the body.
Conventionally, spatial information on the distributions of compounds in whole animals is obtained
by whole-body autoradiography (typical spatial resolution 100 µm) and microautoradiography for
more detailed imaging of the distributions within smaller tissues (typical spatial resolution 10 µm) [59].
In these methods, the pharmaceutical compound is labeled with a radioactive nuclide replacing a
nonradioactive one brfore dosing, and this radiolabel is visualized in the tissue section. This method
is highly sensitive and fully quantitative but has several disadvantages. The parent drug cannot be
distinguished from its metabolites even if the metabolite contains the radiolabel. The synthesis of the
drug with the incorporated label is an expensive and often time-consuming process. Furthermore,
it can take several days to several weeks of exposure time to develop radiographic images of
sufficient sensitivity for distribution studies. By contrast, positron-emission tomography (PET) is
an in vivo imaging technique for dosed pharmaceuticals that involves radiolabeling of the drug
before administration. The advantages of PET are true in vivo imaging and the ability to follow the
drug distribution in real time. However, specificity is again an issue as any metabolites cannot be
distinguished from the parent drug. In addition, PET suffers from relatively poor spatial resolution
(approximately 1 mm for small animal studies). However, it does have the substantial advantage
of being fully quantitative [60]. Compared with whole-body autoradiography, MSI can provide
information on the specific localization of the analyte of interest. Thus, MSI allows for detailed
localization of the parent compound and its metabolites in a single experiment without any labeling.
It also offers the unique ability to co-localize drug distribution signals with endogenous analytes of
interest as biological markers of disease progression, therapeutic effect, or toxicology.

Natural products derived from medicinal plants are an abundant source of biologically
active phytochemicals, many of which have been used in development of pharmaceuticals and
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nutraceuticals [61]. To date, imaging of small molecules, including different classes of primary
and secondary metabolites, is the most frequent application of plant-targeted MSI [55,62,63].
These studies will encourage an increased understanding of diverse plant biological systems
and increase applications in breeding, crop improvement, and functional food or botanical drug
design [42–44,62,64,65]. Differential distribution patterns have been evaluated for a number of
molecular species, namely, lipids, amino acids, and sugars, as well as highly abundant secondary
metabolites, such as polyphenols, anthocyanins, alkaloids, and glucosinolates from a variety of plant
species [64]. The representative molecules from edible plants are listed in Table 1. However, there is
little information on the use of MSI to follow in vivo administration of these and other bioactive
dietary phytochemicals to animals. In most cases, the aforementioned dietary compounds and drugs
have been detected by MALDI-MS using traditional matrices such as DHB, CHCA, and 9-AA [58,64].
These matrices are certainly effective for MALDI-MSI of limited drugs in tissue sections, but they
cannot be used to easily visualize the localization of many dosed dietary compounds (food factors),
including phytochemicals and their metabolites, because of their low abundance in the target tissue as
well as interference with background peaks from the matrix and endogenous molecules. For effective
ionization of the analyte in MALDI-MS, the optimum matrix needs to be determined because there
is often no direct correlation between the choice of matrix and its ability to ionize a bioactive small
molecule of interest. Kim et al. screened 41 chemicals as potential matrices for the representative
bioactive green tea polyphenol, EGCG [5]. EGCG peaks were not observed with DHB, CHCA, or 9-AA.
However, 1,5-diaminonaphthalene (1,5-DAN), harmane, norharmane, harmine, and ferulic acid all
allowed for the detection of EGCG (m/z 457 [M − H]−) in negative ionization mode without any
background peak interference [5]. Furthermore, among the candidate chemicals, only 1,5-DAN
was useful to visualize the distribution of a single oral dose of EGCG (2000 mg/kg body weight)
in mouse tissue sections. Chemical screening data that are available online could be useful for
matrix selection, development of techniques for highly sensitive detection of EGCG or its derivatives,
and structure-based matrix screening for MSI of dietary polyphenolic compounds.

Understanding the metabolic fates of bioactive dietary polyphenols is indispensable for
determining their in vivo molecular mechanisms [66]. Some studies have reported that green tea
polyphenols are subjected to phase II biotransformation and predominantly undergo methylation,
glucuronidation, and sulfation in the intestine, liver, and kidneys [67]. However, both the functions
of the metabolites and their localizations in different tissue micro-regions remain unclear [68].
By contrast, 1,5-DAN-MALDI-MSI was able to visualize a spatially-resolved biotransformation
based on simultaneous mapping of orally-dosed EGCG and its phase II metabolites, including its
monosulfate (m/z 537) and monoglucuronide (m/z 633) forms (Figure 2) [5]. Interestingly, unlike liver,
the localization patterns in the kidney compartments (pelvis, medulla, and cortex) were clearly different
among EGCG and its phase II metabolites. In the kidney tissue extract, EGCG and its major conjugates
(methylated, sulfated, and glucuronidated forms) were observed. The peak abundances of these three
conjugates were markedly lower than that of EGCG. Nevertheless, both sulfated and glucuronidated
forms were detected in MALDI-MSI measurements, but there was no peak for the methylated
form. In negative ionization mode MALDI-MS, the phosphorylated compounds and carboxylic
acids were efficiently ionized, indicating that compounds with leaving groups, including phosphate
and carboxylic groups, readily undergo deprotonation [47,69–71]. Unlike methylation, sulfation or
glucuronidation can introduce a leaving group (sulfate or carboxylic group, respectively) into EGCG.
In MALDI-MS using 1,5-DAN, the introduction of such an ionizable leaving group may promote
ionization and contribute to higher MALDI efficiency for EGCG phase II conjugates despite their low
tissue abundances compared with EGCG [5]. Although the bioavailability of EGCG is very low [66,67],
this sensing technology was able to visualize, for the first time, the in situ distribution of EGCG phase
II metabolites in liver and kidney sections after oral dosing. The use of 1,5-DAN-MALDI-MSI will
open new avenues for investigating the in situ metabolism of bioactive dietary polyphenols subjected
to phase II biotransformation, and may help to accelerate the highly effective and efficient design of
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plant-derived pharmaceuticals, multicomponent botanical drugs, dietary supplements, and functional
foods. The advantages of this MALDI-MS methodology include label-free imaging and simultaneous
detection of an orally-dosed dietary polyphenol and its metabolites. This technique should help to
overcome the drawbacks associated with conventional molecular imaging.
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tissue micro-regions. Simultaneous visualization of EGCG and its phase II metabolites in (A–E)
liver and (F–J) kidney sections. Images (A,F) show H & E staining; (B,G) show optical microscopy,
and the other images are for MALDI-MS of EGCG (m/z 457) (C,H); EGCG-sulfate (m/z 537) (D,I),
and EGCG-glucuronide (m/z 633) (E,J). An additional EGCG spot (red circle) was visualized as a
positive, internal control. Adapted with permission from reference [5].

However, this technique could not be used to visualize EGCG and its phase II metabolites in
kidney or liver tissue section after oral dosing at a normal intake level (20 mg/kg body weight) [5].
To overcome the limitation of the 1,5-DAN-MALDI-MSI technique and to ensure its practical use,
further improvement of its detection sensitivity is required. This could be achieved by a targeted
selective reaction monitoring mode approach using a triple quadrupole system [72], application of
a Fourier transform-ion cyclotron resonance-MS (FT-ICR-MS) instrument capable of continuously
accumulating selected ions [73], and on-tissue chemical derivatization approaches to increase the
ionization efficiency [74,75]. In addition, the MALDI efficiency could be improved through matrix
selection and development. Kim et al. reported that orally administered strictinin, an ellagitannin
found in green tea, was detected as the intact form (m/z 633 [M − H]−) in mouse kidneys [76].
1,5-DAN-MALDI-MSI, using the same high-vacuum pressure MALDI-TOF-MS instrument as in
EGCG, detected an ion peak for this compound at m/z 633, but a clear ion image was not obtained.
By contrast, an atmospheric pressure MALDI-quadrupole ion trap-TOF-MS instrument, called an
iMScope, allowed clear visualization of strictinin, suggesting that selection of an appropriate MS
instrument is important for sensitive detection of green tea polyphenols. Several studies have
revealed that strictinin possesses various pharmacological properties, such as anti-oxidative, anti-viral,
anti-diabetic, anti-allergic, and phagocytic activities [77–81]. It is known that ellagitannins are
quite stable in the stomach and undergo a massive metabolic transformation in the gut to ellagic
acid and urolithins, and these gut metabolites play an important role in the biological activities of
ellagitannins [82,83]. In vivo bioactivity of an orally dosed strictinin has been reported [5], but there
was no information on the amount of the intact strictinin within tissues and plasma. By contrast,
Kim et al. showed, for the first time, the existence of intact strictinin in the kidneys 1 h after oral
dosing. Visualization of the intact form in tissues other than the gastrointestinal tract may contribute
to elucidation of the in vivo mechanism for the action of strictinin. In the future, other approaches
including kinetic histochemistry [25,58,84], microscopic analysis with high spatial resolution [26,85,86],
three-dimensional imaging [87–89], and analysis of the distribution of other metabolites [67,89] will be
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helpful to unravel both the biological consequences of biotransformation of dietary polyphenols and
their mechanism(s) of action.

3. Evaluation of Green Tea Functionality Based on Its Compositional Balance

3.1. Metabolic Profiling

The chemical components of tea vary according to the species/cultivar, environment, growth,
storage conditions, and leaf quality [90]. In most cases, the quality of a tea and its bioactive functions
(i.e., the health-promoting effects in human and animal models) are defined by its specific composition.
The functional biochemistry of plants is very diverse, the concentrations of many compounds
vary widely, and metabolomic analyses are required to simultaneously determine a broad range
of metabolites in plant extracts. Among the many analytical platforms, MS is the most sensitive and
selective technique, and thus it is the method of choice for metabolomic research on plants [91]. Liquid
chromatography (LC)-MS and gas chromatography (GC)-MS are used extensively to investigate a wide
range of molecules, including primary and secondary metabolites [92]. The workflow of metabolic
profiling (MP) includes sample preparation, analysis using various instruments, data processing,
and data analysis (Figure 3). It is crucial that data analysis method can detect significant changes so
that the data from biological samples can be validated. Generally, multivariate statistical analysis
is used to clarify similarities and differences among samples based on the multivariate data matrix
(e.g., MS datasets). Such relationships are usually displayed as scatter plots (score plots) (Figure 4A).
Because hundreds of variables (peaks) are obtained, the relationships among samples must be
theoretically interpreted on hundreds of dimensional axes (variables), but these relationships cannot
be simply displayed. To visualize the sample characteristics, multivariate analysis can extract sample
features by dimensional reduction. That is, hundreds of original variables are decreased to two or
three synthetic variables, which are orthogonal with each other. This maximizes the statistical variance
of the samples, while leaving the original features of the samples largely unaffected [93]. The synthetic
variables consist of hundreds of original variables. An understanding of the contribution of each
original variable to the synthetic variables leads to the identification of key variables that contribute to
the similarities or differences among the samples (Figure 4A, loading plot).
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Principal component analysis (PCA) is an unsupervised approach and the most frequently used
method in metabolomics for data mining (Figure 4A). The results are depicted as a score plot and
include two synthetic variables: principal component (PC) 1 (with the greatest variance) and PC2
(with the next greatest variance, orthogonal with PC1). This displays intrinsic groups of samples based
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on spectral variations. The corresponding loading plots show the contribution of each spectral variable
to score formation. The supervised multivariate technique is also used for identifying interesting
metabolites. The partial least-squares (PLS)-based approach, which includes PLS, PLS-discriminant
analysis (DA), orthogonal PLS (OPLS), and OPLS-DA, can extract Y-correlated information from the
X matrix (Figure 4B,C). The X matrix is an organized data matrix obtained with the non-targeted
approach, while the Y matrix is the supervised data. If the Y matrix has specific variables, such as the
parameter variables of a producing instrument or food quality evaluated by a sensory test, PLS and
OPLS approaches are convenient methods for extracting meaningful metabolites correlated with Y
variables. Particularly in the univariate Y, an OPLS approach allows easy interpretation of the results
compared with PLS. The orthogonal approach can remove uncorrelated data from the X to Y matrix,
where the number of latent variables correlated to Y is generally one. Because of the features of the
orthogonal method, users only focus on the first component to interpret the results. When searching
for significant metabolites, both the loading matrix and the variable importance in the projection
(VIP) can be used (Figure 4C). If the Y matrix does not have specific variables, but has some biases,
a discriminant approach, such as PLS-DA or OPLS-DA, is frequently used (Figure 4B).

Molecules 2017, 22, 1621 9 of 23 

 

interesting metabolites. The partial least-squares (PLS)-based approach, which includes PLS, PLS-
discriminant analysis (DA), orthogonal PLS (OPLS), and OPLS-DA, can extract Y-correlated 
information from the X matrix (Figure 4B,C). The X matrix is an organized data matrix obtained with 
the non-targeted approach, while the Y matrix is the supervised data. If the Y matrix has specific 
variables, such as the parameter variables of a producing instrument or food quality evaluated by a 
sensory test, PLS and OPLS approaches are convenient methods for extracting meaningful 
metabolites correlated with Y variables. Particularly in the univariate Y, an OPLS approach allows 
easy interpretation of the results compared with PLS. The orthogonal approach can remove 
uncorrelated data from the X to Y matrix, where the number of latent variables correlated to Y is 
generally one. Because of the features of the orthogonal method, users only focus on the first 
component to interpret the results. When searching for significant metabolites, both the loading 
matrix and the variable importance in the projection (VIP) can be used (Figure 4C). If the Y matrix 
does not have specific variables, but has some biases, a discriminant approach, such as PLS-DA or 
OPLS-DA, is frequently used (Figure 4B). 

 
Figure 4. Multivariate statistical analyses used in metabolic profiling. (A) PCA provides an overview 
of all samples (color symbols) in a dataset. The score plot can visualize the relationships among 
samples on a two-dimensional model plane (PC1 and PC2). The loading plot can show variables 
contributed to score formation. Selected variables (dotted circles) contribute to the separation of 
samples along the PC axes; (B) The supervised method, PLS-DA or OPLS-DA, is used to isolate the 
variables responsible for discriminating the difference between samples (A,B). The loading S-plot, a 
plot of the covariance versus the correlation in conjunction with the variable trend plots, allows easer 
visualization of the data. The variables that changed most significantly are plotted at the top (red 
zone) or bottom (blue zone) of the S-shape plot, and those that do not vary significantly are plotted in 
the middle; (C) PLS or OPLS regression analysis is chemometric projection method relating two 
independent variables (X and Y) via a liner multivariate model. This method can extract Y-correlated 
information from the X-variable data. Bar chart shows influence of variables used to create Y predictor 
for samples. 

Metabolomic studies coupled with chemometric methods including PCA and PLS regression 
analysis have been used to explore the relationships between the metabolome of diverse plant species 
and their genotypes, origins, vintages, qualities, and other specific attributes [94–99]. MP techniques 
are often used to evaluate the nutraceutical (nutritional or physiological) value of a single plant 
cultivar for quality control and breeding. In the field of nutraceutical (functional food) research, such 
techniques have been used to identify subtle metabolic differences among individuals or different 
environmental conditions (e.g., diet) [100]. This chemometric approach can clarify similarities or 
differences among samples by compositional balance based on the relative abundance of each 

Figure 4. Multivariate statistical analyses used in metabolic profiling. (A) PCA provides an overview of
all samples (color symbols) in a dataset. The score plot can visualize the relationships among samples
on a two-dimensional model plane (PC1 and PC2). The loading plot can show variables contributed to
score formation. Selected variables (dotted circles) contribute to the separation of samples along the PC
axes; (B) The supervised method, PLS-DA or OPLS-DA, is used to isolate the variables responsible
for discriminating the difference between samples (A,B). The loading S-plot, a plot of the covariance
versus the correlation in conjunction with the variable trend plots, allows easer visualization of the data.
The variables that changed most significantly are plotted at the top (red zone) or bottom (blue zone) of
the S-shape plot, and those that do not vary significantly are plotted in the middle; (C) PLS or OPLS
regression analysis is chemometric projection method relating two independent variables (X and Y) via
a liner multivariate model. This method can extract Y-correlated information from the X-variable data.
Bar chart shows influence of variables used to create Y predictor for samples.

Metabolomic studies coupled with chemometric methods including PCA and PLS regression
analysis have been used to explore the relationships between the metabolome of diverse plant species
and their genotypes, origins, vintages, qualities, and other specific attributes [94–99]. MP techniques
are often used to evaluate the nutraceutical (nutritional or physiological) value of a single plant cultivar
for quality control and breeding. In the field of nutraceutical (functional food) research, such techniques
have been used to identify subtle metabolic differences among individuals or different environmental
conditions (e.g., diet) [100]. This chemometric approach can clarify similarities or differences among
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samples by compositional balance based on the relative abundance of each metabolite to the total
abundance of all metabolites. Additionally, such a technique enables us to theoretically calculate the
relative contribution of all multicomponent factors detected in crude samples to the total functionality.
Considering the principle of this methodology, it is expected that MP may become an effective
strategy for obtaining a comprehensive understanding of the attributes of crude samples, including
multicomponent foods (agricultural products) and medicinal herbs. In the functional food research
field, various functionalities are evaluated by activity and abundance of a single particular component
in foods, but simultaneous evaluation of coexisting multicomponent factors is required for elucidating
real functionality in multicomponent systems. However, to date, there has been little research on the
use of MP to compare or predict the nutraceutical (bioactive) properties (i.e., health-promoting effects
in human and animal models) of many plant cultivars. Therefore, elucidating the relationship between
the metabolome and the bioactivities of diverse cultivars could be a novel strategy for identifying the
nutraceutical potentials of various plant cultivars for functional food and botanical drug designs.

3.2. Quality Evaluation Based on Chemical Composition

Based on the aforementioned analytical strategies, MP of extracts from tea leaves has been
performed to study various attributes (Table 2). Generally, the quality of a tea is evaluated by
professional tea tasters who evaluate product quality using the leaves’ appearance and aroma,
color, and taste of the brew.

Because the process of training a skilled tea taster may take years and is very expensive,
instrumental techniques for evaluating tea quality are attractive. As a promising alternative approach
to the traditional methods of chemical and sensory analysis, MP has been evaluated for tea
analysis. Fukusaki and coworkers succeeded in predicting the ranking of Japanese green tea
samples by MP using four different analytical platforms [101–104]. Furthermore, metabolites that
played an important role in grade classification of green tea were identified. These chemometric or
data-driven approaches might be advantageous over the conventional sensory test for classification
and determination of tea quality. Recently, metabolites from a 50% aqueous methanol extract
of green teas grown with different shade periods (0, 15, 18, and 20 days) were analyzed to
investigate the effect of low light on their nutritional and sensory qualities [105]. The shaded
groups could be clearly distinguished from the control (0 day), and the 20-day group could be
separated from the 15- and 18-day groups. The shade treatment increased the levels of quercetin-
galactosylrutinoside, kaempferol glucosylrutinoside, epicatechin-3-O-gallate, EGCG, tryptophan,
phenylalanine, theanine, glutamine, glutamate, and caffeine but decreased those of quercetin-
glucosylrutinoside, kaempferol-glucoside, gallocatechin, and epigallocatechin. This result, along
with the sensory evaluation and color data, suggested that shade improved the nutritional and sensory
qualities of green tea. They also proposed a metabolomic pathway that could explain the relationship
between low light and tea quality.

Table 2. Metabolic profiling of tea extracts for quality evaluation.

Targets Products (Number) Ref.

Production origin/Price and grade Green tea (191) [90]

Production origin/Manufacturing type Green, oolong, black, yellow, white, and pur-erh teas (187) [106]

Climate Green tea (4) [107]

Altitude Black tea (4) [108]

Manufacturing type/Age Pu-erh, black, and green teas (24) [109]
Tuocha (Black, green, or postfermented type; 20) [110]

Shade culture/Season Green tea (4) [111]

Shade period/Nutritional and sensory qualities Green tea (4) [105]

Fermentation process Pu-erh tea (7) [112]
Pu-erh, black, green, white, yellow, and oolong teas (71) [113]
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Table 2. Cont.

Targets Products (Number) Ref.

Postfermentation year Pu-erh tea (30) [114]

Plucking position of leaf Green tea (5) [115]

Sensory quality

Green tea (53) [104]
Green tea (56) [103]
Green tea (53) [101]
Green tea (64) [102]

Health-promoting effect
Green tea (43) [8]
Green tea (43) [116]
Green tea (21) [117]

3.3. Analysis of Metabolic Responses to Tea Consumption

Metabolomics approaches have been reported as important and effective tools to examine
changes in endogenous metabolites in the whole system and potentially provide a better mechanistic
understanding of biochemical and cellular events [118]. Recently, the effects of black and green tea
consumption on the human metabolism were investigated [119]. Green and black tea consumption
(equivalent to 12 cups of tea per day) had different impacts on endogenous metabolites in urine and
plasma. Green tea intake increased the urinary excretion of several citric acid cycle intermediates
more than black tea, which suggests green tea flavanols affect the human oxidative energy metabolism
and/or biosynthetic pathways. Hodgson and coworkers showed that GC-MS and LC-MS-based MP of
human plasma could enhance our understanding of the mode of action of exercise and GTE beyond the
physiological outcomes [120]. Moderate exercise stimulated multiple metabolic pathways including
lipolysis, glycolysis, the citric acid cycle, and the adrenergic system. Metabolite changes induced
by GTE were subtler and affected fewer pathways when compared with those induced by exercise
alone. Supplementation with GTE for 7 days (1200 mg total catechins and 240 mg caffeine/day)
mainly enhanced metabolites indicative of lipolysis and fat oxidation under resting conditions when
compared with a placebo. This effect was not enhanced during exercise. Furthermore, GTE did not
stimulate the adrenergic system during rest and exercise because no increase in noradrenaline and
related catecholamines was observed. This result challenges the idea that catechol-O-methyltransferase
inhibition as the putative mechanism of action of GTE in vivo. Yet GTE stimulated lipolysis under
resting conditions, which suggested nonadrenergic mechanisms were involved.

Green tea is thought to have beneficial health effects, including protective effects against oxidative
stress. Acetaminophen (APAP) is a widely used analgesic drug that can cause acute liver injury in
overdose situations. Lu et al. explored the effects of GTEs (500 or 1000 mg/kg) on APAP-induced
hepatotoxicity in liver tissue extracts using MP of mice livers after GTE pretreatment 3 h or 3 days
before APAP exposure or GTE exposure 6 h after APAP [121]. GTE given before APAP ameliorated the
APAP-induced hepatotoxicity in a dose-dependent manner, whereas GTE given after APAP potentiated
the toxicity. APAP exposure alone significantly altered multiple metabolite levels compared with the
control. By comparison, with GTE pretreatment, the metabolite levels returned to control levels or
showed lower changes. By contrast, GTE given after APAP caused greater changes in the metabolite
levels than APAP alone, indicating more severe hepatotoxicity. The changes in liver metabolites
indicated perturbations of fatty acid, energy, bile acid, and phospholipid metabolisms induced by
APAP, with differing effects on these metabolites depending upon the time of GTE exposure. The results
indicated that the time at which GTE was given greatly influenced the severity of APAP-induced
toxicity. These findings highlight the need to understand the interactions between GTE and drugs,
and support the importance of a metabolomic approach.
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3.4. Evaluation of Health-Promoting Effects

GTEs have various health benefits, and these vary from cultivar to cultivar. Although there
are numerous tea cultivars, little is known about the differences in their nutraceutical properties.
We performed metabolomic analyses to explore the relationship between the metabolome and
health-promoting attributes of a diverse range of Japanese green tea cultivars [8]. We investigated
the abilities of leaf extracts from 43 Japanese green tea cultivars to inhibit thrombin-induced
phosphorylation of myosin regulatory light chain (MRLC) in human umbilical vein endothelial cells.
This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction.
Among the tested cultivars, Cha Chuukanbohon Nou-6 and Sunrouge (SR) strongly inhibited
MRLC phosphorylation. To evaluate the bioactivities of green tea cultivars using a metabolomics
approach, metabolite profiles of all tea extracts were determined by LC-MS (Figure 5). Multivariate
analyses revealed differences among the green tea cultivars with respect to their abilities to inhibit
MRLC phosphorylation. In the SR cultivar, polyphenols were associated with its unique metabolic
profile and its bioactivity. In addition, using PLS regression analysis, we constructed a reliable
bioactivity-prediction model to predict the inhibitory effect of a tea cultivar based on its metabolome.
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Figure 5. Multivariate statistical analyses of metabolic profiles of diverse green tea cultivars and
their bioactivities. (A) PCA score plot shows separate clustering of metabolic profiles corresponding
to Nou-6 and SR, and other cultivars. The number in the figure indicates the bioactivity ranking
of the tea cultivar; OPLS-DA score plots (B,C) discriminate between the more bioactive SR cultivar
and other cultivars, such as the non-bioactive Yabukita (YB) cultivar and the less bioactive Benifuuki
(BF) cultivar. The predictive ability parameter Q2 was 0.999, indicating that the OPLS-DA models
were reliable; (D) The bioactivity-prediction PLS regression model was calculated from 43 tea samples
included in 38 training and 5 test (pink circle) sets. The correlation coefficient R2 and the cross-validated
correlation coefficient Q2 were both more than 0.9. The validation error, value root mean squared error
of prediction (RMSEP), was less than 5% (8.62 = 3.8%). These results indicated that the PLS regression
model was reliable. Adapted with permission from reference [8].



Molecules 2017, 22, 1621 13 of 23

This model was based on certain identified metabolites that were associated with bioactivity.
Intriguingly, when added to an extract from the non-bioactive cultivar Yabukita (YB), several
metabolites enriched in SR were able to transform it into a bioactive extract [8]. Generally,
most bioactive phytochemicals are isolated from crude extracts by fractionation and purification,
during which low-abundance but potentially interesting compounds may be lost. By contrast,
the aforementioned chemometric approach allows for the identification of the promising compounds
in a crude mixture containing many compounds at different concentrations in a single analysis without
fractionation or purification steps prior to LC-MS as well as additional bioactivity assessment after
LC-MS. This strategy may prove valuable for the isolation of additional bioactive compounds from
GTEs (Figure 6).
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Recently, Ku et al. used metabolomic approaches to determine the effect of manufacturing
type or cultivation method on the chemical compositions of a single tea cultivar (green tea or
pu-erh tea) [111,114]. They suggested that several polyphenolic compounds were associated with
manufacturing type, cultivation method, or anti-oxidant activity. In our research, we investigated
relationships between metabolomic data and the health-promoting effects in 43 green tea cultivars.
In the SR cultivar, we found certain polyphenolic constituents (delphinidin-glucoside/galactoside,
quercetin-glucoside/galactoside, and theogallin) were associated with bioactivity [8]. These polyphenols
differed from those reported by Ku et al. [111,114]. In addition, the levels of polyphenols, especially
anthocyanins, were very high in the SR cultivar, but very low in the most consumed and distributed
Japanese green tea cultivar YB. Although polyphenols have many health benefits, the relationships
between these compounds and the inhibition of MRLC phosphorylation in human endothelial cells
remains unclear. These facts indicate that a metabolomic approach is useful for identifying unique
bioactive factors. Such information may be useful for the development of markers to produce new
cultivars with greater bioactivity, and to screen for bioactive tea cultivars.

A MP approach enables us to obtain compositional information based on a correlation between
relative component abundance and bioactivity (functionality), which is indispensable for a better
understanding of green tea functionality under multicomponent systems. This chemometric
methodology can easily calculate the relative functionality of all coexisting multicomponent factors
detected in GTEs. This information may contribute new scientific evidence that could be useful for the
development of green tea-based functional foods, multicomponent botanical drugs, and preferable
combinations of foods/beverages for health benefits.
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3.5. Selection of Bioactivity-Related Chemical Combination

It is known that GTE induces apoptosis of cancer cells without adversely affecting normal cells.
In several clinical trials, GTE was well tolerated and had potential anti-cancer activity [122–126].
In the phytochemical libraries of GTE, EGCG is the primary compound responsible for the anti-cancer
effect of GTE, but the effect of EGCG alone is limited. The potential of other compounds to act
synergistically with EGCG in GTE has not been examined. To identify GTE compounds capable
of potentiating EGCG bioactivity, Kumazoe et al. performed LC-MS-based MP of multiple GTE
panels, and created an OPLS regression model using GTE composition profiles and bioactivity for
induction of apoptosis using multiple myeloma [116]. The bioactivities of the GTEs were explained
by their composition profiles. In this model, compounds highly relevant for explaining predicted
apoptosis-inducing effects were also identified from VIP values. Large VIP values (>1) are the most
relevant for explaining the predicted bioactivity. To screen candidates for effective anti-apoptotic
combinations, compounds with high VIP rankings were selected. Among these compounds, only the
polyphenol eriodictyol significantly potentiated the anti-cancer effect of EGCG in vitro and in
a mouse tumor model by amplifying EGCG-induced activation of the 67-kDa laminin receptor
(the cell-surface EGCG-sensing molecule)/protein kinase B/endothelial nitric oxide synthase/protein
kinase C delta/acid sphingomyelinase signaling pathway. These results suggest that MP is an
effective chemical-mining approach for identifying botanical drugs with therapeutic potential against
multiple myeloma (Figure 6). Furthermore, these findings highlight the potential application of MP
techniques to evaluate the pharmacological effects of diverse compounds in raw plant extracts and
to screen for anti-cancer compounds or synergetic sensitizers. This metabolomic screening approach
with supervised multivariate OPLS regression analysis could be a valuable strategy for preclinical
identification of anti-cancer compounds.

Although understanding their chemical composition is vital for accurately predicting the
bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to
easily predict the bioactivity of multicomponent systems from the complex behaviors of multiple
coexisting factors. By contrast, MP enables theoretical calculation of the relative contributions
of all multicomponent factors detected in crude samples to the total bioactivity. Considering
the principle of this methodology, it is expected that MP may become an effective strategy for
obtaining a comprehensive understanding of the physiological activities of multicomponent drugs
and nutraceuticals. Recently, we demonstrated that the MALDI-MS-MP technique could be used to
evaluate the anti-oxidant activity, oxygen radical absorbance capacity (ORAC), of diverse GTE panels
based on their compositional balances, and select an effective chemical combination to predict the
bioactivity [117].

The chemometric procedure OPLS regression analysis allowed the evaluation of GTE bioactivity
from multicomponent rather than single-component information (Figure 7A,B). The bioactivity
could be easily evaluated by calculating the summed abundance of a few selected components
that contributed most to construction of the prediction model. Furthermore, the chart visualization
was an effective strategy to easily understand ORAC values using the selected component
combination (Figure 7C). This finding suggests a promising strategy for efficiently selecting candidate
combinations from multivariate data of multiple sample panels with diverse bioactivities, which is
important but technically challenging in pharmaceutical, nutraceutical, and functional food research,
where single-sample panels are dominant. In conventional research on the evaluation of quality
and bioactivity, the goal is usually to isolate a single component from crude mixtures and use its
abundance to predict the sample’s properties. By contrast, the aforementioned study has shown that
bioactivity can be predicted using multicomponent information (i.e., the abundances of a combination
of components), the accuracy of which depends on the chosen combination of components and the
choice between three abundance measurements (Intensity, Relative, or Score) (Figure 7A). These efforts
will enhance understanding of chemometrics procedures, and contribute to development of an effective
and simple means of data presentation using multicomponent information. This information may
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benefit the application of multivariate statistical methodology to the evaluation of the bioactivities in
crude multicomponent systems.Molecules 2017, 22, 1621 15 of 23 
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demonstrating that the ORAC can be visually estimated from the abundances of the four components. 
Adapted with permission from reference [117].  

In pharmaceutical, nutraceutical, and food functionality research, the conventional evaluation 
method for bioactivity, targeted analysis, attempts to predict the total bioactivity of an entire sample 
by measuring the activity and abundance of a single component. However, this approach carries a 
risk of overestimating or underestimating bioactivity by neglecting the potential interfering effects of 
multiple coexisting factors. In addition, such an approach cannot easily calculate the relative 
contributions of all coexisting factors to the total bioactivity of an entire sample. Furthermore, the 
screening of bioactivity-related chemical combinations from crude samples is generally time-
consuming, expensive, and labor-intensive because of the multiple, repetitive processes for 
fractionation and the bioassay (Figure 6). The results of the aforementioned study suggested that a 
chemometrics-based and non-targeted MP approach, using multiple GTE panels with diverse 
bioactivities, could overcome these drawbacks. 

4. Conclusions 

For specifically sensing complex behaviors of low-molecular-weight phytochemicals in the body 
or a tea leaf infusion, we have proposed new concepts and techniques. This includes an in situ label-

Figure 7. Chemometrics-driven selection of bioactivity-correlated chemical combinations in GTEs and
visualization of observed ORAC values using the selected combination. (A) The highest correlation was
found between the observed ORAC value and the summed abundance (Intensity) of four components
as a bioactivity-predictive combination. Correlations based on the relative value (Relative: Maximum,
100; Minimum, 1) and ranked scored value (Score: Top, 21; Bottom, 1) of the summed abundances
are also shown; (B) Correlation of the Relative value of each individual component with the ORAC;
(C) Observed ORAC values of GTEs visualized as radar charts using information from the four selected
components. Selected representative charts of the GTEs are shown, demonstrating that the ORAC can
be visually estimated from the abundances of the four components. Adapted with permission from
reference [117].

In pharmaceutical, nutraceutical, and food functionality research, the conventional evaluation
method for bioactivity, targeted analysis, attempts to predict the total bioactivity of an entire sample by
measuring the activity and abundance of a single component. However, this approach carries a risk of
overestimating or underestimating bioactivity by neglecting the potential interfering effects of multiple
coexisting factors. In addition, such an approach cannot easily calculate the relative contributions
of all coexisting factors to the total bioactivity of an entire sample. Furthermore, the screening of
bioactivity-related chemical combinations from crude samples is generally time-consuming, expensive,
and labor-intensive because of the multiple, repetitive processes for fractionation and the bioassay
(Figure 6). The results of the aforementioned study suggested that a chemometrics-based and
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non-targeted MP approach, using multiple GTE panels with diverse bioactivities, could overcome
these drawbacks.

4. Conclusions

For specifically sensing complex behaviors of low-molecular-weight phytochemicals in the body
or a tea leaf infusion, we have proposed new concepts and techniques. This includes an in situ
label-free MALDI-MS imaging technique for visualizing spatially-resolved biotransformation based on
simultaneous mapping of orally-dosed EGCG and its phase II metabolites, and a chemometrics
approach capable of discriminating and predicting the functionalities of multicomponent GTEs
from their compositional balances and calculating the relative functionalities of all components.
These findings will provide important insight into functionality-related interactions between
phytochemicals and the body. This approach should overcome the drawbacks (low specificity,
time and labor requirements, expensive, and lack of ability to analyze multiple components)
associated with conventional molecular-sensing techniques. Beneficial information on the usefulness
of phytochemical-sensing technology in GTE research will emerge from further biological applications
such as disease model analysis and human intervention trials. This review will be applicable to studies
of a wide range of other foods and herbal medicines.
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