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A systematic evaluation of single cell RNA-seq
analysis pipelines
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The recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created a

large variety of experimental and computational pipelines for which best practices have not

yet been established. Here, we use simulations based on five scRNA-seq library protocols in

combination with nine realistic differential expression (DE) setups to systematically evaluate

three mapping, four imputation, seven normalisation and four differential expression testing

approaches resulting in ~3000 pipelines, allowing us to also assess interactions among

pipeline steps. We find that choices of normalisation and library preparation protocols have

the biggest impact on scRNA-seq analyses. Specifically, we find that library preparation

determines the ability to detect symmetric expression differences, while normalisation

dominates pipeline performance in asymmetric DE-setups. Finally, we illustrate the impor-

tance of informed choices by showing that a good scRNA-seq pipeline can have the same

impact on detecting a biological signal as quadrupling the sample size.
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Many experimental protocols and computational analysis
approaches exist for single cell RNA sequencing
(scRNA-seq). Furthermore, scRNA-seq analyses can

have different goals including differential expression (DE) ana-
lysis, clustering of cells, classification of cells and trajectory
reconstruction1. All these goals have the first analysis steps in
common in that they require expression counts or normalised
counts. Here, we focus on these important first choices made in
any scRNA-seq study, using DE-inference as performance read-
out. Benchmarking studies exist only separately for each analysis
step, which are library preparation protocols2,3, alignment4,5,
annotations6, count matrix preprocessing7,8 and normalisation9.
However, the impact of the combined choices of the separate
analysis steps on overall pipeline performance has not been
quantified. In order to achieve a fair and unbiased comparison of
computational pipelines, simulations of realistic data sets are
necessary. This is because the ground truth of real data is
unknown and alternatives, such as concordance analyses are
bound to favour similar and not necessarily better methods.

To this end, we integrate popular methods for each analysis
step into our simulation framework powsimR10. As the basis for
simulations, powsimR uses raw count matrices to describe the
mean-variance relationship of gene expression measures. This
includes the variance introduced during the experiment itself as
well as extra variance due to the first to computational steps of
expression quantification. Adding DE then provides us with
detailed performance measures based on how faithfully DE-genes
can be recovered.

One main assumption in traditional DE-analysis is that dif-
ferences in expression are symmetric. This implies that either a
small fraction of genes is DE while the expression of the majority
of genes remains constant or similar numbers of genes are up-
and down-regulated so that the mean total mRNA content does
differ between groups11. This assumption is no longer true when
diverse cell types are considered. For example, Zeisel et al.12 find
up to 60% DE genes and differing amounts of total mRNA levels
between cell types. This issue of asymmetry is conceptually one of
the characteristics that distinguishes single cell from bulk RNA-
seq and has not been addressed so far. Therefore, we simulate
varying numbers of DE-genes in conjunction with small to large
differences in mRNA content including the entire spectrum of
possible DE-settings.

Realistic simulations in conjunction with a wide array of
scRNA-seq methods, allow us not only to quantify the perfor-
mance of individual pipeline steps, but also to quantify inter-
dependencies among the steps. Moreover, the relative importance
of the various steps to the overall pipeline can be estimated.
Hence, our analysis provides sound recommendations regarding
the construction of an optimal computational scRNA-seq pipe-
line for the data at hand.

Results
scRNA-seq data and simulations. The starting point for our
comprehensive pipeline comparison is a representative selection
of scRNA-seq library preparation protocols (Fig. 1a). Here, we
included one full-length method (Smart-seq213) and four UMI
methods2,14–16. The UMI strategies encompass two plate-based
(SCRB-seq, CEL-seq2) and the most common non-commercial
and commercial droplet-based protocols (Drop-seq, 10X Chro-
mium). CEL-seq2 differs from SCRB-seq in that it relies on linear
amplification by in vitro transcription, while SCRB-seq relies on
PCR amplification using the same strategy as 10X Chromium (see
Ziegenhain et al.2,17 for a detailed discussion). We then combine
the library preparation protocols with three mapping approa-
ches18–20 and three annotation schemes21–23 resulting in 45

distinct raw count matrices (see “Methods”). We simulated 27
distinct DE-setups per matrix, each with 20 replicates, resulting in
a total of 19,980 simulated data sets (Fig. 1b).

Genome-mapping quantifies gene expression with high accu-
racy. We first investigated how expression quantification is
affected by different alignment methods using our selection of
scRNA-seq experiments. For each of the three following strategies
we picked one the most popular methods (Supplementary Fig. 2):
(1) alignment of reads to the genome using splice-aware align-
ment (STAR18), (2) alignment to the transcriptome (BWA19) and
(3) pseudo-alignment of reads guided by a transcriptome (kal-
listo24).We then combined these with three annotation schemes
including two curated schemes (RefSeq21 and Vega23) and the
more inclusive GENCODE22 (Supplementary Table 2).

First, we assessed the performance by the number of reads or
UMIs that were aligned and assigned to genes (Fig. 2a and
Supplementary Fig. 3). Alignment rates of reads are comparable
across all scRNA-seq protocols. Assignment rates on the other
hand show some interaction between mapper and protocol. All
mappers, aligned and assigned more reads using GENCODE as
compared to RefSeq annotation, whereas the pseudo-aligner
kallisto profited most from the more comprehensive annotation
of GENCODE and here in particular the 3’UMI protocols (Figure
2A). Generally, STAR in combination with GENCODE aligned
(82–86%) and assigned (37–63%) the most reads, while kallisto
assigned consistently the fewest reads (20-40%) (Figure 2D).
BWA assigned an intermediate fraction of reads (22–44%), but—
suspiciously—these were distributed across more UMIs. As reads
with the same UMI are more likely to originate from the same
mRNA molecule and thus the same gene, the average number of
genes with which one UMI sequence is associated, can be seen as
a measure of false mapping. Indeed, we find that the same UMI is
associated with more genes when mapped by BWA than when
mapped by STAR (Fig. 2b). This indicates a high false mapping
rate, that probably inflates the number of genes that are detected
by BWA (Fig. 2c and Supplementary Fig. 4).

This said, it remains to be seen what impact the differences in
read or UMI counts obtained through the different alignment
strategies and annotations have on the power to detect DE-genes.

As already indicated from the low fraction of assigned reads,
kallisto has the lowest mean expression and the highest gene
dropout rates (Fig. 2d and Supplementary Figs. 7 and 8) and, as
expected from a high fraction of falsely mapped reads, BWA has
the largest variance. To estimate the impact that these statistics
have on the power to detect DE-genes, we use the mean-variance
relationship to simulate data sets with DE-genes (Fig. 2d, e). As
previously reported2, UMI protocols have a noticeably higher
power than Smart-seq2 (Fig. 2f). Moreover for Smart-seq2, we find
that kallisto, especially with RefSeq annotation, performs slightly
better than STAR, while for UMI-methods STAR performs better
(Fig. 2f and Supplementary Fig. 9).

In summary, using BWA to map to the transcriptome
introduces noise, thus considerably reducing the power to detect
DE-genes as compared to genome alignment using STAR or the
pseudo-alignment strategy kallisto, but given the lower mapping
rate of kallisto STAR with GENCODE is generally preferable.

Many asymmetric changes pose a problem without spike-ins.
The next step in any RNA-seq analysis is the normalisation of the
count matrix. The main idea here is that the resulting size factors
correct for differing sequencing depths. In order to improve
normalisation, spike-ins as an added standard can help, but are
not feasible for all scRNA-seq library preparations. Another
avenue to improve normalisation would be to deal with sparsity
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by imputing missing data prior to normalisation as discussed in
the next chapter (Fig. 1c). To begin with, we compare how much
the estimated size factors deviate from the truth. As long as there
is only a small proportion of DE-genes or if the differences are
symmetric, estimated size factors are not too far from the simu-
lated ones and there are no large differences among methods
(Fig. 3a and Supplementary Figs. 10 and 11). However with
increasing asymmetry, size factors deviate more and more and the
single cell methods scran25 and SCnorm26 perform markedly
better than the bulk methods TMM27, MR28 and Positive Counts
as well as the single cell method Linnorm29. Census30 is an outlier
in that it has a constant deviation of 0.1, which is due to filling in
1 when library sizes could not be calculated.

To determine the effect of these deviations on downstream
analyses, we evaluated the performance of DE inference using
different normalisation methods (Fig. 3b and Supplementary
Figs. 12–15). Firstly, the differences in the TPR across normal-
isation methods are only minor, only Linnorm performed
consistently worse (Supplementary Fig. 13). In contrast, the
ability to control the FDR heavily depends on the normalisation

method (Supplementary Fig. 14). For small numbers of DE-genes
or symmetrically distributed changes, the FDR is well controlled
for all methods except Linnorm. However, with an increasing
number and asymmetry of DE-genes, only SCnorm and scran
keep FDR control, provided that cells are grouped or clustered
prior to normalisation. In our most extreme scenario with 60%
DE-genes and complete asymmetry, all methods except Census
loose FDR control. SCnorm, scran, Positive Counts and MR
regain FDR control with spike-ins for 60% completely asym-
metric DE-genes (Supplementary Fig. 14). Given similar TPR of
the methods, this FDR control determines the pAUC (Fig. 3b, c).

Since in real data it is usually unknown what proportion of
genes is DE and whether cells contain differing levels of mRNA,
we recommend a method that is robust under all tested scenarios.
Thus, for most experimental setups scran is a good choice, only
for Smart-seq2 data without spike-ins, Census might be a better
choice.

Imputation has little impact on pipeline performance. If the
main reason why normalisation methods perform worse for
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Fig. 1 Study Overview. a The data sets yielding raw count matrices: We use scRNA-seq data sets2,16 representing 5 popular library preparation protocols.
For each data set, we obtain multiple gene count matrices that result from various combinations of alignment methods and annotation schemes (see also
Supplementary Figs. 1 and 2, and Supplementary Tables 1 and 2). b The simulation setup: Using powsimR10 distribution estimates from real count matrices,
we simulate the expression of 10,000 genes for two groups with 384 vs 384, 96 vs. 96 and 50 vs. 200 cells, where 5, 20 or 60% of genes are DE between
groups. The magnitude of expression change for each gene is drawn from a narrow gamma distribution (X ~ Γ(α= 1, β= 2)) and the directions can either
be symmetric, asymmetric or completely asymmetric. To introduce slight variation in expression capture, we draw a different size factor for each cell from
a narrow normal distribution. c The analysis pipeline: The simulated data sets are then analysed using combinations of four count matrix preprocessing,
seven normalisation and four DE approaches. The evaluation of these pipelines focuses on the outcome of the confusion matrix and its derivatives (TPR,
FDR, pAUC, MCC), deviance in library size estimates (RMSE) and computational run time
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scRNA-seq than for bulk data is the sparsity of the count matrix,
reducing this sparsity by either more stringent filtering or
imputation of missing values should remedy the problem31. Here,
we test the impact of frequency filtering and three imputation
approaches (DrImpute32, scone33, SAVER34) on normalisation
performance. Note, that we use the imputation or filtering only to

obtain size factor estimates, that are then used together with the
raw count matrix for DE-testing.

We find that simple frequency filtering has no effect on
normalisation results (Fig. 3d). Performance as measured by
pAUC is identical to using raw counts. In contrast, imputation
can have an effect on performance and there are large differences
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among methods. Imputation with DrImpute and scone rarely
increased the pAUC and occasionally as in the case of SCRB-seq
with MR normalisation, the pAUC even decreased by 100 and
76%, respectively due to worse FDR control relative to using raw
counts (Supplementary Fig. 18). In contrast, these two imputation
methods achieved an appreciable increase in pAUC together with
scran normalisation, ~28, 4 and 9% for 10× Genomics, SCRB-seq
and Smart-seq2 data, respectively. SAVER on the other hand
never made things worse, irrespective of data set and normal-
isation method but was able to rescue FDR control for
MR normalisation of UMI data, even in a completely asymmetric
DE-pattern.

These observations suggest that data sets with a high gene
dropout rate might benefit more from imputation than data
sets with a relatively low gene dropout rate (Supplementary
Figs. 16–18). In order to further investigate the effect of
imputation on sparse data, we downsampled the Smart-seq2
and SCRB-seq data, which were originally based on 1 million
reads/cell, to make them more comparable to the 10X-HGMM
data with on average of 60,000 reads/cell. A radical down-
sampling to 10% of the original sequencing depth decreases the
number of detected genes for SCRB-seq by only 1%, suggesting
that the original RNA-seq library was sequenced to saturation.
In contrast, the Smart-seq2 data were much less saturated at 1
million reads/cell: Downsampling reduced the number of
detected genes by 34%. However, the relative effect of
imputation on performance remains small. This is probably
due to the fact that the main effect of downsampling is a
reduction in the detected genes, which also cannot be imputed.
Thus, if a good normalisation method is used to begin with
(e.g. scran with clustering), the improvement by imputation
remains relatively small.

Good normalisation removes the need for specialised DE-tools.
The final step in our pipeline analysis is the detection of DE-
genes. Recently, Soneson et al.31 benchmarked 36 DE approaches
and found that edgeR27, MAST35, limma-trend36 and even the T-
Test performed well. Moreover, they found that for edgeR, it is
important to incorporate an estimate of the dropout rate per cell.
Therefore, we combine edgeR here with zingeR37.

Both edgeR-zingeR and limma-trend in combination with a
good normalisation reach similar pAUCs as using the simulated
size factors (Fig. 4). However, in the case of edgeR-zingeR this
performance is achieved by a higher TPR paid while loosing FDR
control (see Supplementary Figs. 19–21), even in the case of
symmetric DE-settings (Supplementary Figs. 22–24).

Nevertheless, we find that DE-analysis performance strongly
depends on the normalisation method and on the library
preparation method. In combination with the simulated size
factors or scran normalisation, even a T-Test performs well.

Conversely, in combination with MR or SCnorm, the T-Test has
an increased FDR (Supplementary Fig. 20). SCnorms bad
performance with a T-Test was surprising given SCnorms good
performance with limma-trend (Fig. 3b). One explanation could be
the relatively large deviation of SCnorm derived size factors (Fig. 3a
and Supplementary Fig. 11) which inflate the expression estimates.

Furthermore, we find that MAST performs consistently worse
than the other DE-tools when applied to UMI-based data, but
-except in combination with SCnorm- it is doing fine with Smart-
seq2 data. Interestingly, Census normalisation in combination
with edgeR-zingeR outperformed limma-trend with Smart-seq2
(Supplementary Fig. 25).

In concordance with Soneson et al.31, we found that limma-
trend, a DE-tool developed for bulk RNA-seq data showed the
most robust performance. Moreover, library preparation and
normalisation appeared to have a stronger effect on pipeline
performance than the choice of DE-tool.

Normalisation is overall the most influential step. Because
we tested a nearly exhaustive number of ~3000 possible scRNA-
seq pipelines, starting with the choice of library preparation
protocol and ending with DE-testing, we can estimate the
contribution of each separate step to pipeline performance for
our different DE-settings (Fig. 1b). We used a beta regression
model to explain the variance in pipeline performance with
the choices made at the seven pipeline steps (1) library pre-
paration protocol, (2) spike-in usage, (3) alignment method, (4)
annotation scheme, (5) preprocessing of counts, (6) normal-
isation and (7) DE-tool as explanatory variables. We used the
difference in pseudo-R2 between the full model including
all seven pipeline steps and leave-one-out reduced models to
measure the contribution of each separate step to overall
performance.

All pipeline choices together (the full model) explain ~50 and
~60% of the variance in performance, for 20 and 60% DE-genes,
respectively (Fig. 5a). Choices of preprocessing the count matrix
contribute very little (ΔR2 ≤ 1%). The same is true for annotation
(ΔR2 ≤ 2%) and aligner choices (ΔR2 ≤ 5%). For aligner and
annotation, it is important to note that these are upper bounds,
because our simulations do not include differences in gene
detection rates (Fig. 2c).

Surprisingly, the choice of DE-tool only matters for symmetric
DE-setups (ΔR2

DE¼0:2 ¼ 15%; ΔR2
DE¼0:6 ¼ 11%), and the choice of

library preparation protocol has an even bigger impact on
performance for symmetric DE-setups (ΔR2

Symmetric ¼ 17� 29%)
and additionally for 5% asymmetric changes (ΔR2

5%Asymmetric ¼ 17%).
Normalisation choices have overall a large impact in all DE-settings
(ΔR2= 12–38%), where the importance increases with increasing
levels of DE-genes and increasing asymmetry. Spike-ins are

Fig. 2 Expression Quantification. a Read alignment and assignment rates per library preparation protocol stratified over aligner and annotation. The lighter
shade represents the percentage of the total reads that could be aligned and the darker shade the percentage that also was uniquely assigned (see also
Supplementary Fig. 3). For comparability, cells were downsampled to 1 million reads/cell, with the exception of 10× Genomics data that were only
sequenced to on average 60,000 reads/cell. Hence, these data are farther from saturation and have a higher UMI/read ratio. b Number of genes per UMI
with >1 reads for BWA and STAR alignment using the SCRB-seq data set and GENCODE annotation. Colours denote number bins of UMIs. c Number of
genes detected per Library Preparation Protocol stratified over Aligner and Annotation (i.e. at least 10% nonzero expression values) (see also
Supplementary Fig. 4). d Estimated mean expression, dispersion and gene dropout rates for SCRB-seq and Smart-seq2 data using STAR, BWA or kallisto
alignments with GENCODE annotation (see also Supplementary Fig. 7). e Mean-dispersion fitting line applying a cubic smoothing spline with 95%
variability bands for SCRB-seq and Smart-seq2 data using STAR, BWA or kallisto alignments with GENCODE annotation (see also Supplementary Fig. 8).
f The effect of quantification choices on the power (TPR) to detect differential expression stratified over library preparation and aligner. The expression of
10,000 detected genes over 768 cells (384 cells per group) were simulated given the observed mean-variance relation per protocol. Five percent of the
simulated genes are differentially expressed following a symmetric narrow gamma distribution. Unfiltered counts were normalised using scran. Differential
expression was tested using limma-trend (see also Supplementary Fig. 9)
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only necessary if many asymmetric changes are expected and
have little or no impact if only 5% of the genes are DE or the changes
are symmetric (Fig. 5a). Moreover, for completely asymmetric
DE-patterns, the regression model did not converge without
normalisation and spike-ins, because their absence or presence alone
pushed the MCCs to the extremes.

For the best performing pipeline [SCRB-seq+ STAR+
GENCODE+ SAVER imputation+ scran with clustering+
limma-trend], using 384 cells per group instead of 96 improves

performance only by 6.5–8%. Sample size is more important if a
naive pipeline is used. For [SCRB-seq+ BWA+GENCODE+
no count matrix preprocessing+MR+ T-Test] the perfor-
mance gain by increasing sample size is 10–12% and even
worse, for many asymmetric DE-genes, lower sample sizes
occasionally appear to perform better (Fig. 5b and Supplemen-
tary Fig. 26). Next, we tested our pipeline on publicly available
10× Genomics data set containing the expression profiles of
approx. 1000 human peripheral mononuclear blood cells
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(PBMC)16. First, we classified the cells using SingleR38 into the
celltypes available in the Blueprint Epigenomics Reference39

distinguishing Monocytes, NK-cells, CD8+ T-cells, CD4+ T-
cells and B-cells (Fig. 5c, d). We applied the previously defined
good (STAR+ gencode+ SAVER imputation+ scran with
clustering+ limma-trend) and naive (BWA+ gencode+ no
preprocessing+MR+ T-Test) pipeline to identify DE-genes
between the cell types. Cross-referencing the identified

DE-genes with known differences in marker gene expression39,
we find that the good pipeline always identifies a higher fraction
of the marker genes as DE than the naive pipeline (Fig. 5e).
Comparing NK-cells and CD8+ T-cells, the good pipeline
identifies 148 known markers as DE, while the naive pipeline
finds only 54. The diminished separation between those two
cell-types using the naive pipeline is already visible in the
UMAP (Fig. 5d).

Fig. 3 Normalisation choices determines DE-analysis performance, not count preprocessing. The data in panels a–c are based on Smart-seq2 data, all
panels are based on two groups of 384 cells, STAR alignment with GENCODE annotation was used for quantification. a The root mean squared error
(RMSE) of estimated library size factors per normalisation method is plotted for 20% asymmetric DE-genes (see also Supplementary Fig. 11) (Box and
whisker plot with centre line=median, bounds of box= 25th and 75th percentile, whiskers= 1.5 * interquartile range from the lower and upper bounds of
the box). b The discriminatory ability determined by the partial area under the curve (mean pAUC ± s.d.) based on DE testing with limma-trend for
normalisation without spike-ins per DE-pattern. The grey ribbon indicates the mean pAUC ± s.d. given simulated size factors (see also Supplementary
Figs. 13–15). c Using spike-ins for normalisation for 60% completely asymmetric DE-genes. d Effect of preprocessing the count matrix for 20% asymmetric
DE-genes without spike-ins. Counts were either left asis (‘none’), filtered or imputed prior to normalisation. The derived scaling factors were then used for
normalisation and DE testing was performed on raw counts using limma-trend (see also Supplementary Figs. 16–18). This procedure was applied to the full
count matrix (circle) and to the count matrix downsampled to 10% of its original sequencing depth (triangular). Missing data points are due to failing
imputation runs with the sparser data
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In summary, we identify normalisation and library preparation
as the most influential choices and the observation that
differences in computational steps alone can significantly lower
the required sample size nicely illustrates the importance of
bioinformatic choices.

Discussion
Here we evaluate the performance of complete computational
pipelines for the analysis of scRNA-seq data under realistic
conditions with large numbers of DE-genes and differences in
total mRNA contents between groups (Fig. 1). Furthermore, our
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simulations allow us not only to investigate the influence of
choices made at each pipeline step separately, but also to estimate
the relative importance and interactions between different steps
of an entire scRNA-seq analysis pipeline. We implemented all
assessed computational methods and more in powsimR, so that
users can easily evaluate pipeline performance given their own
data and expected DE-settings.

Beginning with the creation of the raw count matrix, we find
that transcriptome mapping with BWA19 appears to recover the
largest number of genes. However, many of these are probably
due to falsely mapped reads, also increase expression variance
which ultimately results in a lower sensitivity (Fig. 2c–f). In
contrast, the pseudo-alignment method kallisto24 appears to
assign reads precisely, but looses a lot of reads leading to a lower
mean expression. Finally, a genome mapping approach using the
splice-aware aligner STAR18 in conjunction with GENCODE
annotation recovers the most reads with the highest accuracy
(Fig. 5f).

Concerning the preprocessing of the count matrix, we found in
concordance with Andrews et al.40 that in particular for sparse
data such as 10X, SAVER34 imputation before normalisation
improves performance, while filtering genes has no effect with
our data sets and combinations of normalisation and DE-testing
methods.

The choice that had the largest impact on performance
throughout all tested DE-settings is the choice of normalisation
method. Only for symmetric changes, the choice of library pre-
paration protocol had a slightly larger impact than normalisation.
In line with Evans et al. (2018)11, we found that normalisation
performance of bulk methods and also some of the single cell
methods declined with asymmetry (Fig. 3b). In particular, for
60% completely asymmetric DE-genes only Census retained FDR
control. Unfortunately, Census is not recommended for the use
with UMI-counts. Thus, for UMI-counts and 60% completely
asymmetric changes, only the use of spike-ins could restore test
performance. In the debate about the usefulness of spike-ins17,41,
we land on the pro side: Our simulations clearly show that spike-
ins are useful in DE-testing settings with asymmetric changes
which is likely to be a common phenomenon in scRNA-seq data.
Due to good performance across DE-settings and its speed
(Supplementary Figs. 22 and 27) we would recommend scran
with prior clustering as the best choice for normalisation (Fig. 5f).

The choice in DE-testing method, our final pipeline step had
relatively little impact on overall pipeline performance. A good
normalisation prior to DE-testing alleviates the need for more
complex and thus vulnerable methods, such as for example
MASTs hurdle model which implicitly assumes that the CPM
values were generated from zero inflated negative binomial count
distribution. Indeed, we previously showed that also scRNA-seq
data fit a negative binomial distribution rather well and that the
previously reported zero-inflation in scRNA-seq data is mainly
due to amplification noise which is removed in UMI-data10.
Hence, it is not surprising that in concordance with Soneson

et al.31, we find that relatively straight forward DE-testing
methods adapted from bulk RNA-seq perform well with scRNA-
seq data.

Finally, we want to remark that paying attention to the details
in a computational pipeline and in particular to normalisation
pays off. The effect of using a good pipeline as compared to a
naively compiled one has a similar or even greater effect on the
potential to detect a biological signal in scRNA-seq data as an
increase in cell numbers from 96 to 384 cells per group (Fig. 5b).

Methods
Single cell RNA-seq data sets. The starting point for our comprehensive pipeline
comparison is the scRNA-seq library preparation (Fig. 1a). In our comparison, we
included the gene expression profiles of mouse embryonic stem cells (mESC) as
published in Ziegenhain et al.2 (Supplementary Fig. 1). We selected four data sets
for our comparison: Smart-seq213 a well-based full-length scRNA-seq protocol,
CEL-seq215 a well-based 3′ UMI-protocol using linear amplification, SCRB-seq a
well-based 3′ UMI-protocol with PCR amplification2,42 and Drop-seq14 a droplet-
based 3′ UMI-protocol. In addition, 92 poly-adenylated synthetic RNA transcripts
of known concentration designed by the External RNA Control Consortium
(ERCCs)43 were spiked in for all methods except Drop-seq. All raw cDNA
sequencing reads were cut to a length of 45 bases and downsampled to one million
cDNA reads per cell (Supplementary Table 1 and Supplementary Fig. 1).

Finally, we added a 10X Chromium data set sequencing mouse NIH3T3 cells16,
yielding ~400 good cells with on average ~60,000 reads/cell and another 10X data
set analysing ~1000 human peripheral blood mononuclear cells (PBMCs).

These choices of library preparation protocols cover the diversity in current
protocols without imposing partiality due to biological differences and technical
handling.

Gene expression quantification. For genome mapping and quantification of the
UMI-data with a splice-aware aligner, we used the zUMIs44 (v.0.0.3) pipeline with
STAR18 (v.2.5.3a) and the mouse genome (Mus_musculus.GRm38) together with
annotation files (gtf) for GENCODE (vM15), Vega (VEGA68) and RefSeq (Release
85) (Supplementary Table 2). zUMIs is a fast and flexible pipeline for processing
scRNA-seq data where cell barcode or UMI reads with low sequence quality reads
are filtered out prior to UMI collapsing by sequence identity which yields identical
count results as UMI-tools44,45. For Smart-Seq2 we use the same pipeline settings
as in zUMIs, simply omitting the UMI collapsing step (Supplementary Table 3).

For transcriptome alignment, we downloaded transcriptome fasta files
corresponding to the annotations listed above. We used BWA19 (v0.7.12) to align
the scRNA-seq reads to these transcriptomes. We only removed reads that aligned
equally well to transcripts of different genes as truly multi-mapped. The remaining
reads were tallied up per gene. For UMI data, the reads were collapsed per gene by
identity, similar to the strategy recommended in zUMIs.

For kallisto24 (v0.43.1), a transcriptome-guided pseudo-alignment method, we
followed the recommended quantification procedure for scRNA-seq data to yield
abundance estimates per equivalence class. To be comparable with other alignment
methods, the counts per equivalence class were collapsed per gene. The counts of
equivalence classes representing multiple genes were filtered out. For SCRB-seq,
CEL-seq2, Drop-seq and 10× Genomics libraries, we chose the UMI-aware
quantification option. The ERCC spike-in sequences were appended to the genome
or transcriptome sequences for quantification.

Simulations. We used powsimR to estimate, simulate and evaluate single cell
RNA-seq experiments10. PowsimR has been independently validated for bench-
marking DE-approaches31 and consistently reproduces the mean-variance rela-
tionship and dropout rates of genes of scRNA-seq data (see also Supplementary
Fig. 28). The gene expression quantification using three different aligners in
combination with three annotations per library preparation protocol produced 45
count matrices. These count matrices are the basis for our estimation in powsimR.

Fig. 5 Evaluation of analysis pipeline. a, b The expression of 10000 genes over 768 cells were simulated and 5, 20 or 60% of the genes were differentially
expressed following a symmetric or asymmetric narrow gamma distribution. This simulation setup was applied to protocols, alignments, annotations,
preprocessing of counts, normalisation and DE tools. For each analysis set, the Matthew Correlation Coefficient (mean MCC ± s.d.) was averaged over
20 simulations and rescaled to [0, 1] interval. The MCC was used as a response variable in beta regression models with log-log link function. a The
contribution of each covariate in the full model (~Protocol+Aligner+Annotation+ Preprocessing+Normalisation+DE-Tool). b Performance according
to sample size, 1 good and 1 naive pipeline (see also Supplementary Fig. 26). c–e The expression of ~1000 human PBMcs profiled with 10× Genomics were
processed using the good and naive pipeline. Cell types were identified with SingleR classification using the Blueprint Epigenomics Reference. Cell types are
represented in a UMAP, for good c and naive d pipeline, respectively. True marker genes, i.e., given by the reference, per pairwise comparison of cell types
for the good and naive pipeline are given in e where genes needed to have a adjusted p-value < 0.1, absolute log2 fold change threshold (>0.1) and
expressed in at least 10% of the cells to be considered. f Pipeline recommendations for UMI and Smart-seq2 data
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Genes needed at least one read or UMI count in at least one cell to be considered in
the estimation for simulation parameters. Since we10 and others46,47 have found
previously, we assume that UMI counts follow a negative binomial distribution and
only Smart-seq2 needs the inclusion of zero-inflation. To simulate spike-in data, we
added an implementation of the simulation framework for pure technical variation
of spike-ins described in Kim et al.48 to powsimR. The parameters required for
these simulations were estimated from 92 ERCC spike-ins in the SCRB-seq, CEL-
seq2 and Smart-seq2 data, respectively2. To evaluate the effect of differing
sequencing depths, we added a new module to powsimR that estimates the degree
of PCR amplification for UMI data. This allows the user to downsample a read
count matrix by binomial thinning as implemented in edgeR thinCounts()27 and
then to reconstruct the corresponding UMI count matrix base on the estimated
PCR amplification rates.

For a detailed evaluation of the pipelines, we simulated two groups of cells for
pairwise comparisons with the following three sample size setups: 96 vs. 96, 384 vs.
384 or 50 vs. 200 cells (Fig. 1b). For simplicity, we kept the number of genes that we
simulated constant at 10,000. To introduce slight variation in expression capture,
we draw a different size factor for each cell from a narrow normal distribution (X ~
N(μ= 1, σ= 0.1)) (Fig. 1b). This distribution fits the considered data sets well,
irrespective of the applied library preparation method. Furthermore, the two
groups of cells can have 5, 20 or 60% differentially expressed genes. To capture the
asymmetry of observed expression differences, we considered three setups of DE-
patterns: symmetric (50% up- and 50% downregulated), asymmetric (75% up- and
25% downregulated) or completely asymmetric (100% upregulated). The
magnitude of expression change is drawn from a narrow gamma distribution (X ~
Γ(α= 1, β= 2)) defining the log2 fold change, which is then added to the sampled
mean expression. The combination of these parameters results in a total of 27 DE-
setups that were then applied to the parameter estimates from 37 different count
matrices to simulate 20 replicates for each setting, producing a total of
19,980 simulated data sets.

These data sets were then analysed by a nearly exhaustive number of
combinations of four imputation strategies (scone, SAVER, DrImpute), gene
dropout filtering (remove genes with more than 80% zero expression values)
together with seven normalisation approaches (TMM, MR, Linnorm, Census,
Linnorm, scran, SCnorm) with or without spike-ins, depending on library
preparation protocol and method (Fig. 1c). Normalisation factors were then
derived as described in Soneson et al.31 and used in conjunction with the raw count
matrices for DE-testing using four representative approaches (T-Test, limma-trend,
edgeR-zingeR, MAST). The resulting p-values were corrected for multiple testing
with Benjamini-Hochberg FDR and we applied a threshold level of 10% to define
positive test results. All these steps were seamlessly implemented into powsimR
(github: https://github.com/bvieth/powsimR). In total we analysed 2,979 different
RNA-seq pipelines.

Evaluation metrics. To evaluate the normalisation results, we determined the root
mean squared error (RMSE) of a robust linear model using the difference between
estimated and simulated library size factors as response variable in rlm() imple-
mented in R-package MASS49 (v.7.3–51.1) (Supplementary Fig. 10)9.

All other measures are based on the final results of an entire scRNA-seq
pipeline ending with DE-testing. Knowing the identity of the genes that were
simulated to show differing expression levels and the results of the DE-testing, we
used a number of metrics related to the confusion matrix tabulating the number of
true positives, false positives, true negatives and false negatives. We define the
power to detect DE with the TPR (TPR ¼ TP

TPþFN). The false discovery rate is
defined as FDR ¼ FP

FPþTP. We combine these two measures in a TPR versus FDR
curve to quantify the trade-off between true and false discoveries in a genome-wide
multiple testing setup as advocated by50. We then summarise these curves by their
partial area under curve (pAUC) of TPR versus observed FDR that still ensures
FDR control at the nominal level of 10% (Supplementary Fig. 11). This way of
calculating the AUC is ideal for data with relatively high true negative rates as the
partial integration does not punish methods that are over-conservative, i.e. that stay
way below the nominal FDR.

To summarise the whole confusion matrix in one representative value we chose
the Matthews Correlation Coefficient (MCC ¼ TP�TN � FP�FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ
p ),

because it is a balanced measure ensuring a reliable comparison of method
performance across all DE-settings50,51. As for the pAUC, we calculated the maximal
value of MCC where the cutoff still ensured FDR control at the nominal level of 10%.

To quantify the relative contribution of each step in the analysis pipeline, we
used the MCC as a response variable in a beta regression model implemented in R-
package betareg (v.3.1–1)52 with each individual pipeline step. Because the MCC
assumes the extremes of 0 and 1 in some DE-settings, we applied the recommended

transformation, namely MCCtransformed ¼ MCC�ðn�1Þþ0:5
n , where n is the sample

size53. The contribution is then given by the difference between the full model
pseudo-R2 containing all covariates versus a model leaving one step out at a time.
This is then scaled to the total variance explained to give relative ΔR2 percentages.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Any relevant data are available from the authors upon reasonable request. The scRNA-
seq data used in this manuscript are all publicly available, and they are summarised in
Supplementary Table 1. The SCRB-seq, Smart-seq2, Drop-seq, CEL-seq2 data are
available at the Gene Expression Omnibus (GEO) under accession code GSE75790. The
HGMM and PBMC data sets are available at 10x Genomics’s official website (https://
support.10xgenomics.com/single-cell-gene-expression/datasets). The data produced by
the analysis in this manuscript is freely available from the following zenodo data
repository (https://doi.org/10.5281/zenodo.3364466).

Code availability
The software and code used are summarised in Supplementary Tables 3 and 4. A
compendium containing processing scripts and detailed instructions to reproduce the
analysis for this manuscript is freely available from the following GitHub repository
(https://github.com/bvieth/scRNA-seq-pipelines).
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