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Introduction

Human health is a culmination of dynamic interactions and 
regulations by several genetic, non-genetic, and environ-
mental factors. The regulatory systems of the body work 
intricately and coordinately to maintain functional homeo-
stasis in cells and tissues by sensing and regulating nutrient 
availability and response, cell division and regeneration, 
thwarting off foreign and infectious agents as well as keeping 
memory and swiftness of the neurological responses. These 
systems are invariably deregulated during aging and dis-
eases, and any preventive or therapeutic approach attempts 
to reinstate this ‘healthy’ state of homeostasis (van Beek 
et al., 2016). Aging is recognized as the single most influ-
ential risk factor that dramatically enhances the frequency 
and susceptibility of the elderly to several critical illnesses 
including the defining disorders of the twenty-first century, 
i.e., cancer and diabetes as well as the ongoing COVID-19 
pandemic (Chen et al., 2021a; Fulop et al., 2019; Niccoli and 
Partridge, 2012). Organismal aging seems inevitable, and yet 
understanding of the underlying cause(s) and mechanisms 
of aging have long remained ambiguous and perplexing 
largely due to its stochastic and multifaceted nature. How-
ever, advances in our current molecular concepts of aging 
are beginning to answer some of the fundamental questions 
related to the evolutionary significance of aging as well as 
its predisposition to age-associated disorders. Unlike growth 
and development, aging is not considered a programmed 
process, (Blagosklonny, 2013), and accumulating evidence 
suggests that the observable macro phenotype of aging is 
essentially a culmination of microscopic cellular damage 
that builds up over time (Rattan, 2008; Yin and Chen, 2005). 
In fact, a strong view is now developing that understanding 
aging itself should be considered central for comprehend-
ing various age-related diseases and the development of 
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common mitigative strategies (Blagosklonny, 2012; Hay-
flick, 2021; Le Bourg, 2022). In this regard, the process 
of cellular senescence is emerging as an over-arching phe-
nomenon that seemingly links cellular aging to organismal 
aging, and therefore, a cellular senescence-centric view of 
aging is rapidly gaining attention (Borghesan et al., 2020; 
Jeyapalan and Sedivy, 2008). Perhaps even more strikingly, 
cellular senescence is also considered a common underlying 
causative factor in the pathogenesis of distinct age-related 
human disorders including but not limited to arthritis, dia-
betes, neurodegenerative disorders, sarcopenia, cancer, and 
cardiovascular diseases thereby enabling gerontologists to 
study age-related diseases through a novel and integrative 
approach (Borghesan et al., 2020; Kaur and Farr, 2020).

Targeting cellular senescence and its phenotype is rapidly 
gaining attention as a highly useful strategy in expanding 
organismal healthspan and lifespan (Soto-Gamez and Dema-
ria, 2017; Yuan et al., 2020). This also paves way for devel-
oping probable anti-aging or healthy aging therapies such as 
the identification and development of ‘geroprotectors’ (Ali-
per et al., 2016). While anti-aging may seem a far-fetched 
and philosophically contentious phenomenon; the notion of 
healthy aging appears to be a valid strategy that may prevent 
the aggravation or frequency of chronic or fatal diseases, 
thereby resulting in improved healthspan and/or lifespan 
(Kritchevsky, 2016). Amongst the non-genetic factors, 
exercise, lifestyle, and nutrition are the only known modu-
lators that can favorably influence health and aging. Further, 
nutrition is considered the single most potent factor that can 
mitigate some of the deleterious aspects of aging including 
predisposition to diseases, and thus a novel discipline called 
‘nutrigerontology’ has recently been emphasized (Verburgh, 
2015). The present narrative review delineates the current 
cellular senescence-centric molecular understanding of 
aging and its interdependent effects on the fundamental reg-
ulatory systems of the body. We then discuss the influence of 
primary and secondary nutritional components in modulat-
ing different aspects of cellular senescence and disease and 
deliberate probable research opportunities.

Cellular senescence in aging: molecular 
mechanisms and systemic effects

Aging has long remained a philosophical and scientific 
mystery (Medawar, 1952). From a biological perspective, 
the aging organismal phenotype is essentially considered a 
time-dependent accumulation of a variety of molecular and 
cellular damage that hampers tissue/organ functions ulti-
mately predisposing the elderly to morbidity and mortality 
(Rattan, 2008; Yin and Chen, 2005). Although several theo-
ries of aging have been put forward, an all-encompassing 
theory explaining the what, why, where, and how of aging 

has remained elusive. Notwithstanding this, accumulating 
studies are now beginning to uncover some of the funda-
mental aspects of aging, and in the process have also high-
lighted the intricacies of the process. In particular, the role 
of cellular senescence as the causal nexus explaining vari-
ous facets of aging is gaining attention amongst gerontolo-
gists (Borghesan et al., 2020). Cellular senescence was first 
identified in fibroblasts by Hayflick and Moorhead back in 
1961; (Hayflick and Moorhead, 1961), however, it was ini-
tially perceived as an in vitro artifact, and its acceptance as 
a mainstream aging theory was dismissed for a long time 
(Cristofalo et al., 2004). Observations in the last decade have 
now shown conclusive evidence that cellular senescence is 
indeed a ‘hallmark of aging’ which may potentially serve as 
a connecting factor among other known hallmarks of aging 
(López-Otín et al., 2013). Cellular senescence describes a 
morphologically, biochemically, and metabolically distinct 
state wherein the cells permanently lose the capacity to 
divide and enter a stable cell cycle arrest. These cells are 
then referred to as senescent cells (SC) and are character-
ized by shortened telomeres, hypertrophy, altered chromatin 
structure, accumulation of DNA damage and reactive oxy-
gen species (ROS), activation of cell cycle inhibitory path-
ways (p53, p16Ink4a, and/or p21CIP1), senescence-associated 
β-galactosidase (SA-β-gal) activity, resistance to apoptotic 
cell death, and development of senescence-associated het-
erochromatic foci (Fig. 1) (Campisi, 2013; Kim and Kim, 
2019). In addition, SC are also accompanied by a chronic 
pro-inflammatory behavior known as senescence-associated 
secretory phenotype (SASP) which consists of increased 
expression of a cell-specific battery of pro-inflammatory 
cytokines and growth factors (Birch and Gil, 2020). Devel-
opment of SC is a complex process but is invariably liked to 
chronic exposure to cellular stress (Ben-Porath and Wein-
berg, 2004). Cellular and metabolic stressors can activate 
either apoptosis or cellular senescence program depend-
ing upon the type and duration of the stressor. Although 
the exact dichotomy of this cellular fate under stress is still 
debatable, (Childs et al., 2014) it is accepted that chronic 
stress conditions can propel the cells towards a senescence 
program. During the course of organismal lifespan, cells 
are threatened by various internal and external stressors, 
and indeed, a link between dysregulated organismal stress 
response capacity and the development of SC has been 
observed (Zhang et al., 2017). Inherent deficiencies in the 
replication of telomeric regions of the chromosomes with 
each cell division result in ‘replicative senescence’ (Camp-
isi, 1997) while premature senescence can also be induced 
in cells through acute or chronic stress exposure (stress-
induced premature senescence) (Toussaint et  al., 2000; 
Toussaint et al., 2002). Further, cellular senescence is no 
longer considered a phenomenon related only to somatic 
proliferative cells, as terminally differentiated cells such 
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as immune cells or adipocytes are also known to undergo 
senescence (von Zglinicki et al., 2021). It is pertinent to note 
that SC are not necessarily undesirable by themselves as 
these cells are important mediators of certain physiological 
processes such as wound healing (Demaria et al., 2014) and 
even embryonic development (Muñoz-Espín et al., 2013). 
However, it is the age-associated gradual accumulation of 

SC in various tissues and organs which has been correlated 
with an increased risk of disease and death (Fig. 1) (Idda 
et al., 2020; Krishnamurthy et al., 2004; Yousefzadeh et al., 
2020). Indeed, studies have shown that targeted removal of 
SC through agents called ‘senolytics’ can enhance the lifes-
pan, alleviate systemic inflammation, improve organ func-
tions, and also mitigate characteristic age-related disorders 

Fig. 1   Schematic representa-
tion of development of senes-
cent cells and their deleterious 
effects with age. Chronic 
intrinsic and extrinsic stressors 
augment cellular and macro-
molecular damage resulting in 
deregulation of cell signalling 
and activation of cellular senes-
cence pathways. The age-related 
impairment of the immune 
system contributes to the inef-
ficient systemic clearance of 
senescent cells thereby aiding 
in increased senescent cell 
burden in tissues. The SASP of 
accumulating senescent cells 
promotes pro-inflammatory and 
pro-tumorigenic environment 
thereby predisposing elderly 
to increased morbidity and 
mortality
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such as diabetes (Aguayo-Mazzucato et al., 2019; Baker 
et al., 2011; Baker et al., 2016; Xu et al., 2018). Conversely, 
the addition of SC to healthy tissues can induce premature 
aging and disease-like phenotype suggesting that SC are suf-
ficient to drive age-related pathologies (Kim et al., 2020; 
Xu et al., 2016). As SC accumulate in tissues and organs, 
the chronic presence of SASP becomes increasingly detri-
mental as it affects nearby healthier cells through paracrine 
effects resulting in pro-inflammatory and pro-tumorigenic 
environment (Birch and Gil, 2020). There is also evidence 
that the rate of development of SC is not linear with age and 
is also tissue-dependent suggesting variable predisposition 
to biological aging depending upon the tissue type (Karin 
et al., 2019). We have also recently reported that adipose 
tissue is more vulnerable to the development of age-associ-
ated senescence-like features which were predominant from 
the age of 14 months in experimental mice (Sharma et al., 
2022). A startling common link between SC and various 
age-related diseases is also rapidly gaining attention. There 
is evidence that SC accumulation might play a direct role in 
the pathogenesis and/or exacerbation of disorders such as 
type I and type II diabetes (Aguayo-Mazzucato et al., 2019; 
Thompson et al., 2019), osteoarthritis (Xu et al., 2016), cog-
nitive functional decline (Lye et al., 2019), as well as cancer 
(Liu and Hornsby, 2007). It is conceivable that age-related 
disorders may be linked to the basic process of aging, and 
thus strategies aimed at targeting these disorders within the 
purview of cellular senescence and aging may provide a new 
therapeutic as well as economic perspective to the traditional 
disease-specific research focus (Blagosklonny, 2018; Boc-
cardi and Mecocci, 2021; Scott et al., 2021).

The systemic effects of cellular senescence on key regula-
tory bodily systems and their related disorders are increas-
ingly being deciphered (Fig. 2). The immune system is 
gaining central attention in this regard and a bidirectional 
relationship between cellular senescence and the immune 
system is rapidly emerging (Sharma, 2021). The immune 
system is considered to play a critical role in regulating the 
accumulation of SC in tissues and it is speculated that loss of 
immune functions with age could impair systemic SC clear-
ance and therefore increase SC burden (Kale et al., 2020; 
Sharma, 2021). This is because SC are immunogenic and 
are recognized and removed by cells of the immune sys-
tem such as NK cells in young healthier organisms (Kale 
et al., 2020). The chemotactic factors in the SASP of young 
organisms attract immune cells to the location of accumulat-
ing SC which ultimately results in their removal. However, 
as we age, the gradual restructuring of the immune system 
through the process of immunosenescence appears to deter 
their immunosurveillance and phagocytic potential which 
may contribute to hampered identification and removal of 
SC. For example, it was demonstrated that in vivo deficiency 
in cytotoxic response of effector immune cells can enhance 
the accumulation of SC in tissues accompanied with chronic 
inflammation (Ovadya et al., 2018). Further, a recent study 
observed that DNA damage and senescence in murine 
hematopoietic cells are sufficient to drive systemic effects of 
cellular senescence thereby implying the critical role of the 
immune system in driving organismal aging (Yousefzadeh 
et al., 2021). It is thus not surprising that senescent immu-
notherapy is considered a promising anti-aging strategy 
(Burton and Stolzing, 2018). On the other hand, similar to 

Fig. 2   Effects of cellular senescence on major regulatory systems of body during aging
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other cells, immune cells are also liable to undergo cellu-
lar senescence, and thus, together with immunosenescence, 
immune cells are significantly impacted with age although 
this dichotomy remains to be completely resolved (Sharma, 
2021). Another dimension to this intricate association was 
revealed when it was observed that SC can actively develop 
strategies to evade their immune system-mediated clear-
ance similar to cancer cells (Pereira et al., 2019). Thus, the 
immune system and cellular senescence are interlinked, and 
exploring their interrelationships and biological effects is an 
active area of research. In addition to the immune system, 
cells of the cardiovascular system such as cardiomyocytes 
and endothelial cells have been shown to present character-
istic features of age-associated cellular senescence that have 
been implicated in the development of age-related cardio-
vascular disorders (CVD) (Fig. 2). Although the molecular 
mechanisms governing CVD are largely unknown, accumu-
lating evidence suggests a key role of cellular senescence in 
the pathogenesis of CVD (Shakeri et al., 2018), and target-
ing SC has been argued as a potential therapeutic oppor-
tunity against various deleterious aspects of CVD (Childs 
et al., 2018). For instance, in response to toxic agents, cardi-
omyocytes exhibit increased ROS levels and persistent DNA 
damage that upregulates characteristic senescence markers 
such as p16INK4a, p21CIP1, and SA-β-gal expression (Mitry 
et al., 2020). It was recently demonstrated that human and 
murine cardiomyocytes acquire a senescent‐like phenotype 
characterized by overexpression of p21CIP1 and p16INK4a 
resulting in the development of pro‐fibrotic and pro‐hyper-
trophic environments and thus contributing to age-related 
myocardial dysfunction (Anderson et al., 2019). Crucially, 
pharmacological clearance of SC in mice alleviated some 
of the deleterious aspects of cardiac aging, including myo-
cardial hypertrophy and fibrosis (Walaszczyk et al., 2019). 
Vascular endothelial cell senescence is also emerging as a 
prominent contributor to CVD as it may affect vascular per-
meability, repair, and angiogenesis (Jia et al., 2019). Aged 
endothelial cells show characteristics of SC such as reduced 
telomere length, increased DNA damage foci formation, 
SASP induction, and elevated intracellular ROS production 
(Hohensinner et al., 2016; Khan et al., 2017). A recent report 
has shown that EC senescence is not only detrimental to 
CVD but can also induce metabolic disorders by impair-
ing insulin sensitivity through the senescence-associated 
secretory phenotype (Barinda et al., 2020). Similar to car-
diovascular disorders, cellular senescence is also considered 
a key player in regulating age-dependent neurodegenerative 
diseases (Fig. 2) (Si et al., 2021). For example, senescent 
astrocytes accumulate in Alzheimer’s patients wherein they 
promote inflammation through the SASP (Bhat et al., 2012; 
Walker et al., 2020) while attenuation of cellular senescence 
has been shown to alleviate neuroinflammation associated 
with Alzheimer’s (Hou et al., 2021). In addition, a recent 

study revealed that senescent neurons with tau neuropathol-
ogy are also prevalent in patients with AD (Dehkordi et al., 
2021) while removal of accumulated senescent glial cells 
attenuated cognitive decline and age-related neurogenera-
tive disorders (Bussian et al., 2018). Explicatively senes-
cent glial cells have been observed during aging which con-
tribute to the pathology of AD (Hu et al., 2021). During 
aging, brain microglia show characteristic expression of 
senescence markers such as telomere shortening, SA-β-gal 
activity, altered metabolic profile, and increased oxidative 
stress (Greenwood and Brown, 2021). In-state of senescence, 
microglia are neurotoxic and become detrimental in many 
neurodegenerative diseases by producing inflammation, 
inflammatory cytokines, superoxide anions, and nitric oxide 
(Nakajima and Kohsaka, 2004; Streit, 2002). Taken together, 
these observations suggest that cellular senescence is an 
important determinant in regulating the functional efficacy 
of major regulatory systems of the body with age and thus 
is a promising therapeutic target.

Primary diet constituents and cellular senescence

Carbohydrates

Carbohydrates are primary sources of cellular energy 
although their role in cell structure and signaling is also 
known. Carbohydrate metabolism is of great significance 
during aging as an association between carbohydrate con-
sumption and chronic disorders such as obesity and diabe-
tes is well recognized (Kelly et al., 2020). Besides, diets 
rich in glucose and fructose have been shown to acceler-
ate aging in model organisms while a reduction in carbo-
hydrate intake is often associated with reduced severity of 
disorders such as diabetes (Feinman et al., 2015). However, 
low carbohydrate diets and their significance during aging 
are still controversial and contradictory (Mooradian, 2020). 
Regardless, it is crucial to consider that complex carbohy-
drates and/or their derivatives have been demonstrated to 
suppress cellular senescence and augment healthy aging. For 
instance, a recent study showed that a heteropolysaccharide 
derived from the medicinal herb Astragalus membranaceus 
alleviated hepatocyte senescence by inhibiting the develop-
ment of cellular senescence and promoting mitophagy via 
mTOR pathway both in vitro and in vivo (Yao et al., 2021). 
Another recent report demonstrated that Astragalus poly-
saccharides can reduce glucose-induced premature senes-
cence and inflammasome activation in rat aortic endothelial 
cells (Miao et al., 2022). Using a d-galactose induced aging 
mice model, the application of Aronia melanocarpa heter-
opolysaccharides successfully ameliorated inflammation 
and aging in mice by modulating the AMPK/SIRT1/NF-κB 
signaling pathway and gut microbiota (Zhao et al., 2021). 
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Studies on polysaccharides isolated from the herb Angelica 
sinensis have revealed anti-cellular senescence and antioxi-
dant attributes in haematopoietic cells and endothelial pro-
genitor cells while in vivo suppression of cellular senescence 
and improvement in brain senescence in a murine model of 
d-galactose induced aging was also observed (Cheng et al., 
2019; Lai and Liu, 2015; Mu et al., 2017; Xiao et al., 2017). 
Similarly, the polysaccharide TLH-3 isolated from the mush-
room Tricholoma lobayense alleviated premature cellular 
senescence in vitro and improved in vivo markers of senes-
cence and SASP in premature aging mice (Pan et al., 2018). 
Also, polysaccharides extracted from the medicinal plant 
Lycium barbarum prevented the augmentation of oxidative 
stress-induced epithelial senescence and apoptosis in human 
lens epithelial cells in vitro (Qi et al., 2014). Another report 
revealed that marine sulphated polysaccharide Fucoidan 
can rescue endothelial cells from cellular senescence, and 
improve their survival, proliferation, and functional response 
which was implicated in enhanced neovasculogenic poten-
tial in vivo (Lee et al., 2015). Daily administration of pol-
ysaccharides isolated from Korean ginseng berry to old 
C57BL/6J mice resulted in improved indices of immunose-
nescence and inflamm-aging characterized by increased pro-
liferation of Treg and NK cells, reduced systemic inflam-
matory molecules, and attenuation of thymic involution 
(Kim et al., 2018). Previous studies have also identified the 
role of metabolic carbohydrate intermediates in extending 
lifespan in model organisms by modulating nutrient sig-
nalling pathways. For instance, Caenorhabditis elegans 
(C. elegans) when treated with trehalose extends lifespan 
by lowering insulin/insulin growth factor-1 signaling and 
suppressed aging by offsetting stressors (Honda et  al., 
2010). In aged Saccharomyces cerevisiae cells, trehalose 
accumulation elicited an anti-aging response and increased 
ethanol production (Trevisol et al., 2011). Another study 
demonstrated the role of pyruvate in extending the lifespan 
of C. elegans by improved tolerance to oxidative stress via 
amplified mitochondrial pyruvate metabolism (Mouchir-
oud et al., 2011). Tricarboxylic acid cycle metabolites like 
malate and fumarate are also linked with lifespan extension 
in C. elegans via regulation of transcription factor DAF-
16/FOXO, histone deacetylase SIR-2.1 and increasing the 
amount of oxidized NAD and FAD cofactors (Edwards et al., 
2013; Sun et al., 2017). Oligosaccharides like N-glycan and 
N-acetylglucosamine supplementation reduced aggregation 
of proteins via ER-associated protein degradation, proteaso-
mal activity, and autophagy consequently extending lifespan 
in C. elegans (Denzel et al., 2014). In a pre-clinical study, 
chitosan oligosaccharides have been utilized as a therapeu-
tic agent against age-related illnesses (Kong et al., 2018). 
Together, these findings suggest that complex carbohydrates 
and intermediates of carbohydrate metabolism can regu-
late aging by modulating cellular senescence, proteostasis, 

and inflammation. However, adequate carbohydrate intake 
must be monitored since a high carbohydrate diet is associ-
ated with an increased risk of mortality in clinical studies 
(Dehghan et al., 2017). Together, it is reasonable to assert 
that although carbohydrates are often neglected concerning 
their bioactivity, especially with regard to aging, a carefully 
curated carbohydrate-rich diet could be potentially useful 
in mitigating cellular senescence which should be explored 
further (Fig. 3).

Dietary proteins and amino acids

Proteins and amino acids are major structural and functional 
constituents of cells. In addition to carbohydrates, proteins 
are an essential part of the human diet and attempts have 
been made to ascertain a suitable carbohydrate to protein 
ratio in diets for augmenting health and aging. In this regard, 
a low protein (< 10% of calories from protein) and high car-
bohydrate diet, often in the ratio of 1:10, has scientific evi-
dence of improving health during aging and extending the 
lifespan (Le Couteur et al., 2016; Levine et al., 2014). It 
was observed that even a short-term low protein and high 
carbohydrate diet regimen in mice can improve indices of 
metabolic health indicated by levels of insulin, glucose, 
lipids, and homeostatic model assessment (HOMA), and 
surprisingly these effects were similar to the stricter calo-
rie restriction diet despite an increase in total energy intake 
(Solon-Biet et al., 2015). On the other hand, consumption of 
a high protein diet (> 20% of calories from protein) amongst 
the elderly augmented all-cause mortality incidences by 
75% and increased the risk of cancers by 400% suggesting 
the detrimental effects of high protein consumption during 
aging (Levine et al., 2014). In addition, impaired protein 
metabolism appears to be intimately linked to cellular senes-
cence and organismal longevity. A recent study compared 
the proteomic profile of fibroblast cells across species and 
reported that long-lived animals tend to have lower turno-
ver rates of highly abundant cellular proteins which even-
tually results in lower oxidative stress and efficient energy 
management (Swovick et al., 2021). Further, restriction of 
protein synthesis suppressed cellular senescence both at the 
cellular and organismal levels (Takauji et al., 2016). Moreo-
ver, the balance between cellular protein synthesis, folding, 
and degradation (proteostasis) is also impaired in SC, and 
maintenance of proteostasis is considered a key therapeutic 
mechanism regulating senescence (Joy et al., 2021; Sabath 
et al., 2020). These observations augment the rationale 
that protein consumption, cellular metabolism, and energy 
homeostasis are intimately linked which can affect organ-
ismal longevity. However, studies examining the impact of 
dietary proteins and specific amino acids on cellular and 
organismal senescence are limited. A recent study observed 
that consumption of protein-rich diets can accelerate tissue 
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senescence and SASP development in mice and thus pro-
mote the deleterious effects of aging (Nehme et al., 2021). 
Another study observed that protein-rich diets are associated 
with reduced availability of plasma NAD+ levels and inflam-
mation in healthy middle-aged adults indicating that protein-
deficient diets might promote longevity by improving cel-
lular energy expenditure and expression of enzymes such 
as SIRTs (Seyedsadjadi et al., 2018). In terms of specific 
amino acids, it has been observed that amino acids can both 
promote and limit organismal lifespan and senescence, and 
thus amino acids can be used as markers of longevity (Ral-
lis et al., 2020). In particular, the metabolism of branched-
chain amino acids (BCAA) is associated with the regulation 
of human aging (Mansfeld et al., 2015). It was previously 
reported that supplementation of BCAA can improve mito-
chondrial biogenesis, alleviate ROS-induced stress, and thus 
augment lifespan in aging mice (D’Antona et al., 2010). In 
terms of cellular senescence, it was reported that cellular 
supplementation with BCAA can augment senescence-
induced tumor suppression in liver cancer cells (Nakano 
et al., 2013) while a recent study has observed that higher 
circulatory levels of BCAA are positively associated with 
longer telomere lengths and thus suppressed systemic cellu-
lar senescence in middle-aged subjects (Fig. 4) (Zhang et al., 
2020). In addition to the quantity of proteins consumed, the 
source of proteins (animals or plants) in diet also appears to 
strongly impact organismal lifespan although deeper studies 
relating these aspects to cellular senescence are warranted 

(Song et al., 2016). Further, information on SASP modula-
tory and senolytic attributes of proteins and dietary amino 
acids is rare and needs further exploration.

Fatty acids

Fatty acids are essential structural and signaling molecules 
in cells. Essential fatty acids must be supplied in the diet 
and their critical role in maintaining growth and including 
aging is well recognized (Lai et al., 2018). In particular, 
omega-3-polyunsaturated fatty acids (PUFA) have shown 
several beneficial effects in ameliorating age-related insults 
including inflammation, osteopenia, type II diabetes, and 
imparting vasodilatory properties (Cugno et al., 2021; Simo-
poulos, 1999). In fact, a recent study has demonstrated that 
higher circulating levels of marine n-3 PUFA are associated 
with a lower risk of premature death (Harris et al., 2021). In 
addition, immunomodulatory and anti-immunosenescence 
activities of omega-3-fatty acids rich fish oil have also been 
reported. For instance, the consumption of fish oil can accel-
erate the phagocytic activity of immune cells, increase CD4+ 
and CD8+ lymphocytes, reduce inflammatory cytokines, 
and can increase muscle strength in the elderly (de Lourdes 
Nahhas Rodacki et al., 2015, Rodacki et al., 2012). Sup-
plementation of fish oil ameliorated rosiglitazone-induced 
osteopenia in aging C57BL/6 mice resulting in a higher bone 
density, reduced pro-inflammatory cytokines, and increased 
anti-inflammatory cytokines in aging mice (Cugno et al., 

Fig. 3   Modulation of cellular senescence by dietary polysaccharides and metabolic intermediates of carbohydrate metabolism
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2021). Furthermore, research proposes that supplementa-
tion of eicosapentaenoic acid may decrease NK cell activ-
ity in older individuals (Thies et al., 2001). Fish oil rich 
in omega-3 fatty acids attenuated various cardiac dysfunc-
tions from ventricular hypertrophy to cardiac remodeling, 
as seen in aging mice (Halade et al., 2011). In addition, 
a central role of lipids in regulating both replicative and 
stress-induced cellular senescence is also rapidly emerging 
(Millner and Atilla-Gokcumen, 2020). In general, SC dis-
play characteristics increase in cellular lipid accumulation 
indicating deregulated lipid metabolism (Flor et al., 2017). 
Further research has revealed that lipid composition under-
goes global changes in SC resulting in the remodeling of cell 
membranes which is particularly implicated in the develop-
ment of SASP (Lizardo et al., 2017). Another recent study 
has indicated an essential role of fatty acid synthase in the 
development and initiation of the senescence program in 
mouse hepatic stellate cells and human primary fibroblasts 
(Fafián-Labora et al., 2019). It is therefore not surprising 
that the application of fatty acids has shown promise in sup-
pressing cellular senescence as well as improving the aging 
immune responses. For example, a recent clinical trial has 
documented that consumption of marine n-3 PUFAs in sub-
jects with renal transplantation reduces the risk of cellular 
senescence and SASP damage thereby resulting in improved 
recovery (Chan et al., 2021). Consumption of omega-3-
fatty acids has been associated with decreased replicative 
senescence in human immune cells by preserving their 

telomere length (Farzaneh-Far et al., 2010; Kiecolt-Glaser 
et al., 2013). Supplementation of omega-3-fatty acids for 
4 months in middle-aged subjects resulted in maintenance of 
telomerase activity while attenuating markers of stress and 
inflammation (Madison et al., 2021). Consumption of n-3 
PUFA by d-galactose-induced aging mice reduced cellular 
DNA damage and protected the liver and testes of animals 
against telomere shortening (Chen et al., 2017). In a study 
on pigs, it was observed that supplementation with linseed 
oil for 9 weeks counteracted the age-related increase in the 
expression of TRF-1 which could be implicated in telomere 
length-promoting effects of PUFAs (Ogłuszka et al., 2020). 
Using in vitro model of stress-induced senescence in vascu-
lar endothelial cells, it was observed that supplementation 
with EPA and DHA can attenuate cellular senescence and 
its biomarkers by primarily inhibiting DNA damage and 
augmentation of cellular antioxidant potential (Sakai et al., 
2017). Together, these observations assert that fatty acids are 
key mediators of the development of SC which also signifies 
their therapeutic potential (Fig. 5).

Vitamins and minerals

An important role of certain vitamins in regulating cellular 
senescence is also emerging. In particular, vitamin D appears 
to influence several facets of cellular senescence both 
in vitro and in vivo. A recent study suggests that vitamin D 
deficiency and cellular senescence are related which together 

Fig. 4   Influence of dietary protein intake and specific amino acids on different aspects of cellular senescence
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influence the pathogenesis of obesity in experimental ani-
mals (Bima et al., 2021). Another recent study observed that 
vitamin D supplementation could rescue against doxoru-
bicin-induced cellular senescence in human endothelial cells 
by upregulation of IL-10 and FOXO3a expression mediated 
by the modulation of pAMPKα/SIRT1/FOXO3a complex 
activity (Chen et al., 2021b). These observations are largely 
attributed to the ability of vitamin D to regulate cell cycle 
and proliferation as also reported previously (Samuel and 
Sitrin, 2008). Moreover, relatively higher vitamin D levels 
are also linked to increased telomere length and thus sup-
pression of senescence. For instance, it was reported that 
subjects with higher levels of 25-hydroxyvitamin D exhib-
ited significantly higher telomere length in whole blood cells 
(Mazidi et al., 2017). Similarly, two independent studies on 
elderly subjects also reported that serum 25-Hydroxyvitamin 
D is positively associated with mean telomere length sug-
gesting that levels of 25-Hydroxyvitamin D could be predic-
tors of telomere length and longevity (Beilfuss et al., 2017; 
Richards et al., 2007). Another recent study suggests that 
higher levels of vitamin D are positively related to longer 
telomere length but negatively associated with indications of 
type II diabetes as monitored through levels of Hb1Ac sug-
gesting a deeper correlation between vitamin D, and cellular 
senescence, and age-related diseases (Akash et al., 2021). 
In addition to vitamin D, vitamin E is also reported to have 
anti-cellular senescence attributes which could be attrib-
uted to its strong antioxidant activity. For example, it was 
observed that treatment with vitamin E could suppress the 
progression of cellular senescence in human endothelial and 
fibroblast cells through the inhibition of cell cycle inhibitors 

(La Fata et al., 2015). Moreover, inadequate consumption 
of vitamin E was associated with shorter telomere lengths 
in leucocytes of humans suggesting that appropriate dietary 
consumption of vitamin E can mitigate cellular senescence 
(Corina et al., 2019). In addition, a recent study has identi-
fied vitamin B2 as a suppressor of senescence by promoting 
mitochondrial energetic homeostasis indicating that dietary 
riboflavin could also impact aging (Nagano et al., 2021). 
In addition to vitamins, certain minerals also appear to be 
associated with cellular senescence. The mineral magnesium 
is reportedly active in modulating cellular senescence and 
aging. Chronic magnesium deficiency in cultured fibroblasts 
results in an accelerated senescence program characterized 
by increased expression of cell cycle inhibitors and SA-β-
gal activity as well as reduced telomere length (Killilea and 
Ames, 2008). Conversely, dietary supplementation of mag-
nesium enhanced the mitochondrial functions and prevented 
oxidative stress in tissues resulting in enhanced murine lifes-
pan (Villa-Bellosta, 2020). However, there are inconsistent 
reports on magnesium levels and telomere length in leuco-
cytes which warrant further exploration (O’Callaghan et al., 
2014; Yu et al., 2020). Zinc is another important mineral 
that is actively involved in regulating aging through modula-
tion of the immune system (Haase and Rink, 2009) as well 
as through general suppression of systemic cellular stress 
(Giacconi et al., 2018). Zinc metabolism is impaired in SC 
and evidence suggests that zinc deficiency can contribute 
to the accumulation of SC and vascular pathology (Mala-
volta et al., 2017). Further, impaired zinc metabolism is also 
linked to shortened telomeres and increased inflammation in 
PBMCs (Cipriano et al., 2009) while accumulation of zinc is 

Fig. 5   Cellular senescence and immunosenescence modulatory attributes of omega-3-fatty acids during aging



1098	 B. Diwan, R. Sharma 

1 3

associated with increased ROS production and senescence 
induction in vascular smooth muscle cells (Salazar et al., 
2017). Iron is another important mineral that has been impli-
cated in driving aging. In particular, blocking iron availabil-
ity through chelation is considered an important lifespan-
extending mechanism of several dietary natural molecules 
such as EGCG, berberine, and curcumin (Mangan, 2021). 
This is because although iron deficiency anemia is often 
observed in the elderly, iron stores in tissues gradually 
increase with age which is implicated in the inhibition of 
ferroptosis and thus augmentation of age-related pathologies 
(Mazhar et al., 2021). Further, it has been observed that iron 
rapidly accumulates in SC causing inhibition of iron-induced 
cell death and thus aiding in the survival of SC (Killilea 
et al., 2004; Masaldan et al., 2018). In fact, augmentation 
of ferroptosis and iron metabolism is emerging as a novel 
therapy for removing the accumulation of SC in vivo which 
should be further explored (Go et al., 2021).

Secondary diet constituents and cellular 
senescence

Polyphenols

Plant polyphenols are a diverse group of phytomolecules that 
are considered important constituents of a healthy diet due 
to their well-documented role in modulating human health. 
Polyphenols have been reported to confer cytoprotective and 
health beneficial effects through the modulation of several 
cell signaling pathways such as NRF2, NF-κB, mTOR, Sir-
tuins as well as key processes such as autophagy, immu-
nomodulation, cell proliferation, and apoptosis (Cory et al., 
2018; Vauzour et al., 2010). In addition, studies suggest that 
long term consumption of dietary polyphenols confers a pro-
tective role in abating a multitude of age-related degenera-
tive diseases like cancer (Lee and Lee, 2006), cardiovascular 
diseases (Khurana et al., 2013), muscular atrophy (Nikawa 
et al., 2021), neurodegenerative diseases (Rossi et al., 2008), 
arthritis (Behl et al., 2021), and even organismal longev-
ity (Queen and Tollefsbol, 2010). Current research in this 
domain is now focused on understanding whether and how 
polyphenols can modulate cellular senescence and SASP 
thereby impacting organismal aging (Sharma and Padwad, 
2020). We and others have previously observed anti-cellular 
senescence attributes of isolated dietary polyphenols such as 
green tea EGCG (Kumar et al., 2019; Kumar et al., 2020a), 
berberine (Dang et al., 2020), resveratrol (Giovannelli et al., 
2011), quercetin (Sohn et al., 2018), kaempferol (Yao et al., 
2019), tocotrienol (Khee et al., 2014), genistein (Wu et al., 
2021), pterostilbene (Jiang et al., 2021), and apigenin (Li 
et al., 2021) in various in vitro and in vivo settings (Table 1). 
Further, anti-SASP effects of dietary flavonoids apigenin and 

kaempferol in bleomycin-induced senescence in fibroblasts 
were also reported that involved inhibition of the NF-κB 
pathway via IRAK1/IκBα signaling (Lim et al., 2015). In 
addition, cellular senescence suppressive attributes of poly-
phenol-rich fractions isolated from fruits such as lemons 
(Shimizu et al., 2019), grape seed extract (Wan et al., 2021; 
Xu et al., 2021), as well as red wine (Botden et al., 2012) 
have also been documented. In addition, a growing interest 
amongst polyphenols is the identification of novel senolytics 
that may selectively induce apoptosis in SC and thus allevi-
ate SC burden in tissues with age (Li et al., 2019; Wang et al., 
2021). In fact, quercetin was the first non-synthetic molecule 
identified with a senolytic activity (Zhu et al., 2015) and 
since then the combination of dasatinib and quercetin has 
shown promising results in alleviating SC burden in both 
preclinical and clinical studies resulting in improved organ 
functions and lifespan (Hickson et al., 2019; Novais et al., 
2021). Our lab has previously identified that tea polyphenol 
EGCG can also act as a senolytic and can extend murine 
lifespan by decreasing SC burden in multiple tissues (Kumar 
et al., 2019; Sharma et al., 2022). Similarly, other polyphe-
nols such as fisetin (Zhu et al., 2017) and piperlongumine 
(Wang et al., 2016) as well as polyphenols-rich fractions 
of Silybum marianum flower (Woo et al., 2021) have also 
been reported as senolytic agents. Moreover, polyphenols 
are known for their immunomodulatory activities and there 
is evidence that polyphenol consumption can also stimulate 
the aging immune system and prevent inflamm-aging (Baeza 
et al., 2010; Sharma et al., 2017). Together, polyphenols 
appear to confer cytoprotective and pro-longevity attributes 
through the inhibition of cellular senescence and improv-
ing immune responses, and therefore novel and traditional 
polyphenols-rich medicinal plants should be investigated for 
developing a nutrition-oriented holistic anti-senescence and 
senescence immunotherapies (Luo et al., 2021; Sharma and 
Padwad, 2020). Mechanistically, dietary polyphenols have 
shown the ability to modulate nutrient-sensing pathways 
(NSP) such as the mTOR and sirtuins which are implicated 
in their observed anti-cellular senescence effects (Davinelli 
et al., 2012). The NSPs act as metabolic sensors for stress 
and energy which can affect downstream targets to either 
promote or suppress cellular growth and differentiation. As 
such, the coordinated activation and functioning of these 
pathways are necessary and their molecular targeting is rec-
ognized in anti-aging therapies including calorie restriction 
(Pignatti et al., 2020). In terms of cellular senescence, these 
pathways are even more significant since SC are inherently 
under redox and metabolic stress and yet being stable, their 
NSP profile is largely deregulated (Carroll and Korolchuk, 
2018). In general, SC display increased glycolysis (James 
et al., 2015), overactivated mTOR signaling (Kumar et al., 
2019), and suppressed Sirtuins activity (Xu et al., 2020). The 
mTOR pathway is of particular significance in this regard as 
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this evolutionarily conserved signaling system is considered 
the basal driving force of cellular senescence as it promotes 
the growth of non-dividing senescent cells (Blagosklonny, 
2008; Liu and Sabatini, 2020). The cellular senescence mod-
ulatory effects of various dietary constituents involve inter-
actions with these pathways to confer their cytoprotective 
effects. For example, we and others have observed that the 
anti-cellular senescence attributes of EGCG are mediated 
by the inhibition of mTOR pathway (Kumar et al., 2019) 
and activation of Sirtuins pathway (Lilja et al., 2020). Simi-
larly, resveratrol (Demidenko and Blagosklonny, 2009) and 
berberine (Zhao et al., 2013) have also shown anti-cellular 
senescence effects mediated by the suppression of mTOR 
activity.

Probiotics

It is now acknowledged that dietary consumption of pro-
biotic bacteria can affect several facets of human health 
including maturation of the immune system, nutrition, and 
metabolism, brain development, as well as in the pathogen-
esis of chronic disorders such as cancer and diabetes (Cerdó 
et al., 2017; George Kerry et al., 2018; Maldonado Gal-
deano et al., 2019; Taherian et al., 2019). In fact, probiotic-
derived functional foods are of attractive consumer inter-
est and several traditional and novel probiotic fermented 
functional foods are available (Marco et al., 2017; Melini 
et al., 2019). Moreover, there is evidence that modulation of 
the gut microbiota could be a critical intermediate process 
governing the purported health beneficial effects of several 
dietary elements. This is primarily attributed to the fact that 
nutritional components first interact with the gut bacteria 
and their microbiota-mediated biotransformation in the gut 
has the potential to qualitatively and quantitatively change 
the physiological effects of parent molecules (Sallam et al., 
2021; Wang et al., 2018). The role of gut microbiota is 
increasingly being emphasized in longevity and gut micro-
bial signatures are emerging as predictors of human lifespan 
(Galkin et al., 2020; Wilmanski et al., 2021). Further, gut 
microbiota undergoes structural and compositional changes 
with age, dietary habits, or during disease (gut dysbiosis) 
and therefore supplementation with specific probiotics has 
been shown to improve gut dysbiosis and alleviate several 
deleterious aspects of organismal aging physiology such as 
immunosenescence (Sharma et al., 2014), neurodegenera-
tion (Lye et al., 2018), and chronic diseases (Buford, 2017). 
In fact, a functional term called ‘gerobiotics’ has been 
recently proposed to identify new probiotics with the abil-
ity to counter aging and age-related disorders (Tsai et al., 
2021). In terms of cellular senescence, it has been shown 
that a dysbiotic gut is a source of potential novel metabo-
lites that can augment cellular senescence and SASP in vivo 
and thus augment aging and disease phenotype (Yoshimoto 

et al., 2013). Conversely, we have demonstrated that secre-
tory metabolites of probiotic Lactobacillus fermentum 
can inhibit stress-induced development of senescence and 
SASP in preadipocytes by improving cellular and metabolic 
stress (Kumar et al., 2020b). Previous studies also showed 
that consumption of probiotics in aged mice could prevent 
intestinal senescence and inflamm-aging thereby extend-
ing organismal healthspan (Jeong et al., 2015; Jeong et al., 
2016). In addition, it appears that the observed anti-cellular 
senescence effects of dietary constituents, including phyto-
molecules such as quercetin, could be mediated through the 
modulation of the gut microbiota composition in vivo (Sac-
con et al., 2021). This is an exciting new area of research 
as the amalgamation of probiotics and bioactive phytomol-
ecules such as polyphenols is considered viable and has 
been shown to confer cytoprotective and anti-aging effects 
(Banerjee and Dhar, 2019; Sharma et al., 2019).

In conclusion, cellular senescence-mediated under-
standing of aging and age-dependent disorders is rapidly 
gaining attention as a viable therapeutic target (Soto-
Gamez and Demaria, 2017). It is increasingly being real-
ized that cellular senescence could be central to develop-
ing anti-aging strategies as evidence of its integration with 
other established age-related phenomena such as immu-
nosenescence and gut dysbiosis is also emerging (Budama-
gunta et al., 2021; Sharma, 2022). Besides, the striking 
presence of cellular senescence in pathophysiologically 
distinct human disorders renews hope of a single targetable 
approach to disease management during aging. Nutritional 
elements are essential for our survival and growth and thus 
their role in positively modulating cellular senescence and 
aging seems unsurprising. As highlighted in this manu-
script, all forms of nutrition, albeit with varying degrees, 
have shown some potency to alleviate the different fac-
ets of cellular senescence and improve cellular functions 
(Fig. 6). It is exciting to note that essential nutritional 
components such as carbohydrates, fats, and proteins can 
affect the different facets of cellular senescence. However, 
detailed knowledge of their specific effects is still limited, 
and further in vivo studies are required to truly assess their 
anti-cellular senescence relevance. The role of minerals 
is also of particular interest as their impaired metabolism 
appears to be specific markers of cellular senescence and 
yet their therapeutic potential is little explored. It would be 
interesting to assess how specific food items rich in certain 
minerals could add affect the progression and development 
of cellular senescence. Secondary dietary elements are 
also of great interest as polyphenols such as quercetin have 
already shown promising clinical results in alleviating SC 
burden and improving age-related pathologies (Hickson 
et al., 2019). Similarly, we are only beginning to under-
stand how probiotics can be useful in mitigating cellular 
senesce and aging which requires further investigations. 
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Apart from individual components, whole diets com-
posed of carefully curated dietary components should be 
assessed for their global effects on cellular senescence as 
also noted previously in a preliminary study (Leung et al., 
2018). More such concerted efforts on different dietary 
regimens must be pursued for a better understanding of 
whole diets and their influence on cellular senescence 
and aging. It has long been argued that regular exercise 
and a healthy diet regimen is key to improving both the 
healthspan and lifespan. Emerging evidence now suggests 
that indeed both exercise and a healthy diet (e.g., Medi-
terranean diet) can improve the indices of general health 
and longevity through specific targeting of cellular senes-
cence and its deleterious effects (Englund et al., 2021; 
Marin et al., 2012; Shannon et al., 2021). It is desirable 
that dietary constituents should be studied individually 
as well as in combinations of whole diets with a specific 
aim of identifying nutritional geroprotectors through the 
purview of cellular senescence that may enable a better 
pharmacological understanding of nutrition as a regulator 
of aging and diseases.
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