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Abstract

How can we model node representations to accurately infer the signs of missing edges in a

signed social graph? Signed social graphs have attracted considerable attention to model

trust relationships between people. Various representation learning methods such as net-

work embedding and graph convolutional network (GCN) have been proposed to analyze

signed graphs. However, existing network embedding models are not end-to-end for a spe-

cific task, and GCN-based models exhibit a performance degradation issue when their

depth increases. In this paper, we propose SIGNED DIFFUSION NETWORK (SIDNET), a novel

graph neural network that achieves end-to-end node representation learning for link sign

prediction in signed social graphs. We propose a new random walk based feature aggrega-

tion, which is specially designed for signed graphs, so that SIDNET effectively diffuses hidden

node features and uses more information from neighboring nodes. Through extensive

experiments, we show that SIDNET significantly outperforms state-of-the-art models in terms

of link sign prediction accuracy.

Introduction

Given a signed social graph, how can we learn appropriate node representations to infer the

signs of missing edges? Signed social graphs model trust relationships between people with

positive (trust) and negative (distrust) edges. Many online social services such as Epinions [1]

and Slashdot [2] that allow users to express their opinions are naturally represented as signed

social graphs. Such graphs have attracted considerable attention [3] for diverse applications

including sign prediction [4, 5], link prediction [6–8], node ranking [9–12], community analy-

sis [13–16], graph generation [17, 18], and anomaly detection [19–21]. Node representation

learning is a fundamental building block for analyzing graph data, and many researchers have

put tremendous efforts into developing effective models for unsigned graphs. Graph convolu-

tional networks (GCN) and their variants [22, 23] have spurred great attention in data mining

and machine learning community, and recent works [24, 25] have demonstrated stunning

progress by handling the performance degradation caused by over-smoothing [26, 27] (i.e.,

node representations become indistinguishable as the number of propagation steps increases)

or the vanishing gradient problem [25] in the first generation of GCN models. However, all of
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these models have a limited performance on node representation learning in signed graphs

since they only consider unsigned edges under the homophily assumption [22].

Many studies have been recently conducted to consider such signed edges, and they are cat-

egorized into network embedding and GCN-based models. Network embedding [28, 29]

learns the representations of nodes by optimizing an unsupervised loss that primarily aims to

locate two nodes’ embeddings closely (or far) if they are positively (or negatively) connected.

However, they are not trained jointly with a specific task in an end-to-end manner, i.e., latent

features and the task are trained separately. Thus, their performance is limited unless each of

them is tuned delicately. GCN-based models [30, 31] have extended the graph convolutions to

signed graphs using balance theory [32] in order to properly propagate node features on signed

edges. However, these models are directly extended from existing GCNs without consideration

of the over-smoothing problem that degrades their performance (see Fig 4). This problem hin-

ders them from exploiting more information from multi-hop neighbors for learning node fea-

tures in signed graphs.

In this paper, we propose SIGNED DIFFUSION NETWORK (SIDNET), a novel graph neural net-

work for node representation learning in signed graphs. Our main contributions are summa-

rized as follows:

• Method. We propose SIDNET, an end-to-end representation learning method in a signed

graph with multiple signed diffusion layers (Fig 1). Our signed diffusion layer exploits signed

random walks to propagate node embeddings on signed edges, and injects local features

(Fig 1). This enables SIDNET to learn distinguishable node embeddings effectively consider-

ing multi-hop neighbors while preserving local information.

• Theory. We theoretically analyze the convergence property (Theorem 1) of our signed diffu-

sion layer, showing how SIDNET prevents the over-smoothing issue. We also provide the

time complexity analysis (Theorem 2) of SIDNET, showing SIDNET is linearly scalable w.r.t.

the numbers of edges.

Fig 1. Overall architecture of SIDNET. (a) Given a signed graph G and initial node features X, SIDNET with multiple layers produces the final

embeddings H(L), which is fed to a loss function under an end-to-end framework. (b) A single layer learns node embeddings based on K-hop signed

random walk diffusions of F dð�Þ. (c) Our diffusion module aggregates the features of node v so that they are similar to those connected by + edges (e.g.,

node u), and different from those connected by − edges (e.g., node t). Also, it injects the local feature (i.e., the input feature of each module) of node v at

each aggregation to make the aggregated features distinguishable.

https://doi.org/10.1371/journal.pone.0265001.g001
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• Experiments. Extensive experiments show that SIDNET effectively learns node representa-

tions of signed social graphs for link sign prediction, giving at least 3.3% higher accuracy

than the state-of-the-art models in real datasets (Table 3).

The symbols used in this paper are summarized in Table 1. The code of SIDNET and datasets

are available at https://github.com/snudatalab/SidNet.

Related work

Graph convolutional networks on unsigned graphs

Graph convolutional network (GCN) [22] models the latent representation of a node by

employing a convolutional operation on the features of its neighbors. Various GCN-based

approaches [22, 23, 33] have aroused considerable attention since they enable diverse graph

supervised tasks [22, 34, 35] to be performed concisely under an end-to-end framework. How-

ever, the first generation of GCN models exhibit performance degradation due to the over-

smoothing and vanishing gradient problems. Several works [26, 27] have theoretically revealed

the over-smoothing problem. Also, Li et al. [25] have empirically shown that stacking more

GCN layers leads to the vanishing gradient problem as in convolutional neural networks [36].

Consequently, most GCN-based models [22, 23, 33] are shallow; i.e., they do not use the fea-

ture information in faraway nodes when modeling node embeddings.

A recent research direction aims at resolving the limitation. Klicpera et al. [24] proposed

APPNP exploiting Personalized PageRank [37, 38] to not only propagate hidden node embed-

dings far but also preserve local features, thereby preventing aggregated features from being

over-smoothed. Li et al. [25] suggested ResGCN adding skip connections between GCN layers,

as in ResNet [36]. However, all of these models do not provide how to use signed edges since

Table 1. Symbols.

Symbol Definition

G signed graph

n numbers of nodes

m numbers of edges

A (n × n) signed adjacency matrix

As (n × n) adjacency matrix for edges having sign s
D (n × n) diagonal out-degree matrix

dl dimension of a node embedding at the l-th layer

X (n × d0) initial node feature matrix

H(l) (n × dl) node embedding matrix of the l-th layer

K number of diffusion steps

L number of layers

c local injection ratio

WðlÞ
t

(dl−1 × dl) trainable matrix for small feature transformation at the l-th layer

P(k) (n × dl) positive node embedding matrix at the k-th diffusion step

M(k) (n × dl) negative node embedding matrix at the k-th diffusion step

WðlÞ
n (2dl × dl) trainable matrix that learns a relationship b.t.w. PðlÞ≔PðKÞ&MðlÞ≔MðKÞ at the l-th layer

F dð�Þ signed random walk diffusion operator of SIDNET

; vertical concatenation of two matrices

|| horizontal concatenation of two matrices

ϕ(�) non-linear activator such as tanh

https://doi.org/10.1371/journal.pone.0265001.t001
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they are based on the homophily assumption [22], i.e., users having connections are likely to

be similar, which is not valid for negative edges. As opposed to the homophily, negative edges

have the semantics of heterophily [39], i.e., users having connections are dissimilar. Although

these methods can still be applied to signed graphs by ignoring the edge signs, their trained fea-

tures have limited capacity.

Network embedding and graph convolutional networks on signed graphs

Traditional methods on network embedding extract latent node features specialized for signed

graphs in an unsupervised manner. Kim et al. [28] proposed SIDE which optimizes a likeli-

hood over direct and indirect signed connections on truncated random walks sampled from a

signed graph. Xu et al. [29] developed SLF considering positive, negative, and non-linked rela-

tionships between nodes to learn non-negative node embeddings. However, such approaches

are not end-to-end, i.e., they are not directly optimized for solving a supervised task such as

link prediction.

There are recent progresses on end-to-end learning on signed networks under the GCN

framework. Derr et al. [30] proposed SGCN which extends the GCN mechanism to signed

graphs considering balanced and unbalanced relationships supported by structural balance

theory [32]. There are several techniques based on attention. Junjie et al. [40] proposed a

graph attention network model by incorporating the importance of graph motifs into node

feature. Yu et al. [31] reported that their SNEA model outperforms the motif based attention

model by combining the graph attention technique and the balanced relationships. However,

such state-of-the-art models do not consider the over-smoothing problem since they are

directly extended from GCN.

Proposed method

We propose SIDNET (SIGNED DIFFUSION NETWORK), a novel end-to-end model for node represen-

tation learning in signed graphs. Our SIDNET aims to properly aggregate node features on

signed edges, and to effectively use the features of multi-hop neighbors so that generated fea-

tures are not over-smoothed. Our main ideas are to diffuse node features along random walks

considering the signs of edges, and to inject local node features at each aggregation.

Fig 1 depicts the overall architecture of SIDNET. Given a signed graph G and initial node fea-

tures X 2 Rn�d0 as shown in Fig 1, SIDNET extracts the final node embeddings HðLÞ 2 Rn�dL

through multiple layers where n is the number of nodes, L is the number of layers, and dl is the

embedding dimension of the l-th layer. Then, H(L) is fed into a loss function of a specific task

so that they are jointly trained in an end-to-end framework. Given H(l−1), the l-th layer aims to

learn H(l) based on feature transformations and signed random walk diffusions of F dð�Þ as

shown in Fig 1. The layer also uses the skip connection to prevent the vanishing gradient prob-

lem when the depth of SIDNET increases.

Fig 1 illustrates the intuition behind the signed random walk diffusion. Each node has two

features corresponding to positive and negative surfers, respectively. The surfer flips its sign

when moving along negative edges, while the sign is kept along positive edges. For example,

the positive (or negative) surfer becomes positive at node v if it moves from a positively con-

nected node u (or a negatively connected node t). As a result, the aggregated features at node v
become similar to those connected by positive edges (e.g., node u), and different from those

connected by negative edges (e.g., node t). In other words, it satisfies homophily and hetero-

phily at the same time while unsigned GCNs cannot handle the heterophily of negative edges.

Furthermore, we inject the local feature (i.e., the input feature of the module) of node v at each

aggregation so that the resulting features remain distinguishable during the diffusion.
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Signed diffusion network

Given a signed graph G and the node embeddings H(l−1) from the previous layer, the l-th layer

learns new embeddings H(l) as shown in Fig 1. It first transforms H(l−1) into hidden features

~HðlÞ as ~HðlÞ ¼ Hðl� 1ÞWðlÞ
t with a learnable parameter WðlÞ

t 2 R
dl� 1�dl . Then, it applies the signed

random walk diffusion which is represented as the function F dðG; ~HðlÞÞ which returns PðlÞ
2

Rn�dl and MðlÞ
2 Rn�dl as the positive and the negative embeddings, respectively. The embed-

dings are concatenated and transformed as follows:

HðlÞ ¼ �
��

PðlÞ
jjMðlÞ

�

WðlÞ
n þHðl� 1Þ

�

ð1Þ

where ϕ(�) is a non-linear activator such as tanh, || denotes horizontal concatenation of two

matrices, and WðlÞ
n 2 R

2dl�dl is a trainable weight matrix that learns a relationship between PðlÞ

and MðlÞ
. We use the skip connection [25, 36] with H(l−1) in Eq (1) to avoid the vanishing gra-

dient issue which frequently occurs when multiple layers are stacked.

Signed random walk diffusion

We design the signed random walk diffusion operator F dð�Þ used in the l-th layer. Given the

signed graph G and the hidden node embeddings ~HðlÞ, the diffusion operator F dð�Þ diffuses the

node features based on random walks considering edge signs so that it properly aggregates

node features on signed edges and prevents the aggregated features from being over-

smoothed.

Signed random walks are performed by a signed random surfer [11] who has the + or

− sign when moving around the graph. Fig 2 shows signed random walks on four cases accord-

ing to edge signs: 1) a friend’s friend, 2) a friend’s enemy, 3) an enemy’s friend, and 4) an

enemy’s enemy. The surfer starts from node s with the + sign. If it encounters a negative edge,

the surfer flips its sign from + to −, or vice versa. Otherwise, the sign is kept. The surfer deter-

mines whether a target node t is a friend of node s or not according to its sign.

The diffusion operator F dð�Þ exploits the signed random walk for diffusing node features

on signed edges. Each node is represented by two feature vectors which represent the positive

and negative signs, respectively. Let k denote the number of diffusion steps or signed random

walk steps. Then, pðkÞv 2 R
dl�1 and mðkÞv 2 R

dl�1 are aggregated at node v, respectively, where

pðkÞv (or mðkÞv ) is the feature vector visited by the positive (or negative) surfer at step k. These are

Fig 2. Feature diffusion by signed random walks in SIDNET. (a) Signed random walks properly consider edge signs. (b) The positive and the negative

feature vectors pðkÞv and mðkÞv are updated from the previous feature vectors and the local feature vector ~hðlÞv as described in Eq (2).

https://doi.org/10.1371/journal.pone.0265001.g002
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recursively obtained by the following equations:

pðkÞv ¼ ð1 � cÞ
X

u2
 
Nþv

pðk� 1Þ
u

j~Nuj
þ
X

t2
 
N �v

mðk� 1Þ
t

j~Ntj

0

@

1

Aþ c~hðlÞv

mðkÞv ¼ ð1 � cÞ
X

t2
 
N �v

pðk� 1Þ
t

j~Ntj
þ
X

u2
 
Nþv

mðk� 1Þ
u

j~Nuj

0

@

1

A

ð2Þ

where

~

Ns
v is the set of incoming neighbors to node v connected with edges of sign s, ~Nu is the

set of outgoing neighbors from node u regardless of edge signs, ~hðlÞv is the local feature of node

v (i.e., the v-th row vector of ~HðlÞ), and 0< c< 1 is a local feature injection ratio. That is, the

features are computed by the signed random walk feature diffusion with weight 1 − c and the

local feature injection with weight c with the following details. Note that the convergence of Eq

(2) is guaranteed as described in Theorem 1; thus, the initial values of pð0Þv and mð0Þv do not

affect the final result. In this work, we initialize pð0Þv with ~hðlÞv , and randomly initialize mð0Þv in

[-1, 1].

Signed random walk feature diffusion. Fig 2 illustrates how pðkÞv and mðkÞv are diffused by

the signed random walks according to Eq (2). Suppose the positive surfer visits node v at step

k. For this to happen, the positive surfer of an incoming neighbor u at step k − 1 should choose

the edge (u! v, +) by a probability 1=j~Nuj. This transition to node v along the positive edge

allows to keep the surfer’s positive sign. At the same time, the negative surfer of an incoming

neighbor t at step k − 1 should move along the edge (t! v, −) by a probability 1=j~Ntj. In this

case, the surfer flips its sign from − to +. Considering these signed random walks, pðkÞv is

obtained by the weighted aggregation of pðk� 1Þ
u and mðk� 1Þ

t . Similarly, mðkÞv is aggregated as

shown in Fig 2.

Local feature injection. Although the feature diffusion above properly considers edge

signs, the generated features could be over-smoothed after many steps if we depend solely on

the diffusion. In other words, it considers only the graph information explored by the signed

random surfer, while the local information in the hidden feature ~hðlÞv is disregarded during the

diffusion. Hence, as shown in Fig 2, we explicitly inject the local feature ~hðlÞv to pðkÞv with weight

c at each aggregation in Eq (2) so that the diffused features are not over-smoothed. The reason

why local features are only injected to + embeddings is that we consider a node should trust

(+) its own information (i.e., its local feature).

Discussion. Our approach is motivated from SGCN [30], APPNP [24], and SRWR [11,

41]. We describe how we utilize and combine their ideas for developing our method, and how

our fusion resolves their limitations when its comes to learning node representation in signed

graphs.

• Motivation from SGCN. The main idea of SGCN is to make GCN consider balanced and

unbalanced paths based on structural balance theory so that the information of balanced

paths and that of unbalanced ones are reflected into positive and negative embeddings,

respectively. Inspired from this idea, we also maintain two positive and negative embeddings

for each node, and make our aggregation phase follow the balance theory. However, simply

extending GCN with the balance theory like SGCN does not resolve the over-smoothing

issue as shown in Fig 4. Thus, we combine the following ideas of APPNP and SRWR in this

framework to overcome the limitation, which are described below.
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• Motivation from APPNP. To resolve the over-smoothing issue of unsigned GCNs, APPNP

utilizes Random Walk with Restart (or personalized pagerank) [42] in a GCN. As a result,

APPNP demonstrates that the restart of RWR prevents the over-smoothing problem by

inserting input features stochastically during its diffusion (or aggregation) phase. This moti-

vates us to introduce the local feature injection for the same purpose to avoid the issue when

learning node embeddings in signed graphs. However, APPNP does not provide a way to

deal with signed edges for aggregating node embeddings. To address this challenge, we

adopt the signed random walks of SRWR.

• Motivation from SRWR. The signed random walks of SRWR were originally proposed for

propagating probabilities, not embedding vectors on each node to measure node-to-node

similarity scores which are used as a personalized ranking in a signed graph. Thus, this tech-

nique had not been studied for learning node representation in signed graphs. Hinted from

SGCN and APPNP, we utilize the signed random walks with the local feature injection as

shown in Eq (2), and demonstrate that our method effectively considers signed edges while

resolving the aforementioned over-smoothing issue.

Convergence of signed random walk diffusion

Suppose that PðkÞ ¼ ½pðkÞ>1 ; � � � ; pðkÞ>n � and MðkÞ ¼ ½mðkÞ>1 ; � � � ;mðkÞ>n � represent the positive and

negative embeddings of all nodes, respectively, where; denotes vertical concatenation. Let As

be the adjacency matrix for sign s such that Asuv is 1 for signed edge (u! v, s), and 0 other-

wise. Then, Eq (2) is vectorized as follows:

PðkÞ ¼ ð1 � cÞð~A>
þ
Pðk� 1Þ þ ~A>

�
Mðk� 1ÞÞ þ c ~HðlÞ

MðkÞ ¼ ð1 � cÞð~A>
�
Pðk� 1Þ þ ~A>

þ
Mðk� 1ÞÞ

ð3Þ

where ~As ¼ D� 1As is the normalized matrix for sign s, and D is a diagonal out-degree

matrix (i.e., Dii ¼ j
~N ij). The signed random walk diffusion operator F dð�Þ iterates Eq (3) K

times for 1� k� K where K is the number of diffusion steps, and it returns PðlÞ
 PðKÞ and

MðlÞ
 MðKÞ as the outputs of the diffusion module at the l-th layer.

Furthermore, Eq (3) is compactly represented as

TðkÞ ¼ ð1 � cÞ~BTðk� 1Þ þ cQ ð4Þ

where

TðkÞ ¼
PðkÞ

MðkÞ

2

4

3

5 ~B ¼
~A>
þ

~A>
�

~A>
�

~A>
þ

2

4

3

5 Q ¼
~HðlÞ

0

2

4

3

5:

Then, T(k) is guaranteed to converge as k increases (see Theorem 1).

Discussion. According to Eq (5) of Theorem 1, ~BK ~Q is the node features diffused by K-

step signed random walks where ~BK is interpreted as the transition matrix of K-step signed

random walks, and ~Q≔cQ is the scaled input feature of the diffusion layer. Thus, the approxi-

mation is the sum of the diffused features from 1 to K steps with a decaying factor 1 − c, i.e.,

the effect of distant nodes gradually decreases while that of neighboring nodes is high. This is

the reason why SIDNET prevents diffused features from being over-smoothed. Also, the approx-

imation error kT� − T(k)k1 exponentially decreases as K increases due to the term (1 − c)K.

Another point is that the iteration of Eq (3) converges to the same solution no matter what P(0)
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and M(0) are given. In this work, we initialize P(0) with ~HðlÞ, and randomly initialize M(0) in

[−1, 1].

As shown in Fig 1, we use multiple layers in SIDNET with non-linear activator tanh(�) to

increase its learning capacity and model latent non-linear patterns inherent in data. As a result,

SIDNET performs K × L-hop feature propagations where K and L are the numbers of diffusion

steps and layers, respectively. One advantage of this approach is that users are able to flexibly

control feature propagation and model capacity to suit their own purposes.

Algorithm of SIDNET

Algorithm 1 summarizes SIDNET’s overall procedure which is depicted in Fig 1. Given signed

adjacency matrix A and related hyper-parameters (e.g., numbers L and K of layers and diffu-

sion steps, respectively), SIDNET produces the final hidden node features H(L) which are fed to

a loss function as described in the following section. It first computes the normalized matrices

~Aþ and ~A � (line 1). Then, it performs the forward function (lines 3 * 12). The forward func-

tion repeats the signed random walk diffusion K times (lines 6 * 9), and then performs the

non-linear feature transformation skip-connected with H(l−1) (line 11).

Algorithm 1: SIDNET

Input: signed adjacency matrix A, initial node feature matrix X, num-
ber K of diffusion steps, number L of layers, and local feature
injection ratio c

Output: hidden node feature matrix H(L)

1: compute normalized adjacency matrices for each sign, i.e., ~Aþ ¼
D� 1Aþ and ~A � ¼ D� 1A�

2: initialize H(0) with X
3: for l  1 to L do ⊳ start the forward function of SIDNET
4: perform the feature transformation as ~HðlÞ  Hðl� 1ÞWðlÞ

t

5: initialize P(0) with ~HðlÞ & randomly initialized M(0) 2 [−1, 1]
6: for k  1 to K do ⊳ start our SRW diffusion
7: PðkÞ  ð1 � cÞð~A>

þ
Pðk� 1Þ þ ~A>

�
Mðk� 1ÞÞ þ c ~HðlÞ

8: MðkÞ  ð1 � cÞð~A>
�
Pðk� 1Þ þ ~A>

þ
Mðk� 1ÞÞ

9: end for
10: set PðlÞ  PðKÞ and MðlÞ

 MðKÞ

11: compute the l-th hidden node features as
HðlÞ  tanhð½PðlÞ

kMðlÞ
�WðlÞ

n þHðl� 1ÞÞ

12: end for
13: return H(L)

Loss function for link sign prediction

The link sign prediction task is to predict the missing sign of a given edge. As shown in Fig 1,

SIDNET produces the final node embeddings H(L). The embeddings are fed into a loss function

LðG;HðLÞ;YÞ ¼ LsignðG;H
ðLÞÞ þ lLregðYÞ where Θ is the set of model parameters, Lsignð�Þ is

the binary cross entropy loss, and Lregð�Þ is the L2 regularization loss with weight decay λ. For a

signed edge (u! v, s), the edge feature is zuv 2 R
2dL�1¼ ½hðLÞu ; hðLÞv � where hðLÞu is the u-th row

vector of H(L), and; denotes vertical concatenation of two column vectors. Then, Lsignð�Þ is rep-

resented as follows:

LsignðG;XÞ ¼ �
X

ðu!v;sÞ2E

X

t2fþ;� g

Iðt ¼ sÞlogðsoftmaxtðWzuvÞÞ

where E is the set of signed edges, W 2 R2�2dL is a learnable weight matrix, softmaxt(�) is the
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probability for sign t after softmax operation, and Ið�Þ returns 1 if a given predicate is true, and

0 otherwise.

Analysis

We first show the convergence guarantee of T(k), the positive and negative embeddings of all

nodes, in Theorem 1 and Lemma 1. Our analysis is inspired from the convergence analysis of

[41], which describes the power iteration of a single probability vector on a transition matrix

constructed by the signed random walks. In this work, we extend the analysis to the power iter-

ation of multidimensional embedding vectors, and show why our method prevents the over-

smoothing issue in Eq (5) (see its interpretation below Eq (4)).

Theorem 1 The diffused features in T(k) converge to equilibrium for c 2 (0, 1) as follows:

T� ¼ lim
k!1

TðkÞ ¼ lim
k!1

 
Xk� 1

i¼0

ð1 � cÞi~Bi

!

~Q

¼ ðI � ð1 � cÞ~BÞ� 1 ~Q

where ~Q≔cQ. If we iterate Eq (3) K times for 1� k� K, the exact solution T� is approximated
as

T� � TðkÞ

¼ ~Q þ ð1 � cÞ~B ~Q þ � � � þ ð1 � cÞK� 1 ~BK� 1 ~Q þ ð1 � cÞK ~BKTð0Þ
ð5Þ

where kT� − T(k)k1� (1 − c)KkT� − T(0)k1, and = T(0) [P(0);M(0)] is the initial value of Eq (4).

proof. The iteration of Eq (4) is written as follows:

TðkÞ ¼ ð1 � cÞ~BTðk� 1Þ þ cQ

¼ ðð1 � cÞ~BÞ2Tðk� 2Þ þ ðð1 � cÞ~B þ IÞ ~Q

¼ � � �

¼ ðð1 � cÞ~BÞkTð0Þ þ
Xk� 1

i¼0

ðð1 � cÞi~B iÞ

 !

~Q:

ð6Þ

Note that the spectral radius rð~BÞ is less than or equal to 1 by Lemma 1; thus, for 0< c< 1,

the spectral radius of ð1 � cÞ~B is less than 1, i.e., rðð1 � cÞ~BÞ ¼ ð1 � cÞrð~BÞ � ð1 � cÞ < 1.

Hence, if k!1, the power of ð1 � cÞ~B converges to 0, i.e., limk!1ð1 � cÞk~Bk ¼ 0. Also, the

second term in Eq (6) becomes the infinite geometric series of ð1 � cÞ~B which converges as

the following equation:

T� ¼ lim
k!1

TðkÞ ¼ 0þ lim
k!1

 
Xk� 1

i¼0

ðð1 � cÞi~BiÞ

!

~Q

¼ ðI � ð1 � cÞ~BÞ� 1 ~Q

where the convergence always holds if rðð1 � cÞ~BÞ < 1. The converged solution T� satisfies

T� ¼ ð1 � cÞ~BT� þ cQ. Also, T� is approximated as Eq (5). Then, the approximation error
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kT� − T(k)k1 is bounded as follows:

k T� � TðkÞ k1 ¼ k ð1 � cÞ~BT� � ð1 � cÞ~BTðk� 1Þ k1

� ð1 � cÞ k ~Bk1k T
� � Tðk� 1Þ k1

� ð1 � cÞk T� � Tðk� 1Þ k1

� � � �

� ð1 � cÞKk T� � Tð0Þ k1

ð7Þ

where k�k1 is L1-norm of a matrix. Note that the bound k ~B k1 � 1 of Lemma 1 is used in the

above derivation.

Lemma 1. The spectral radius of ~B in Eq (3) is less than or equal to 1, i.e.,
rð~BÞ � k ~B k1 � 1.

Proof. According to spectral radius theorem [43], rð~BÞ � k ~B k1 where k�k1 denotes L1-

norm of a given matrix, indicating the maximum absolute column sum of the matrix. Note

that the entries of ~B are non-negative probabilities; thus, the absolute column sums of ~B are

equal to its column sums which are obtained as follows:

1>
2n

~B ¼ ½ 1>n ~A>
þ
þ 1>n ~A>

�
1>n ~A>

�
þ 1>n ~A>

þ
�

¼ ½ 1>n ~A> 1>n ~A> �

¼ ½ b> b> �

where ~A> ¼ ~A>
þ
þ ~A>

�
, and 1n is an n-dimensional one vector. Note that ~A>s ¼ A>s D

� 1 for

sign s where D is a diagonal out-degree matrix (i.e., Duu ¼ j
~Nuj). Then, 1>n ~A> is represented as

1>n ~A> ¼ 1>n ðA
>

þ
þ A>

�
ÞD� 1 ¼ 1>n jAj

>D� 1 ¼ ðjAj1nÞ
>D� 1 ¼ b>

where | A | = A++ A− is the absolute adjacency matrix. The u-th entry of |A|1n indicates the

out-degree of node u, denoted by j~Nuj. Note that D� 1

uu is 1=j~Nuj if u is a non-deadend. Other-

wise, D� 1

uu ¼ 0 (i.e., a deadend node has no outgoing edges). Hence, the u-th entry of b> is 1 if

node u is not a deadend, or 0 otherwise; its maximum value is less than or equal to 1. There-

fore, rð~BÞ � k ~B k1 � 1.

Complexity analysis. We analyze the time complexity of SIDNET as follows.

Theorem 2 (Time Complexity of SIDNET). The time complexity of the l-th layer is O(Kmdl+
ndl−1 dl) where K is the number of diffusion steps, dl is the feature dimension of the l-th layer,
and m and n are the number of edges and nodes, respectively. Assuming all of dl are set to d, SID-

NET with L layers takes O(LKmd + Lnd2) time.
Proof. The feature transform operations require O(ndl−1 dl) time due to their dense matrix

multiplication. Each iteration of the signed random walk diffusion in Eq (3) takes O(mdl) time

due to the sparse matrix multiplication ~BTðk� 1Þ where the number of non-zeros of ~B is O(m).

Thus, O(Kmdl) is required for K iterations. Overall, the total time complexity of the l-th layer is

O(Kmdl+ ndl−1 dl).
Theorem 2 indicates that given the hyperparameters, SIDNET exhibits the linear scalability

w.r.t. the number m of edges.
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Experiments

We evaluate the effectiveness of SIDNET through the link sign prediction task on real-world

signed graphs. Specifically, we aim to answer the following questions:

• Q1. Link sign prediction. How effective is our proposed SIDNET for predicting the signs of

missing edges compared to state-of-the-art methods?

• Q2. Ablation study. How does each component of SIDNET affect node representation learn-

ing in connection with the link sign prediction?

• Q3. Effect of local injection ratio. How does the ratio c of the local feature injection in SID-

NET affect the performance of link sign prediction?

• Q4. Effect of propagation hops. How does propagation hops of SIDNET affect the perfor-

mance of the link sign prediction?

• Q5. Effect of embedding dimension. How does the dimension of embeddings produced by

SIDNET affect the accuracy of link sign prediction compared to other methods?

Experimental setting

Datasets. We perform experiments on five signed graphs summarized in Table 2. The Bit-

coin-Alpha and Bitcoin-OTC datasets [5] are extracted from directed online trust networks

served by Bitcoin Alpha and Bitcoin OTC, respectively. The Wikipedia dataset [44] is a signed

graph representing the administrator election procedure in Wikipedia where a user can vote

for (+) or against (−) a candidate. The Slashdot dataset [2] is collected from Slashdot, a tech-

nology news site which allows a user to create positive or negative links to others. The Epinions

dataset [1] is a directed signed graph scraped from Epinions, a product review site in which

users mark their trust or distrust to others.

The publicly available signed graphs do not contain initial node features even though they

have been utilized as representative datasets in signed graph analysis. Due to this reason, many

previous works [30, 31] on GCN for signed graphs have exploited singular vector decomposi-

tion (SVD) to extract initial node features. Thus, we follow their setup, i.e., X = U Sd is the ini-

tial feature matrix for all GCN-based models where A ’ USdi
V> is obtained by a truncated

SVD method, called Randomized SVD [45], with target rank di = 128. Note that the method is

Table 2. Dataset statistics of directed signed graphs. |V| and |E| are the number of nodes and edges, respectively. Given sign s 2 {+, −}, |Es| and ρ(s) are the number and

percentage of edges with sign s, respectively. The local injection ratio is denoted by c.

Dataset |V| |E| |E+| |E−| ρ(+) ρ(−) c
Bitcoin-Alpha1 3,783 24,186 22,650 1,536 94% 6% 0.35

Bitcoin-OTC2 5,881 35,592 32,029 3,563 90% 10% 0.25

Wikipedia3 7,118 103,675 81,318 22,357 78% 22% 0.45

Slashdot4 79,120 515,397 392,326 123,071 76% 24% 0.55

Epinions5 131,828 841,372 717,667 123,705 85% 15% 0.55

1 https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
2 https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
3 https://snap.stanford.edu/data/wiki-Elec.html
4 http://konect.cc/networks/slashdot-zoo
5 http://www.trustlet.org/extended_epinions.html

https://doi.org/10.1371/journal.pone.0265001.t002
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very efficient (i.e., its time complexity is Oðnd2
i Þ where n is the number of nodes) and per-

formed only once as a preprocessing in advance; thus, it has little effect on the computational

performance of training and inference.

Competitors. We compare our proposed SIDNET with the following competitors:

• SRWR[11, 41] is a personalized ranking method for measuring trustworthiness scores

between nodes based on signed random walks. In [41], they used the Wikipedia, Slashdot,

and Epinions datasets as directed graphs without preprocessing. They randomly selected 2,

000 seed nodes and choose 20% edges of positive and negative links of each node as valida-

tion and test sets. The remaining edges are used as a training set. They measured accuracy

(i.e., the ratio of correct predictions) and macro F1 score for the task.

• APPNP [24] is an unsigned GCN model based on Personalized PageRank.

• ResGCN [25] is another unsigned GCN model exploiting skip connections to stack multiple

layers.

• SIDE [28] is a network embedding model optimizing the likelihood over signed edges using

random walk sequences to encode structural information into node embeddings. In [28],

they used the Wikipedia, Slashdot, and Epinions datasets as directed graphs without prepro-

cessing, and performed 5-fold cross validation. They measured AUC and F1 score for the

task.

• SLF [29] is another network embedding model considering positive, negative, and non-

linked relationships to learn non-negative node embeddings. In [29], they used the Wikipe-

dia, Slashdot, and Epinions datasets as directed graphs without preprocessing. They ran-

domly split each dataset into training and test sets by the 8:2 ratio. They used AUC and F1

score for the task.

• SGCN [30] is a state-of-the-art signed GCN model considering balanced and unbalanced

paths motivated from balance theory to propagate embeddings. In [30], they used the Bit-

coin-Alpha, Bitcoin-OTC, Slashdot, and Epinions datasets. They modified each dataset so

that the resulting graph becomes undirected, and filtered out nodes with few links randomly

from the two larger networks (Slashdot and Epinions). For each graph, they randomly split

edges into training and test sets by the 8:2 ratio. They used AUC and F1 score for the task.

• SNEA [31] is another signed GCN model extending SGCN by learning attentions on the bal-

anced and unbalanced paths for modeling embeddings. According to [31], the experimental

setup of SNEA is the same as that of SGCN.

Note that each dataset originally represents a directed graph, not an undirected graph.

Thus, we test all methods including SGCN and SNEA in directed graphs formed from non-

filtered original datasets. Also, APPNP and ResGCN are originally designed for unsigned

graphs (i.e., they were not tested for the sign prediction task in [24, 25]). In this work, we use

the absolute adjacency matrix for APPNP and ResGCN.

Implementation and machines. All methods are implemented by PyTorch and Numpy

in Python. We use a machine with Intel E5-2630 v4 2.2GHz CPU and Geforce GTX 1080 Ti.

Data split and evaluation metrics. We randomly split the edges of a signed graph into

training and test sets by the 8:2 ratio. As shown in Table 2, the sign ratio is highly skewed to

the positive sign, i.e., the sampled datasets are naturally imbalanced. Considering the class

imbalance, we measure the area under the curve (AUC) to evaluate predictive performance.

We also report macro F1 measuring the average of the ratios of correct predictions for each

sign since negative edges need to be treated as important as positive edges (i.e., it gives equal
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importance to each class). A higher value of AUC or macro F1 indicates better performance.

We repeat each experiment 10 times with different random seeds and report the average and

standard deviation of test values.

Hyperparameter settings. We set the dimension of final node embeddings to 32 for all

methods so that their embeddings have the same learning capacity for the target task. We per-

form 5-fold cross-validation for each method to find the best hyperparameters and measure

the test accuracy with the selected ones. In the cross-validation for SIDNET, the local injection

ratio c is selected from 0.05 to 0.95 by step size 0.1. We set the number L of layers to 2, the

number K of diffusion steps to 10, and the feature dimension dl of each layer to 32. We follow

the range of each hyperparameter recommended in its corresponding paper for the cross-vali-

dation of other models. Our model is trained by the Adam optimizer [46], where the learning

rate is 0.01, the weight decay λ is 0.001, and the number of epochs is 100.

Link sign prediction

We evaluate the performance of each method on link sign prediction. Tables 3 and 4 summa-

rize the experimental results in terms of AUC and macro F1, respectively. Note that our SIDNET

shows the best performance in terms of AUC and macro F1 scores. SIDNET presents

3.3* 6.6% and 1.6* 7.4% improvements over the second best models in terms of AUC and

macro F1, respectively. We have the following observations.

Table 3. SIDNET gives the best link sign prediction performance in terms of AUC. The best model is in bold, and the second best model is underlined. The % increase

measures the best accuracy against the second best accuracy.

AUC Bitcoin-Alpha Bitcoin-OTC Wikipedia Slashdot Epinions

SRWR 0.808±0.011 0.859±0.010 0.762±0.004 0.754±0.002 0.907±0.001

APPNP 0.854±0.010 0.867±0.009 0.756±0.034 0.837±0.003 0.870±0.002

ResGCN 0.853±0.017 0.876±0.010 0.816±0.018 0.744±0.004 0.871±0.002

SIDE 0.801±0.020 0.839±0.013 0.736±0.026 0.814±0.003 0.880±0.003

SLF 0.779±0.023 0.797±0.014 0.869±0.021 0.833±0.006 0.876±0.005

SGCN 0.824±0.018 0.857±0.008 0.768±0.015 0.827±0.004 0.895±0.002

SNEA 0.855±0.006 0.858±0.008 0.764±0.009 0.754±0.005 0.771±0.004

SIDNET (proposed) 0.908±0.005 0.920±0.004 0.910±0.002 0.892±0.001 0.937±0.002

% increase 6.1% 4.7% 4.7% 6.6% 3.3%

https://doi.org/10.1371/journal.pone.0265001.t003

Table 4. SIDNET gives the best link sign prediction performance in terms of macro F1. The best model is in bold, and the second best model is underlined. The %

increase measures the best accuracy against the second best accuracy.

macro F1 Bitcoin-Alpha Bitcoin-OTC Wikipedia Slashdot Epinions

SRWR 0.687±0.010 0.740±0.007 0.706±0.004 0.669±0.002 0.776±0.001

APPNP 0.682±0.005 0.762±0.009 0.636±0.013 0.748±0.003 0.773±0.004

ResGCN 0.658±0.006 0.735±0.015 0.677±0.006 0.609±0.004 0.784±0.003

SIDE 0.663±0.008 0.709±0.008 0.632±0.008 0.685±0.009 0.785±0.006

SLF 0.615±0.027 0.641±0.025 0.761±0.028 0.733±0.008 0.810±0.008

SGCN 0.690±0.014 0.776±0.008 0.624±0.012 0.752±0.013 0.844±0.002

SNEA 0.670±0.005 0.742±0.011 0.702±0.007 0.690±0.005 0.805±0.005

SIDNET (proposed) 0.757±0.012 0.799±0.007 0.792±0.005 0.782±0.002 0.857±0.001

% increase 7.4% 1.6% 4.1% 4.0% 1.6%

https://doi.org/10.1371/journal.pone.0265001.t004
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• SIDNET outperforms an unsupervised method SRWR for the link sign prediction over all

datasets; this implies learning node embedding with the signed random walks and the local

feature injection is more effective for the task.

• The unsigned GCN models APPNP and ResGCN show worse performance than SIDNET,

which shows the importance of using sign information.

• The performance of network embedding techniques such as SIDE and SLF is worse than

that of other GCN-based models; this shows the importance of jointly learning for feature

extraction and link sign prediction for the performance.

• The performance of SGCN and SNEA which use limited features from nodes within 2 * 3

hops is worse than that of SIDNET which exploits up to K × L-hop neighbors’ features for

each layer where K is set to 10, and L is set to 2 in these experiments. It indicates that care-

fully exploiting features from distant nodes as well as neighboring ones is crucial for the

performance.

Ablation study

We examine the effectiveness of each component used in SIDNET through an ablation study.

As a baseline, we consider the signed random walk diffusion (SRWDiff) of a single layer with

no other components, which is achieved by setting c = 0, K = 10, and L = 1. Then, we combine

SRWDiff with the local feature injection (LFI) by setting c> 0 where the value of c varies with

datasets. As seen in the second row of Table 5, this combination significantly improves AUC

of the link sign prediction, especially in Wikipedia and Slashdot datasets. This emphasizes the

importance of injecting local features into the signed random walk diffusion process. Further,

the performance slightly increases by using multiple layers (ML) with the skip connection (SC)

over all datasets as shown in the fourth row of Table 5.

Effect of local injection ratio

We examine the effect of the local injection ratio c in the diffusion module of SIDNET. We use

one layer, and set the number K of diffusion steps to 10; we vary c from 0.05 to 0.95 by 0.1, and

measure the performance of the link sign prediction task in terms of macro F1. Fig 3 shows the

effect of c for the predictive performance of SIDNET. For small datasets such as Bitcoin-Alpha

and Bitcoin-OTC, c between 0.15 and 0.35 provides the best performance. On the other hand,

c around 0.5 shows the best accuracy for Wikipedia, Slashdot, and Epinions datasets. For all

datasets, a too low or too high value of c (e.g., 0.05 or 0.95) results in a poor performance. For

each dataset, we select the value of c producing the best accuracy in Fig 3, and record it in

Table 2 for the following experiments.

Effect of propagation hops

We investigate the effect of the propagation hop count with which features are propagated in

SIDNET for learning from signed graphs. As described in Theorem 1, the hop count of SIDNET

Table 5. Ablation study results on SIDNET in terms of AUC. The accuracy considerably improves by combining the signed random walk diffusion (SRWDiff) and the

local feature injection (LFI). Using multiple layers (ML) together with the skip connection (SC) leads to the best performance of SIDNET across all tested datasets.

Methods c K L Bitcoin-Alpha Bitcoin-OTC Wikipedia Slashdot Epinions

SRWDiff 0 10 1 0.817±0.015 0.836±0.007 0.673±0.005 0.658±0.005 0.823±0.003

SRWDiff+LFI >0 10 1 0.908±0.006 0.917±0.004 0.904±0.002 0.888±0.001 0.934±0.001

SRWDiff+LFI+ML >0 10 2 0.903±0.014 0.918±0.003 0.906±0.003 0.888±0.003 0.934±0.003

SRWDiff+LFI+ML+SC (final) >0 10 2 0.908±0.005 0.920±0.004 0.910±0.002 0.892±0.001 0.937±0.002

https://doi.org/10.1371/journal.pone.0265001.t005
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is determined by K × L where K and L are the numbers of diffusion steps and layers, respec-

tively. Thus, we examine the effects of either or both of K and L. In these experiments, we use

the local injection ratio c in Table 2 for each dataset.

Effect of the number K of diffusion steps. To see its pure effect, we use one layer (L = 1)

so that the hop count is decided by only the number K of diffusion steps. We vary K from 1 to

10 and evaluate the performance of SIDNET in terms of AUC for each diffusion step. Fig 3

shows that the performance of SIDNET gradually improves over all datasets as the hop count

increases. Note that the performance of SIDNET converges in general after a sufficient number

of diffusion steps, which is from Theorem 1.

Effect of the number L of layers. In this experiment, we set K to 1 so that the hop count is

decided by only the number L of layers. We increase L from 1 to 10, and compare SIDNET to

SGCN, the state-of-the-art-model for learning from signed graphs. The hop count of SGCN is

also determined by its number of layers. Fig 4 shows that the performance of SIDNET gradually

improves as L increases while that of SGCN dramatically decreases over all datasets. This indi-

cates that SGCN suffers from the performance degradation problem when its network

becomes deep, i.e., it is difficult to use information beyond 3-hop neighbors in SGCN. On the

other hand, SIDNET utilizes features of farther nodes, and generates more expressive and stable

embedding than SGCN does.

Effect of both K and L. We further vary both K and L to investigate the effect of hop

counts which are determined by K × L where 1� K, L� 10. Fig 5 demonstrates the AUC’s ten-

dency in the link sign prediction, with the following observations:

• SIDNET produces a better accuracy when the hop count is between 20 and 30 in general. On

the other hand, a small hop count results in inferior performance over all tested datasets.

Fig 3. Effects of the local injection ratio c and the number K of diffusion steps of SIDNET. (a) A relatively small value (0.15*0.35) of c is the best for

Bitcoin-Alpha and Bitcoin-OTC while c around 0.5 shows the best accuracy for the others. (b) The performance of SIDNET improves and converges as K
increases (Theorem 1).

https://doi.org/10.1371/journal.pone.0265001.g003
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• Overall, the upper left triangle of each plot are redder than the lower right triangle, implying

K of our diffusion module (or diffusing features via signed random walks) is more influential

in the performance of SIDNET than L (or simply stacking layers).

Effect of embedding dimension

We investigate the effect of the node embedding dimension of each model for the link sign

prediction task. For this experiment, we vary the dimension of hidden and final node embed-

dings from 8 to 128 where other hyperparameters of each model are set to those producing the

Fig 4. Effect of the number L of layers of SIDNET compared to the state-of-the-art SGCN. The accuracy of SIDNET increases and becomes stable while

that of SGCN dramatically degrades as L increases.

https://doi.org/10.1371/journal.pone.0265001.g004

Fig 5. Effect of propagation hops of SIDNET in terms of AUC where SIDNETperforms K × L-hop feature propagations. Overall, the accuracy

becomes better by setting K and L such that 20� K × L (hop count)� 30 while SIDNET with a small hop count exhibits poor results over all datasets.

https://doi.org/10.1371/journal.pone.0265001.g005
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results in Table 3. Then, we observe the trend of AUC in the link sign prediction task. As

shown in Fig 6, SIDNET significantly outperforms its competitors over all the tested dimen-

sions, and it is relatively less sensitive to the embedding dimension than other models in all

datasets except the Bitcoin-Alpha dataset.

Conclusion

In this paper, we propose SIGNED DIFFUSION NETWORK (SIDNET), a novel graph neural network

that performs end-to-end node representation learning for link sign prediction in signed

graphs. We propose a signed random walk diffusion method to properly diffuse node features

on signed edges, and suggest a local feature injection method to make diffused features distin-

guishable. Our diffusion method empowers SIDNET to effectively train node embeddings con-

sidering multi-hop neighbors while preserving local information. Our extensive experiments

show that SIDNET provides the best accuracy outperforming the state-of-the-art models in link

sign prediction. Future research directions include analyzing our model for graph reconstruc-

tion and clustering in signed graphs, and extending it for multi-view networks.
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