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Abstract: Low molecular weight fucoidan (LMWF) has been reported to have immunomodulation
effects through the increase of the activation and function of macrophages. In this study, the regu-
lating effect of LMWF from Undaria pinnatifida grown in New Zealand on dendritic cells (DCs) was
investigated. We discovered that LMWF could stimulate DCs’ maturation and migration, as well
as CD4+ and CD8+ T cells’ proliferation in vitro. We proved that this immune promoting activity is
activated through TLR4 and its downstream MAPK and NF–κB signaling pathways. Further in vivo
(mouse model) investigation showed that LMWF has a strong immunological boosting effect, such
as facilitating the proliferation of immune cells and increasing the index of immune organs. These
findings suggest that LMWF has a positive immunomodulatory effect and is a promising candidate
to supplement cancer immunotherapy.

Keywords: low molecular weight fucoidan (LMWF); dendritic cells; immune stimulation;
Undaria pinnatifida; New Zealand

1. Introduction

As a natural sulfated polysaccharide, fucoidan mainly exists in the cell wall of brown
algae and has a variety of biological activities, including anti-inflammatory [1], antiviral [2],
antioxidant [3], anticoagulant [4], immunomodulatory [5], and antitumor activities [6].
The function of fucoidan is regulated by many conditions, including the source, harvest
time, molecular weight, monosaccharide composition, degree of substitution of sulfuric
acid groups, and spatial structure [7–10]. According to several previous studies, fucoidan
promotes the maturation of DC by enhancing the expression of DC surface molecules and
the secretion of cytokines [11,12] to further improve the intensity of immune response [13].

Dendritic cells (DCs), a link between innate immunity and adaptive immunity, play a
connecting role in the occurrence and development of immune response. They are the only
antigen presenting cells (APC) that can directly activate naïve T cells. Immature DCs which
express high levels of pattern recognition receptors have remarkable capability to recognize
and phagocytize antigens, and their phagocytic ability decreases along with the maturation
of DC [14]. Meanwhile, the most important functions of DCs are antigen presentation and
immune activation. However, due to the lack of maturity, DC-based vaccine is limited
in clinical application. Therefore, it is necessary to develop safe, non-toxic, and efficient
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adjuvants to promote the maturation of DC [15]. Polysaccharides from natural sources
have been extensively studied because of their wide range of biological activities and low
toxicity [16].

Therefore, this paper investigated the regulation of a fraction of marine natural
polysaccharide–low molecular weight fucoidan (LMWF) on DCs and the promoting effect
of fucoidan on the maturation and function of DC in vivo and in vitro, which will lay the
groundwork for further development and utilization of LMWF.

2. Materials and Methods
2.1. Materials

The LMWF was obtained from New Zealand Undaria pinnatifida as described previously [17].
RPMI-1640 medium and phosphate-buffered solution (PBS) were bought from Gibco
(Gaithersburg, MD, USA). Lipopolysaccharides (LPS), polymyxin B (PMB), and
FITC-DEXTRAN (42,000 Da) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and TAK-242 were pur-
chased from PeproTech (Rocky Hill, NJ, USA) and Medchemexpress (Monmouth Junction,
NJ, USA), respectively.

2.2. Animals and Ethics

ICR and C57BL/6 mice (6–8 weeks) were bought from Animal Laboratory Center,
Xinjiang Medical University (Urumqi, Xinjiang, China) and housed in a standard temperature-
controlled, light-cycled animal facility at Xinjiang University. The animal experiment
(BRGE-AE001-075) was approved by the Committee on the Ethics of Animal Experiments
of Xinjiang Key Laboratory of Biological Resources and Genetic Engineering (BRGE-AE001)
and carried out under the guidelines of the Animal Care and Use Committee of the College
of Life Science and Technology, Xinjiang University.

2.3. DC Treatment

Immature DCs (iDCs) were obtained from bone marrow cells of C57BL/6 mice accord-
ing to our previous elaboration [18]. Briefly, the femurs and tibias of mice were collected
and put into 75% ethanol solution for 3 min. After washing with PBS 3 times, bone marrow
cells were taken with a syringe, then a single cell suspension was prepared. After centrifug-
ing at 1200 rpm/min for 7 min, the supernatant was removed and cells were suspended in
6 mL of RPMI-1640 medium containing 10% fetal bovine serum, 1% penicillin-streptomycin,
and 20 ng/mL GM-CSF, then it was cultured at 37 ◦C in an incubator with a 5% CO2 at-
mosphere. Then, 3 mL of medium was removed and the fresh culture medium was
added the next day. On the third day, the supernatant was removed and the com-
plete 6 mL of medium was supplemented, then, the medium was half-changed again
on the fifth day. On day 7, iDCs were collected and treated with different concentrations
(20, 50, and 100 µg/mL) of LMWF for 12 h, and LPS (40 ng/mL) was used as the positive
control. For the detection of phagocytosis ability, iDCs were treated with different concen-
trations (20, 50, and 100 µg/mL) of polysaccharides for 12 h and then co-incubated with
FITC-DEXTRAN for 1 h at 37 ◦C. The cells were then collected and treated with precooling
PBS to terminate the reaction. In endotoxin assay, DCs were pretreated with or without
PMB (10 µg/mL) for 2 h, and then treated with LPS or LMWF (100 µg/mL) for 12 h. PMB
was adopted as an endotoxin inhibitor in this paper to exclude the influence of endotoxin
on the maturation of DC [19]. DCs were pretreated with or without 1 µM TAK-242 for
1 h and the supernatant was removed, then, the cells were re-suspended in fresh medium
without TAK-242, followed by the treatment of LMWF (20, 50, and 100 µg/mL) for 12 h for
TLR4 inhibition treatment.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

After treatment by LPS and LMWF (20, 50, and 100 µg/mL), we collected the super-
natant of DCs and detected the level of interleukin (IL)-12p40 and tumor necrosis factor-α
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(TNF-α) via an ELISA kit following the manufacturer’s protocol (Elabscience, Houston, TX,
USA), Briefly, the supernatants of LPS and LMWF treated DCs (106 cells/mL) were diluted
10 times. After incubating at 37 ◦C for 90 min, supernatants were removed and 100 µL of
antibody solution was added. After incubation for 1 h at 37 ◦C, 250 µL of washing buffer
was added to each well. Soaked for 1 min and the solution was decanted from each well
and patted dry on absorbent paper. After washing three times, 100 µL of enzyme binding
working solution was added and incubated for 30 min at 37 ◦C, followed by the above
washing steps for five times. Then, 90 µL of substrate reagent was added, and incubated
for 15–20 min at 37 ◦C. A volume of 50 µL of stop solution was added to terminate the
reaction and the absorbance value was detected at 450 nm. The levels of IL-6 in serum were
also detected by ELISA kit according to the above procedure. ELISA kits for murine TNF-α,
IL-12p40, and IL-6 were purchased from Elabscience (Wuhan, China).

2.5. Mixed Lymphatic Reaction (MLR)

The induced DCs were collected from C57BL/6 mice on day 7, treated with LPS
or different concentrations of LMWF for 12 h. The freshly ground spleen homogenate
from ICR mice was stained with carboxyfluorescein diacetate succinimidyl ester (CFSE)
(eBioscience), and then the splenocytes and DCs were co-cultured at the ratio of 1:5 in a
37 ◦C incubator with a 5% CO2 atmosphere for 72 h.

2.6. Animal Model

For the experiment of DC maturation in vivo, 12 ICR mice of about 20 g were ran-
domly divided into three groups, including untreated, treatment of LPS (100 ng/mouse,
as the positive control), and LMWF (500 µg/mouse). The mice were injected by footpad
inoculation and sacrificed by cervical dislocation 24 h later. The draining lymph nodes
were taken, grounded, washed with PBS, and stained for flow cytometry analysis. For
in vivo migration experiment, iDCs were treated with or without LPS (40 ng/mL) or LMWF
(50 µg/mL) for 12 h and then stained with 1 µM CFSE for 10 min. After washing with
PBS, cells were re-suspended in PBS at 106 cells/100 µL PBS. Untreated iDCs labeled with
CFSE was named as iDCs. Unlabeled iDCs were used as blank control and named as
untreated. The in vivo migration experiment was conducted by intraperitoneal injection.
After injection of unlabeled iDCs and CFSE-labeled DCs, the inguinal lymph nodes of mice
were collected and analyzed.

Twenty ICR mice with a body weight of about 20 g were randomly divided into five
groups, including untreated, λ-carrageenan (λ-CGN, 20 mg/kg), a low dose of LMWF
(20 mg/kg), a medium dose of LMWF (40 mg/kg), and a high dose of LMWF (80 mg/kg).
λ-CGN was used as the positive control as described previously [20]. Mice in untreated
group did not receive additional intervention. Mice were injected intraperitoneally at day
0, 2, 4, 6, and 8. On day 10, all mice were sacrificed by cervical dislocation and organs were
collected and weighted. Splenocytes were used to detect the proportions of immune cells
by flow cytometry.

Cyclophosphamide (CTX) is a widely used antineoplastic drug and immunosuppres-
sant in clinic [21,22]. Long-term use of cyclophosphamide will bring serious side effects,
including myelosuppression, immunosuppression, and leukopenia [23]. It is often used to
induce immunosuppressive models. We injected mice intraperitoneally with 80 mg/kg of
CTX for four consecutive days to establish an immunosuppressive model. The untreated
group did not receive additional intervention, the CTX group was injected by CTX without
drug treatment, while the other treatment groups were treated with drug after injection
of CTX. Mice showed obvious weight loss and mental malaise. On the next day after
CTX injection, mice in treatment groups received intraperitoneal injection of λ- CGN or
LMWF every other day. When the body weight of the treatment group recovered similar to
that of the untreated group, the experiment was terminated. Organ index = visceral mass
(mg)/body weight (g).
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2.7. Western Blot

After treated with 50 µg/mL of LMWF, DCs were collected at different time points
(0, 30, 60, 120, and 240 min) to extract proteins using the Nuclear and Cytoplasmic Protein
Extraction Kit (Beijing TransGen Biotech). Then, the protein concentrations were ana-
lyzed by the BCA Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the
manufacturer’s instructions. Equal amounts of protein from cell extracts were loaded
and electrophoresed on a gel (SDS-PAGE). After SDS-PAGE, proteins were transferred to
PVDF membrane, and then blocked in 5% skimmed milk powder in a 37 ◦C incubator for
an hour. After blocking, PBST (PBS-containing 0.05% Tween-20) was used to wash the
membrane three times, 15 min for each wash. Then, the membrane was incubated with
anti-β-actin (1:1000), JNK (1:1000), p-JNK (1:1000), p38 (1:1000), p-p38 (1:1000), NF–κB p65
(1:500), p-NF–κB p65 (1:500), iκi (1:500), p-iκ1 (1:500) ERK (1:1000), or p-ERK (1:1000) (Cell
Signaling Technology, Danvers, MA, USA) at 4 ◦C overnight, washed three times, and
incubated for an additional hour with corresponding peroxidase-conjugated HRP (1:1000)
labeled secondary antibodies (Beyotime Biotech Co., Ltd. Shanghai, China) at 37 ◦C. After
that, the membrane was washed three times. Finally, the membrane was viewed on Las
4000 (FVJIFILM corporation, Tokyo, Japan).

2.8. Flow Cytometry

After various treatments, the DCs were washed with PBS, and then the DCs were
stained with various antibodies labeled with different fluorescence according to previously
published method [24]. For the expression of co-stimulatory, MHC molecules, and CCR7,
the fluorescence-conjugated antibodies used were APC-CD40 and PerCP-CD86 or FITC-
MHC I and APC-MHC-II (all from Elabscience Wuhan, Hubei Province, China) or PE-CCR7
(BD Biosciences, San Diego, CA, USA). We used PE-CD4 and APC-CD8 (Elabscience Wuhan)
to detect the ratio of T cell proliferation. For the proliferation of immune cells in mouse
spleen, we used FITC-CD49b and FITC-CD11c (BD Biosciences, San Diego, CA, USA),
and APC-CD3, PE-CD19, APC-CD86, PE-CD11b, APC-CD8, FITC-CD4, and PE-CD44
(Elabscience Wuhan) stained splenocytes. The relevant indexes in the immunosuppression
model were detected by APC-CD19, PerCP-CD3, FerCP-CD11c, FITC-CD11b, APC-CD8
and PE-CD4 (Elabscience Wuhan), and FITC-CD49b (BD Biosciences). A volume of 0.25 µL
of antibody per sample in vitro and 0.5 µL of antibody per sample in vivo were used. All
samples were collected on FACSCalibur (BD Biosciences) and the data were analyzed by
the FlowJo platform (Tree Star, Inc., Ashland, OR, USA).

2.9. Statistical Analysis

The data were expressed as mean ± SD. Statistical analysis was carried out by one-way
analysis of variance (ANOVA) or unpaired t-test using Prism8.0 software. p < 0.05 was
considered statistically significant.

3. Results and Discussions
3.1. LMWF Can Stimulate the Maturation of DCs In Vitro and In Vivo

To evaluate the effect of LMWF on DC maturation in vitro, DCs induced to the seventh
day were treated with different concentrations of LMWF for 12 h, LPS (40 ng/mL) was
used as the positive control, and the expression of CD40, CD86, and MHC molecules were
detected by flow cytometry. The results showed that LMWF significantly enhanced the
expression of CD40, CD86, MHC I, and MHC II (Figure 1A). DCs have strong antigen
phagocytosis ability at the immature state, but with the maturity of DCs, this ability will
be weakened. Therefore, this can be used as an indication of DC maturity. As shown in
Figure 1B, when compared to control, LMWF could significantly reduce the phagocytic
ability of DC. Results indicated that LMWF could stimulate the maturation of DCs in vitro.
In the meantime, we also examined the effect of LMWF on DC maturation in mice. We
found that LMWF could also promote the maturation of DC in vivo, significantly increased
the expression of CD40 and CD80 compared to untreated mice (Figure 2). Although
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the expression of CD86 in mice was not statistically significant, its level also showed an
increasing trend (Figure 2).
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Figure 1. LMWF’s ability to promote DC maturity in vitro. After 12 h of treatment with different
concentrations of LMWF, flow cytometry was used to detect the expression of surface molecules in DC.
LPS (40 ng/mL) was used as the positive control. (A) Expression of CD40, CD86, MHCI, and MHCII
(upper part) and mean fluorescence intensity (MFI) (lower part). (B) LMWF reduced the phagocytosis
of DC, after treatment, FITC labeled Dextran was added to detect the phagocytosis efficiency of DC.
(C) Endotoxin Pollution Assay of LMWF. PMB can neutralize endotoxin by acting on the cell wall of
gram-negative bacteria, so we used PMB to detect the presence of endotoxin contamination in LMWF.
Data are from 3 independent experiments and analyzed by prism8.0 software. * p < 0.05; ** p < 0.01;
*** p < 0.001 compared to untreated DCs.
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Figure 2. LMWF promotes DC maturation in vivo. Mice were injected with 500 µg of LMWF by
footpad inoculation, and 100 ng of LPS was used as a positive control. After 24 h, draining lymph
nodes were taken to detect the surface molecules that marked the maturity of DC by flow cytometry.
* p < 0.05; ** p < 0.01 compared to untreated.

This finding was also reported in a previous study [12], human monocyte-derived
immature DCs were grown with fucoidan to study the direct influence of fucoidan on the
maturation of sentinel DCs into effector DCs. In contrast to unstimulated cells, fucoidan
treatment promoted the expression of CD83 and increased the expression of CD80, CD86,
and HLA-DR within 48 h, in the same way that LPS treatment did. These findings indicated
that fucoidan has the ability to cause immature DCs to develop [12]. However, this
study did not perform the endotoxin control experiment. Our study, on the other hand,
used an endotoxin-free LMWF. HMWF may contain endotoxin, which could lead to false
positive results.

In order to rule out the false positive results caused by endotoxin; we performed an
endotoxin test that the endotoxin antagonist, PMB, was used to pretreat DCs (Figure 1C).
The result showed that the function of LPS was significantly inhibited after PMB treatment,
but there was no change in LMWF induced increase with the presence of PMB. Therefore,
it is indicated that LMWF used in this experiment does not contain endotoxin.

3.2. LMWF Enhances the Migration of DCs In Vitro and In Vivo

DCs are migratory immune cells with phagocytic and antigen-presenting capabilities.
The migration ability of DC essentially contributes to initiate immune response and exercise
immune surveillance function [25]. Thus, we planned to detect the expression of DC surface
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receptor CCR7 after treated with LMWF for 12 h. We found that LMWF (50 µg/mL) could
significantly enhance the expression of CCR7 in vitro (Figure 3A), and the experiment
in vivo showed similar results, LMWF could significantly increase the expression of CFSE-
conjugated CD11c+ (Figure 3B). The results suggest that LMWF enhances the migration
of DCs.
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Figure 3. LMWF promotes DC migration in vitro and in vivo. (A) After being treated with different
concentrations of LMWF, the expression of CCR7 was detected by flow cytometry, and the percentage
of CCR7 cells was counted. (B) DC was labeled with CFSE. After LMWF treatment, the cells were
collected and conducted by intraperitoneal injection. The proportion of CD11c+ CFSE cells in inguinal
lymph nodes was calculated, LPS was used as positive treatment. DC labeled only with CFSE was
iDC group, and unlabeled iDC was untreated group as blank. * p < 0.05; ** p < 0.01; *** p < 0.001
compared to untreated DCs, # p < 0.05; ## p < 0.01 compared to iDC.

In contrast, Park et al. reported the experiment with different molecular weight
fucoidan from U. pinnatifida [26]. HMWF (100 ± 4 kDa) up-regulated the intercellular
adhesion molecule (ICAM)-1 and CD11a expression levels to a similar extent as that of LPS,
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according to this study. Treatment with either medium molecular weight fucoidan (MMWF,
3.5 ± 0.3 kDa) or LMWF (1 ± 0.2 kDa) resulted in just a minor rise in ICAM-1 expression
levels and no increase, even a slight drop, in CD11a expression levels [26]. A possible
reason for this may be due to the trace existence of LPS in HMWF triggers immunological
response. Therefore, a further in-depth investigation of HMWF is required. As we have
performed the LPS contamination control, our results should be credible.

3.3. LMWF Promotes DC Maturation via TLR4 Signaling Pathway

TLR4 has been widely studied in tumor immunotherapy, especially in the immune
response induced by polysaccharides [27,28]. Our prior research has validated this con-
clusion [29]. We further hypothesize that LMWF also activates DC through this pathway
to exert its immune-modulation effect. We used TAK-242, the inhibitor of TLR4 (1 µM),
pretreated DC for 1 h, followed by the treatment of LMWF for 12 h and then collected DCs.
The expressions of surface molecules were detected by flow cytometry, and the secretion
of cytokines in the supernatant were detected by ELISA. The results demonstrated that
the expression of CD40 and CD86 and secretion of IL-12 and TNF-α were significantly
inhibited by the addition of inhibitor (Figure 4). It showed that LMWF’s promotion of DC
maturation and cytokines production is mediated by TLR4.

Based on these results, we further explored the MAPK and NF–κB signaling path-
ways downstream of TLR4. We detected the effect of LMWF treatment on the expression
of proteins related to these two signaling pathways by using the Western blot method.
Phosphorylation levels of ERK, JNK, and p38 were significantly increased after LMWF
treatment for 0.5 and 1 h, and reached the peak at 1 h (Figure 5). In addition, the level of
p-iκB increased from 0.5 to 2 h before decreasing and the level of p-NF–κB p65 increased
slowly from 2 to 4 h (Figure 5). Therefore, LMWF promotes the maturation of DC and
exerts the function of immune enhancement by activating and regulating downstream
signal pathways via TLR4.

These results are in consistence with those of Yang et al. who also found that in contrast
to unstimulated cells, fucoidan (from Fucus vesiculosus) treatment induced the expression of
CD83 and increased CD80, CD86, and HLA-DR expression within 48 h, in a manner similar
to that seen in the LPS-treated group [12]. These findings suggest that fucoidan can cause
immature DCs to mature by increasing the expression levels of immune-stimulation and
maturation related surface markers [12]. This is also consistent with an earlier observation,
where fucoidans from Laminaria japonica, Laminaria cichorioides, and Fucus evanescens can
activate NF–κB through TLR-2 and TLR-4 on HEK293 cells, and the TLRs have different
affinity to differently originated fucoidans [30].

3.4. LMWF Shows Capability to Induce the Proliferation of Allogeneic T Cells

The effect of LMWF-treated DC on the proliferation of allogeneic T cells was inves-
tigated using MLR. The CFSE-labeled splenocytes and DCs were co-cultured at the ratio
of 1:5 for 72 h. The proliferation of CD4+ T cell and CD8+ T cells was detected by flow
cytometry. We observed that DC treated with 50 µg/mL of LMWF can significantly enhance
the proliferation of splenocytes (Figure 6).

Jin et al. found that fucoidan functions as an adjuvant to enhance ovalbumin-specific
antibody production and T cell responses in vivo [31]. Fucoidan was employed as an
adjuvant in vivo with ovalbumin (OVA) antigen and increased OVA-specific antibody
formation as well as primed IFN-production in OVA-specific T cells [31]. Fucoidan also
aided OVA-induced MHC class I and II upregulation on spleen cDCs, as well as the
proliferation of OVA-specific CD4 and CD8 T cells. Finally, mice were protected from B16-
OVA tumor cells after receiving OVA immunization with fucoidan as an adjuvant. These
findings suggest that fucoidan can be used as an adjuvant to produce a Th1 immune
response and CTL activation, which could be valuable in the development of tumor
vaccines [31]. However, LMWF has not been investigated in vivo. Our study was the
first study to investigate LMWF and produced similar results in comparison to Jin et al.
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It is worth noting that LMWF is more absorbable in human intestine which makes it a
more favorable orally administered agent. In future studies, we will investigate the LMWF
mechanisms of anti-tumor activity in a mouse tumor model by oral administration.
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Figure 4. LMWF stimulate the maturation of DC via TLR4 signaling pathway. DC was pretreated by
the inhibitor of TLR4 (TAK-242), followed by the treatment of LMWF for 12 h. (A) The expression of
surface molecules were detected by flow cytometry and (B) the secretion of IL-12p40 and TNF-α in
the supernatant were detected by ELISA. The data are from 3 independent experiments and analyzed
by prism8.0 software.
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Figure 5. After treated with 50 µg/mL of LMWF, DCs were collected at different time points (0, 30,
60, 120, and 240 min) to extract proteins, Western blot was used to determine the expression levels of
related proteins. The results were subsequently quantified by gray-scale scanning of the bands using
ImageJ. * p < 0.05; ** p < 0.01 compared to untreated.
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Figure 6. LMWF shows capacity to induce the proliferation of allogeneic T cells. MLR was performed
using C57BL/6 DCs and ICR splenocytes. DCs on day 6 were treated with different concentrations
(10, 20, and 50 µg/mL) of LMWF or LPS for 12 h. DCs and splenocytes were co-cultured at a ratio of
1:5 for 72 h. T cell proliferation was assessed by flow cytometry, using prism8.0 software for statistical
analysis. * p < 0.05; ** p < 0.01; *** p < 0.001 compared to untreated.

3.5. Immune Enhancement Effect of LMWF on Murine Immunity

The aforementioned findings show that LMWF promotes DC maturation and immune
regulation in vitro. Therefore, we further verified this observation in a mouse model. Mice
were injected with different doses (20, 40, and 80 mg/kg) of LMWF. We found that both
low-dose and high-dose groups had significantly increased the spleen index, and there
were no significant changes in the body weight (Table 1). In addition, we also examined the
change of immune cells in spleen of mice. Results showed that LMWF could significantly
increase the number of B cells (CD3-CD19+), NK cells (CD3-CD19-CD49b+), macrophages
(CD11b+), and DC (CD11c+) in splenocytes (Figure 7A). Furthermore, CD8+ T cells,
CD4+ T cells and their activation status were detected. CD8+ T cells and activated
CD8+ T cells (CD8+ CD44+) were significantly increased by LMWF treatment at 40 mg/kg
(Figure 7B). In order to further verify the immune enhancement effect of LMWF in mouse,
CTX was used to induce immunosuppression. LMWF injection (once every other day)
could significantly improve the weight loss and depilation caused by CTX. The organ index
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showed that the spleen was significantly enlarged after LMWF treatment (Table 2). Then
the immune cells in the spleen were detected by using flow cytometry. It was found that
LMWF could significantly increase the number of NK cells, macrophages and DCs, com-
pared with that of the control group (Figure 8A). Treatment groups also had significantly
higher secretion of IL-6 (Figure 8B). The evaluation of liver and kidney function showed
that LMWF had no toxic or adverse effects in vivo (Figure 8C,D). Hence, we concluded that
LMWF has a good immunomodulatory effect and the optimal dose of LMWF in mouse is
40 mg/kg.

Table 1. Organ indexes of naïve mice.

Untreated λ-CGN 20 mg/kg 40 mg/kg 80 mg/kg

Heart 5.03 ± 0.44 5.09 ± 0.16 5.08 ± 0.79 5.94 ± 0.37 5.64 ± 0.66
Liver 63.80 ± 3.64 72.23 ± 4.32 * 65.99 ± 5.01 71.19 ± 1.52 70.11 ± 7.24

Spleen 3.82 ± 0.84 8.76 ± 1.29 *** 6.32 ± 1.37 * 6.29 ± 0.63 * 6.81 ± 0.67 **
Lung 8.42 ± 0.67 7.00 ± 0.23 8.42 ± 1.17 8.17 ± 0.40 8.07 ± 0.90

Kidney 13.31 ± 0.64 13.28 ± 1.02 13.50 ± 0.86 14.50 ± 0.84 14.24 ± 0.85
Thymus 3.10 ± 0.53 3.29 ± 0.76 3.36 ± 0.69 5.02 ± 0.73 * 4.28 ± 1.29

* p < 0.05; ** p < 0.01; *** p < 0.001 compared to untreated group.
Mar. Drugs 2021, 19, x  13 of 17 
 

 

 

Figure 7. LMWF enhanced immunity in naïve mice. The mice were intraperitoneally injected with 

LMWF (20, 40, and 80 mg/kg) at day 0, 2, 4, 6, and 8, all mice were sacrificed, then organs were 

collected and weighted, and splenocytes were used to detect the proportions of immune cells by 

flow cytometry. (A) The number of T cells, B cells, NK cells, macrophages, and DCs in spleens were 

calculated. (B) The number of CD4+ T cells, CD8+ T cells and two types of cells in the activated state 

were calculated in spleen. * p < 0.05; ** p < 0.01 compared to untreated. 

0

1

2

3

4

5

Untre
ate

d

λ-C
GN 20 40 80 mg/kg

C
D

3
+
C

D
1

9
-
ce

ll
s

（
×

1
0

8 （

0

4

8

12

Untre
ated

λ-C
GN 20 40 80 mg/kg

C
D

3
- C

D
1

9+
  
ce

ll
s

（
×

1
0

8 （

0

5

10

15

20

25

Untre
ated

λ-C
GN 20 40 80 mg/kg

C
D

3
- C

D
1

9
- C

D
4

9
b

+
  
ce

ll
s

（
×

1
0

7 （

0

5

10

15

20

25

C
D

4
+

  
T

 c
el

ls
 （
×

1
0

7 （

Untre
ated

λ-C
GN 20 40 80 mg/kg

0

5

10

15

20

Untre
ated

λ-C
GN 20 40 80 mg/kg

C
D

8
+

 C
D

4
4+

 c
el

ls
 

（
×

1
0

7 （

C
D

4
+
C

D
4
4

+
  
ce

ll
s

（
×

1
0

6
（

0

10

20

30

40

Untre
ated

λ-C
GN 20 40 80 mg/kg

C
D

8
+

  T
ce

ll
s 
（
×

1
0

7 （

0

1

2

3

4

5

Untre
ated

λ-C
GN 20 40 80 mg/kg

0

2

4

6

8

C
D

1
1

b
+

  c
el

ls
 （
×

1
0

8
（

Untre
ated

λ-C
GN 20 40 80 mg/kg

0

2

4

6

8

10

Untre
ated

λ-C
GN 20 40 80 mg/kg

C
D

1
1

c
+

  c
el

ls
 （
×

1
0

7
（

A

B

**

*

* *
*

*

**

*

*

*

*
*

**

*

Figure 7. LMWF enhanced immunity in naïve mice. The mice were intraperitoneally injected with
LMWF (20, 40, and 80 mg/kg) at day 0, 2, 4, 6, and 8, all mice were sacrificed, then organs were
collected and weighted, and splenocytes were used to detect the proportions of immune cells by
flow cytometry. (A) The number of T cells, B cells, NK cells, macrophages, and DCs in spleens were
calculated. (B) The number of CD4+ T cells, CD8+ T cells and two types of cells in the activated state
were calculated in spleen. * p < 0.05; ** p < 0.01 compared to untreated.
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Table 2. Body mass index, spleen and thymus index.

Body Weight (g) Spleen Index (mg/g) Thymus Index (mg/g)

Control 25.73 ± 1.24 4.36 ± 0.32 4.49 ± 0.87
CTX 18.57 ± 4.99 * 11.04 ± 0.46 ** 3.88 ± 1.52

λ-CGN 20.83 ± 2.77 13.13 ± 2.60 *** 4.44 ± 1.28
20 mg/kg 22.87 ± 0.88 16.85 ± 2.59 ***/# 3.62 ± 0.29
40 mg/kg 20.66 ± 2.13 19.65 ± 2.34 ***/### 2.95 ± 1.03

* p < 0.05; ** p < 0.01; *** p < 0.001 compared to untreated group. # p < 0.05; ### p < 0.001 compared to CTX group.
Mar. Drugs 2021, 19, x  14 of 17 
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Figure 8. Immunoenhancement effect of LMWF on immunosuppressive mouse model. CTX was
used to induce immunosuppression in mice, and LMWF was injected once every other day. At
the end of the experiment, the organs and serum of mice were collected to detect the organ index
of immune organs, (A) the proliferation of immune cells, (B) the production of IL-6 in serum, and
(C,D) the toxicity of drugs to liver and kidney. * p < 0.05; ** p < 0.01; *** p < 0.001 compared to
untreated. # p < 0.05 compared to Non-therapeutic CTX group.
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However, the organ index showed that the spleen in the CTX group was significantly
larger than that of the control group, which seemed to correspond to the weight gain in this
group at the end of the experiment. Ding et al. [32] and Ahlmann et al. [33] pointed out
that the immunosuppression caused by CTX could be restored within 10 days in mouse.
Therefore, we believe that our observation is related to the slow recovery in the CTX group.
The detection of liver and kidney toxicity also showed that although the indexes in CTX
group improved slightly, there was no statistically significant difference (Figure 8C,D).
Results of liver and kidney toxicity tests at 20 mg/kg and 40 mg/kg of LMWF treatment
were almost the same as those in the control group, suggesting that LMWF might have a
mitigating effect on the CTX toxicity.

Interestingly, recent studies showed that HMWF exerts a greater effect than LMWF,
even though all fucoidan and its fractions increased the viability of spleen cells [34].
In addition, nuclear staining and flow cytometry analysis revealed that HMWF consistently
increased spleen cell viability to a greater degree than LMWF did [34]. The reason for
this could be that fucoidans extracted from different species of seaweed have different
capability in immunological regulation, which is most likely owing to the difference in
their chemical/structural composition [11]. Also, endotoxin may exist HMWF which may
provide false positive results. Another possibility is that HMWF may interact more with
gut microbials to exert its effect. While LMWF is more likely to be directly absorbed to
exert its effect.

4. Conclusions

Despite the fact that both HMWF and LMWF have been proven to have a variety of
prominent biological activities, it is important to note that the HMWF has physical and
chemical shortcomings which prevent its use in medicine [35]. LMWF on the other hand
has favorable physical, chemical, and biological characteristics which make it more likely
to be adopted in the clinical setting. Therefore, we focused on LMWF extracted from New
Zealand U. pinnatifida, and conducted an in-depth study on its immunomodulatory activity.
Our results showed that LMWF can promote DC maturation and immune-enhancement
both in vitro and in vivo, possibly through TLR4 pathway and its downstream MAPK and
NF–κB signaling pathways. In general, our study demonstrates that LMWF extracted from
New Zealand U. pinnatifida can activate the immune response through DCs. With immune
enhancement activity and low toxicity, LMWF has the potential to be used as an adjuvant
in cancer immune therapy and other biomedical and/or nutraceutical applications.
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