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New approaches are needed to develop more effective interventions to prevent long-
term rejection of organ allografts. Computational biology provides a powerful tool to
assess the large amount of complex data that is generated in longitudinal studies in this
area. This manuscript outlines how our two groups are using mathematical modeling
to analyze predictors of graft loss using both clinical and experimental data and how we
plan to expand this approach to investigate specific mechanisms of chronic renal allograft
injury.
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matical modeling

Introduction

Improving long-term renal allograft survival is one of the major unmet needs in organ transplanta-
tion. It is a sad fact that the rate of late graft loss (2–3%/year beyond the first year) appears to have
changed little over the past two decades (1). While some progress has been made in understanding
the multiple causes of late renal allograft loss, our picture is still incomplete (2, 3).

The goal of this manuscript is to outline how our two groups have already started to use
mathematical modeling to analyze predictors of graft loss using both conventional clinical data and
more detailed histologic and genomic data. We also outline how we plan to expand this approach
going forward to investigate specific mechanisms of progressive injury.

Complexity of Transplant Outcomes

Post-transplant events are maddeningly complex. All renal allografts are exposed to at least one type
of injury-causing process and most are exposed to several. Yet, the vast majority of grafts function
quite well for many years. Serial surveillance biopsies suggest that several pathologic processes may
lead to chronic injury ultimately resulting in graft loss (3). Importantly, these studies suggest that
the process may be present for years before a clinically significant endpoint is reached and patients
who seem to have similar pathologic processes may have very different outcomes. Some progress
to graft loss, some develop chronic injury yet maintain function, and still others appear to have
no injury. Subclinical inflammation and chronic antibody-mediated rejection due to donor-specific
alloantibody (DSA) are two good examples. A remarkable calculus exists in which multiple different
pathologic influences, occurring with varying frequency and severity at different time points, result
in an almost linear rate of graft loss over many years in the entire population.

It is important to identify grafts that will fail at an early time point when the graft function is
good and thus salvageable. Since not all grafts with DSA or subclinical inflammation will fail, it is
also important to determine which features of the chronic immunologic injury process predispose
to graft failure and thus develop specific therapy for progressors.
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Our understanding of the mechanisms by which a biological
process takes years to reach a clinically significant endpoint is
lacking. However, mathematical modeling of increasingly com-
prehensive and complex data appears to be a promising path
forward.

Modeling Renal Allograft Loss Using
Clinical Factors

Mathematical models that aim to predict renal allograft outcomes
based on clinical factors have been around for years. In the United
States, the Federal Government through the Scientific Registry of
Transplant Recipients issues “center-specific” expected outcomes
for patient and graft survival based on a combination of donor
and recipient factors present pretransplant (4). Combined, the C-
statistic for this model is estimated to be only 0.6 (5). Two of
the most important recipient factors affecting outcomes that are
present pretransplant are age and diabetes.

However, renal transplantation is a dynamic process, and post-
transplant events clearly affect outcomes. Several groups have
tried to develop outcomes models based on post-transplant fac-
tors. One such model from Birmingham, UK, uses factors present
at 1-year post-transplantation to predict graft survival at 5 years
(6). The factors that go into the predictive formula are both demo-
graphic data and clinical data points present at 1 year including
estimated glomerular filtration rate at 1 year, age at 1 year, recip-
ient race, sex, presence of absence of rejection at 1 year, urinary
albumin to creatinine ratio at 1 year, and serum albumin at 1 year.
Risk scores were generated based on calculations of weighted
coefficients from the regression analyses.

This “Birmingham Model” was validated in four independent
cohorts from three other centers (Tours, France; Leeds, United
Kingdom; and Halifax, Canada). It showed good discrimination
for both overall graft failure (C statistics 0.75–0.81) and for death-
censored graft failure (C statistics 0.78–0.90). Discrimination
alone is insufficient to determine the utility of a risk model.
Therefore, othermeasures were evaluated in the cohorts described
above, specifically calibration (a comparison of rates of expected
and observed outcomes across risk strata) and risk reclassifica-
tion [evaluation of incremental accuracy of the model above and
beyond accepted and existingmeasures, in this case renal function
(eGFR)]. The “Birmingham Risk Score” similarly performed well
across these domains.

However, other potentially important biological data were
lacking from these studied datasets. Notably, histological data
(specifically protocol biopsy findings at the 1-year time point
post-transplantation) were not analyzed and anti-HLA antibodies
(“alloantibody”) tested simultaneously were not evaluated.
These potential “predictors” have much in common: they
are both emerging risk factors for outcome, but are not yet
universally incorporated into clinical practice; they require
specialist analysis, which is time-consuming, labor-intensive, and
expensive; the results require careful evaluation alongside clinical
data; the results may be bewilderingly complex with a single
“analysis” yielding multiple outputs, which may or may not be
interdependent. It is for the former reasons that many centers do
not collect these data, and it is for the latter reasons that detailed

mathematical and computational modeling is vital to understand
their relevance.

Adding Histology and Alloantibody Data to
Predictive Models

Histologic findings at 1 year have been shown to correlate with
outcomes (7). In a recent collaborative study between the Birm-
ingham group and the Mayo Clinic, Rochester, MN, USA, the
Birmingham model was again validated in a Mayo Clinic pop-
ulation consisting primarily of living donor kidney transplants
(8). In the Mayo cohort, the presence of glomerulitis (g) and
chronic interstitial fibrosis (ci) found on 1 year protocol biopsy
independently predicted 5-year graft failure. The presence of anti-
class II donor-specific antibody (DSA) in the serum 1 year post-
transplantationwas also associatedwith adverse outcome.When a
new prognosticmodel was developed by incorporating these stan-
dard histological qualifiers (by conventional light microscopy)
alongside other clinical variables, discrimination (compared with
the original Birmingham risk Score) was improved, with the C-
statistic increasing from0.84 to 0.90 (Figure 1). The stepwise addi-
tion of DSA data did not further improve discrimination, presum-
ably because the presence of alloantibody-associated histological
injury already “captured” the antibody effect. Furthermore, the
new risk model improved calibration and (again, in comparison
with the original model) resulted in statistically significant and
clinically relevant risk reclassification with a net reclassification
improvement (“NRI”) of 29% for the endpoint of death-censored
graft survival (p= 0.01). The inclusion of both histology and
antibody also resulted in improved reclassification of outcome,
although with borderline statistical significance (p= 0.11).

Mathematical Modeling: A Method to
Identify Mechanisms of Chronic Injury?

In reality, clinical factors such as age and race are simply
surrogates for biological processes that cause graft loss. Similarly,
non-specific laboratory findings, such as renal function and
proteinuria, although good readouts for damage, do not provide

5-year Death Censored Graft Loss: 
Adding Histology to the Birmingham Model

1. Histology only (g and ci)

• H-L Test p = 0.01

• NRI 29% (p<0.001)*

2. Antibody only (Class II DSA 
MFI>800)

• H-L Test p = 0.32

• NRI 1.2% (p=0.9)*

3. Histology and Antibody

• H-L Test p = 0.53

• NRI 14.4% (p=0.11)*

Model - 1 C-statistic

Existing risk score 0.84 (0.78, 0.90)

New model 

(g and ci)

0.90 (0.85, 0.95)

Model - 2 C-statistic

Existing risk score 0.82 (0.72, 0.92)

New model 

(class II DSA)

0.83 (0.72, 0.94)

Model - 3 C-statistic

Existing risk score 0.76 (0.64, 0.89)

New model 

(g, ci and class II DSA)
0.83 (0.69, 0.96)

*Compared Birmingham Model

FIGURE 1 | Data showing that the risk score C-statistic is improved by
adding histology and calibration improves by adding antibody.
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detailed insight into the actual mechanisms of renal allograft
injury. As we move further down the pathway from non-specific
data to more detailed data, we likely will not only reach higher
levels of prediction but also begin to understand the underlying
mechanisms of progressive injury. Using the approach outlined
above, any type of molecular, histologic, or serologic data can
be examined in mathematical models to determine its effect on
outcome.

Molecular Signatures and Other
Biomarkers

The past several years have seen the development of novel
biomarkers and it is possible that the inclusion of some of these
variables might further improve our ability to predict graft out-
come. They might also improve our ability to diagnose specific
pathologic processes and design intervention studies. These other
approaches include gene expression and proteomic profiles in
the graft, peripheral blood, or urine; more detailed DSA charac-
terization, such as C1q binding; and/or more detailed histologic
studies including immunohistochemistry for specific cell types of
the infiltrates. Of these, “omics” studies deserve special mention
here (9–19).

Gene expression signatures correlatingwith acute cellular rejec-
tion have been identified in peripheral blood and they are on their
way to becoming clinically-available tests (13, 17). A signature
has been identified in renal allograft biopsies that correlates with
antibody-mediated rejection (9, 15). Other signatures have been
identified that correlate with patients who are “operationally tol-
erant” (i.e., off immunosuppression and have stable kidney or liver
allograft function). In addition, microRNA signatures have been
correlated with rejection (18) and diabetic nephropathy (19).

It is likely that some of these molecular signatures also might
be shown to correlate with late graft outcomes, but how well they
actually predict graft loss is unclear. Currently, these primary
value of these tests is that they appear to correlate well with known
histologic findings and thus in some cases they may obviate the
need for surveillance biopsies. Currently, none of these novel
signatures is being used to identify progression of injury or is used
in a model of chronic injury similar to the Birmingham model.

Another possible use of these omics data is that of a biomarker
that would serve as a surrogate endpoint for clinical trials aimed at
improving long-term graft survival. Under “accelerated approval,”
the FDA might approve a drug based on its improving surrogate
makers at an early time point (20). Longer-follow up would then
be continued in Phase 3 studies to confirm improvement in the
true clinical endpoint, such as graft survival. Thus, modeling
the mechanisms of long-term graft survival will be important in
the development of new therapeutics. Unfortunately, the develop-
ment of effective biomarkers has been difficult in almost all fields
of medicine and we must proceed down this pathway with some
caution (21).

Other Mathematical Model Issues

There are several causes of late graft loss and each may require
a different therapeutic approach. Thus, identifying specific sub-
types of patients with a specific known injury process and then

modeling what aspects of that process are involved in progression
will be an important path toward new therapy. One of the most
important issues to consider when we begin to concentrate on
subtypes of chronic injury is the issue of patient classification.
Clearly identifying the phenotype categories will be important.
We are unlikely to find the cause of progression in patients with
alloantibody at 1 year if they are lumped together with all patients
with low renal function at 1 year. Indeed, computational methods
might be able to identify the phenotypes.

Another issue is dealing with several factors that are all part of
the same process. For example, in the histologic study mentioned
above, the inclusion of glomerulitis (a process associated with
alloantibody) probably obviated the need to include DSA in order
to improve the discrimination of the model. However, this does
not mean that DSA is unimportant in chronic injury, and in fact
is likely to be a major mechanistic driver. Underpowered studies
also can lead to false-negative assessment in modeling and must
be considered. There are far more “null” studies in transplantation
than truly “negative” ones, and although the latter may inform
practice, the former require recognition and refinement.

Mathematical modeling may identify the presence of processes
for which we have no data. In the case of DSA, there is experi-
mental data suggesting that an allograft may develop resistance
of DSA, termed accommodation (22–24). Mathematically, this
might be viewed as a “vector” that would favor graft survival
even when erstwhile injury-causing stimuli are present. We then
would be charged with searching for processes that might explain
the observed outcomes. Sir Arthur Eddington might understand
this (25).

Finally, when considering a process that occurs over many
years, it is likely that other injury-causing events might also occur.
For example, in the renal allograft setting, chronic hypertension,
diabetes, nephrotoxicity from calcineurin inhibitors, and recur-
rent disease are just a few of the many possible injury stimuli
that might also be occurring in addition to immunologic injury.
Mathematical modeling also will likely able to control for all of the
different injury processes present in the graft. It is likely that there
will be common features and, hopefully, specific features. Separat-
ing other causes of injury from the primary process being studied
adds yet another complicating factor in this type of research.

How to Optimize Mathematical Modeling
in Transplantation?

We contend that a major impact of computational biology will be
to enhance our ability to study chronic renal allograft injury in
humans (Table 1). The critical component for these studies will
be data –lots and lots of detailed, accurate data. Data regarding
the recipient’s immune response and biomarkers that are related to
the pathologic process under study would be helpful. Mechanistic
studies done in parallel to focused clinical trials also would be
tremendously useful. For example, combining gene expression
studies with a trial of an agent that specifically blocks one pathway
(e.g., eculizumab or IL-6 receptor) might provide new insight into
why grafts fail.

We also need detailed long-term data beyond what is cur-
rently available. Graft survival at 5 years is just the beginning.

Frontiers in Immunology | www.frontiersin.org August 2015 | Volume 6 | Article 3853

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Stegall and Borrows Chronic renal allograft injury

TABLE 1 | Possible approaches to using computational biology to studying
chronic renal allograft injury.

• Comprehensive assessment of subjects
◦ Immune system assays
◦ Target tissue assessment

• Long-term studies with serial assessments
• Biomarkers related to the biology/targeted interventions
◦ Omics studies of peripheral blood lymphocytes, serum, plasma,
urine, or tissue

◦ Detailed alloantibody studies

What happens between 5 and 10 years? We need to model these
later time points and this will require data that are rarely captured.

In most disease groups, there are many phenotypes and small
numbers of patients in each phenotype. Thus, in order to study
sufficient numbers of patients, these studies will need to be

multicenter and very collaborative and we may need to combine
data from many different databases.

Finally, studying a complex biologic process, such as chronic
injury, probably will require a change in mindset among
researchers. We tend to strive to make model systems as simple as
possible with as few variables. While this makes for good science,
it may be an inadequate approach to studying chronic injury.

Summary

The application of computational biology to transplantation
seems to be a natural progression of both fields. The interaction
between mathematicians and transplant biologists will likely lead
to novel new interpretations of phenomena and new understand-
ing of the mechanisms of chronic injury.
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