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Abstract: Formulations of therapeutic proteins are sensitive to photo-degradation by near UV and vis-
ible light. Mechanistically, especially the processes leading to protein modification under visible light
exposure are not understood. Potentially, these processes may be triggered by a ligand to metal charge
transfer in excipient-metal complexes. This article summarizes recent analytical and mechanistic
work on such reactions under experimental conditions relevant to pharmaceutical formulations.
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1. Introduction

Physical and chemical long-term stability are key factors controlling the development
of efficacious and safe therapeutic protein formulations [1,2]. Potential problems associated
with physical and chemical degradation of formulations include the formation of protein
aggregates and particles, the loss of potency, and the generation of immunogenic material.
Frequently, physical and chemical degradation processes are still treated as separate, un-
related events. However, there is strong evidence that physical stress can cause chemical
modifications of proteins and/or excipients, and, vice versa, that chemical stress can lead
to changes in the physical appearance of formulations. For example, the chemical modifi-
cation of proteins can lead to partial unfolding, exposing hydrophobic domains available
for protein aggregation [3]. In another example, mechanical shock can result in cavitation,
promoting the formation of reactive oxygen species available for protein oxidation [4].
Hence, physical and chemical degradation in pharmaceutical formulations should always
be explored with a focus on a potential cross-talk between these pathways.

Protein formulations are subject to various different chemical degradation reactions,
including hydrolysis, isomerization, side-chain and backbone cleavage, and oxidation [2].
Here, details of oxidative degradation mechanisms are least understood, due to the fact that
protein oxidation in formulations is not generally initiated by a known concentration of a
well-characterized oxidant (equivalent, e.g., to a hydrolysis reaction catalyzed by a known
and constant concentration of hydronium or hydroxide ion, controlled by pH). Instead,
oxidants are frequently generated in situ during manufacturing and/or long-term storage
of formulations or formulation components, or during sterilization processes. Information
about the nature of oxidants generated in situ can often only be obtained through the
detection of oxidation products characteristic of specific oxidants.

For the rational development of chemically stable protein formulations, the nature of
reactive intermediates and the mechanisms by which they are generated during manufactur-
ing and long-term storage must be understood. Recently, much emphasis has been placed
on the characterization of photo-induced degradation processes, especially those triggered
by exposure to visible light [5–8]. Generally, the individual amino acid building blocks
of proteins contain no chromophores which absorb visible light. At best, the amino acids
tryptophan (Trp), tyrosine (Tyr), histidine (His), and cystine display negligible absorbances
of UV A light. However, visible and UV A light represent the predominant components
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of light to which protein formulations would be exposed during manufacturing, storage,
and/or administration [5]. For example, indoor lighting (with window-filtered daylight)
in a clinical setting was estimated to provide typical light intensities of 400–10,000 lux
visible light and 17 Wm−2 UVA light [9]. Therefore, a 1 h intravenous infusion in a clinical
setting would be exposed to a 400–10,000 lux h visible light dose and a 17 Whm−2 UV A
light dose. The latter corresponds to 8.5% of the minimal UV light exposure (200 Whm−2)
recommended for photo-stability testing by the current ICH Q1B guidelines [9].

Evidence has been provided that formulations of therapeutic proteins degrade during
exposure to UV and visible light [5–8,10], as well as to ambient light [5], which is charac-
terized as visible light with a small UV quotient [5]. Based on the known light absorption
properties of individual amino acids, specifically the photo-degradation processes triggered
by the exposure to visible or ambient light, cannot be rationalized by the photochemistry
of individual amino acids. The rather low light intensities (see above) also exclude two-
photon processes [11]. Photo-chemically active chromophores may be present as a result of
impurities [12,13], protein post-translational modifications [11,14,15], cation-π complexes of
aromatic amino acids [16–18], or charge transfer complexes, similar to those characterized
for Trp and Tyr, for example in the presence of high salt concentrations [19–22].

As an alternative, we recently started to evaluate the potential role of near UV and
visible light-induced photo-degradation reactions driven by ligand-to-metal charge transfer
(LMCT) processes of pharmaceutical excipient-metal complexes, specifically, complexes of
iron [23–25]. These reactions are part of a larger class of processes, generally referred to
as advanced oxidation processes (AOPs) [26,27]. Currently, various AOPs are developed
with a focus on water decontamination, including the removal of pharmaceuticals. Here,
these processes are optimized with respect to reaction yields, reaction times, and economic
factors. In pharmaceutical formulations, AOPs will not operate under conditions optimized
for maximal yield. However, the fact that they may occur at all can put pharmaceutical for-
mulations at risk to fail due to chemical instability problems. This account will summarize
our recent mechanistic investigations designed to understand potential LMCT-dependent
photo-degradation reactions in pharmaceutical formulations. This information may assist
in the development of chemically stable protein formulations.

2. The Photo-Induced Oxidation of Model Peptides in Iron-Containing Citrate Buffer

Reactions (1)–(10) display a general sequence of processes for the generation of reactive
oxygen species via photo-induced LMCT in a carboxylate-iron complex in an aqueous
solution [28,29].

[Fe3+(RCO2
−)n](3−n)+ + hν→ [Fe2+(RCO2

−)n−1](2−(n−1))+ + RCO2
• (1)

RCO2
• → R• + CO2 (2)

[Fe2+(RCO2
−)n−1](2−(n−1))+ + O2 → [Fe2+(RCO2

−)n−1](3−(n−1))+ + O2
•− (3)

O2
•− + H+ 
 HO2

• (4)

O2
•− + H+ + HO2

• → H2O2 + O2 (5)

Fe2+ + 2H+ + O2
•− → Fe3+ + H2O2 (6)

Fe2+ + H2O2 → Fe3+ + HO− + HO• (7)

R• + O2 → ROO• (8)

Fe2+ + ROO• + H+ → Fe3+ + ROOH (9)

Fe2+ + ROOH→ Fe3+ + HO− + RO• (10)

In this sequence, Reaction (7) is a simplified representation of the Fenton reaction:
this process alone consists of several steps, including the formation of a Fe2+/H2O2 com-
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plex, followed by decomposition into hydroxyl radicals (HO•) or hypervalent iron-oxo
species [30].

When air-saturated aqueous solutions containing 10 mM citrate, pH 6.0, and 50 µM
Fe3+ were exposed over 120 min to a total light dose of 7.7 Whm−2 near UV light (Rayonet
RPR 3500 lamps; light emission between 305–416 nm; λmax = 350 nm), we detected the
formation of H2O2 [23]. The yields of H2O2 increased over ca. 10 min to a peak concentra-
tion of ca. 35 µM, subsequently decomposing over the next 10 min. A gradual decrease
in the Fe3+ concentrations to 10 and 5 µM resulted in an overall increase in the detectable
H2O2 yields, and a delayed formation and decomposition. A further decrease in the Fe3+

concentrations to 1.0 and 0.5 µM resulted in a gradual increase in H2O2 yields over the
entire 120 min photo-irradiation. These observations are consistent with an iron-dependent
formation of H2O2 via Reactions (1)–(6), and an iron-dependent decomposition of H2O2
via Reaction (7).

From a pharmaceutical perspective, several points are important. First, the applied
light dose of 7.7 Whm−2 near UV light amounts to < 4% of the UV light dose recommended
for photo-stability studies by the ICH Q1B guidelines [9]. The light dose of 7.7 Whm−2 is in
the range of the UV light dose a therapeutic protein may encounter during manufacturing
(ca. 1.5–3.0 Whm−2) [5] and is below the light dose of a 1 h exposure to indoor lighting
combined with window-filtered daylight in a clinical setting (see above) [9]. Second, iron
concentrations of 1–9 µM have been quantified in formulations of therapeutic antibod-
ies [31], i.e., iron concentrations in the range covered by the experiment described above.
Third, several marketed formulations of therapeutic proteins contain (e.g., Acetris, Benlysta,
Rituxan) (see respective package inserts) or originally contained (Humira) citrate buffer
(current formulations of Humira are citrate-free [32]).

When air-saturated aqueous solutions containing 1 mM methionine (Met) enkephalin
(MEn), 10 mM citrate, pH 6.0, and 5–50 µM Fe3+ were photo-irradiated with near UV
light (25.2 Whm−2) several oxidation products of MEn were detected by HPLC-MS/MS
analysis [23]. Here, MEn was added to the buffer as a model target peptide containing
several oxidation-sensitive amino acids. The structure of MEn 1, together with some of the
detected oxidation products (A, B, and D) is shown in Scheme 1 (for product C, see below).
The displayed oxidation products are expected based on the photo-chemical generation
of H2O2 or ROOH (Reactions (5), (6) and (10)), i.e., Met sulfoxide (product A), and based
on the formation of HO• (Reaction (7)), i.e., the hydroxylation products dihydroxypheny-
lalanine (3-hydroxytyrosine; product D) and three regioisomers of hydroxyphenylalanine
(products B). All these products were also detected upon photo-irradiation with visible
light. In addition to these products, our HPLC-MS/MS analysis revealed several products
originating from the N-terminal Tyr residue, namely products in which the Tyr residue
was modified by +28, +56, +100, and +114 Da [23]. No unambiguous structural details
are currently available for these products. In the original paper we referred to the Tyr
(+28 Da) product as product C, and a series of analytical and mechanistic studies were
performed in order to assign a structure and a formation mechanism to this product. Some
of these studies will be described in more detail in the following as they illustrate that
even in rather simple formulations containing a model peptide, buffer, and Fe3+, light
exposure can lead to a number of novel products originating from currently unknown
reaction mechanisms. Ultimately, these studies led to the identification of an important
radical intermediate, relevant for the general formation of ROS and transformations of
proteins in pharmaceutical formulations.

Product C decomposed during purification for NMR analysis, preventing any struc-
tural analysis by this means. Experiments under either a 16O2 or an 18O2 atmosphere
revealed that product C incorporated a single oxygen atom from atmospheric oxygen,
i.e., we obtained Tyr (+28 Da) under a 16O2 atmosphere and Tyr (+30 Da) under an 18O2
atmosphere. Hence, we hypothesized that a reaction intermediate en route to product C was
N-terminal dihydroxyphenylalanine. The latter could theoretically convert into product C
by reaction with formaldehyde. However, the addition of formaldehyde to photo-irradiated
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solutions of MEn did neither reduce the yields of dihydroxyphenylalanine nor increase
the yields of product C. We independently showed that near UV photo-irradiation of
10 mM citrate, pH 6.0, containing 50 µM Fe3+ generated formaldehyde, but for compari-
son, photo-irradiation of 10 mM oxalate, pH 6.0, containing 50 µM Fe3+ did not generate
formaldehyde [23]. Yet, product C was generated by photo-irradiation of 1 mM MEn in
either 10 mM citrate or 10 mM oxalate, pH 6.0, containing 50 µM Fe3+, further excluding
formaldehyde in the formation of product C. Moreover, the formation of product C did not
require Tyr to be N-terminal, as an analogous Tyr modification was also detected for the
model peptide Arg-Tyr-Leu-Pro-Thr (RYLPT).
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Scheme 1. MEn and some oxidative degradation products A, B and D which were generated upon
near UV light exposure (25 Whm−2) of 1 mM peptide in 10 mM citrate, pH 6.0, containing 0.5–50 µM.
No structure for product C is given as a structure could not be unambiguously assigned (see text).
For the degradation products, only the modified side chains are shown, whereas the remainder of the
peptide structures is represented by substituents R, R′, and R′′.

The formation of product C during photo-irradiation of MEn in citrate and oxalate
buffer suggested a common precursor generated in both buffers. Based on the photo-
chemical generation of the C2O4

•− radical and carbon dioxide radical anion, •CO2
−, from

Fe3+/oxalate [33] we hypothesized that light exposure of Fe3+/citrate could lead to the
production of •CO2

−. Evidence for the photo-induced formation of •CO2
− in citrate buffer

will be presented in the following.

3. Photo-Induced Formation and Reactions of •CO2
− in Iron-Containing Citrate Buffer

When solutions containing 10 mM oxalate or citrate, but not succinate or acetate, pH
6.0, 50 µM Fe3+, and 50 mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO) were exposed to
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6.8 Whm−2 near UV light, HPLC-MS analysis revealed the formation of nitrone 2 (with
m/z 158.10) [23] as displayed in Scheme 2.
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Scheme 2. Structure of nitrone 2 with m/z 158.10, detected by HPLC-MS analysis.

Nitrone 2 is generated through the addition of •CO2
− to DMPO, followed by dispro-

portionation, which would also yield the corresponding hydroxylamine product (structure
not shown). More recent studies (Zhang et al., unpublished results) have confirmed this
reaction sequence for both oxalate and citrate buffer, demonstrating the initial formation
of a nitroxide by electron spin resonance (ESR) spectroscopy, followed by conversion
of the nitroxide into nitrone and hydroxylamine (detected by HPLC-MS/MS analysis).
The generation of •CO2

− from oxalate can be rationalized by Reactions (11) and (12),
as displayed in Scheme 3.
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Scheme 3. Photo-induced generation of •CO2
− from oxalate.

Mechanistically, the generation of •CO2
− from citrate is more complex. Initially, we

had proposed that •CO2
− could be generated via alkoxyl radical formation at either C2

or C4 of citrate, followed by the β-cleavage of •CO2
− [23]. However, our more recent

studies with 13C-labeled citrate point to LMCT from the central hydroxyl group of citrates,
generating an intermediary alkoxyl radical at C3, followed by β-cleavage of •CO2

− from
the central carboxylate group (unpublished results).

The photo-induced formation of •CO2
− expands the number of processes by which

ROS can be generated in citrate buffer. Here, •CO2
− reacts efficiently with Fe3+ and O2 via

Reactions (13) [34,35] and (14) [35–38].

•CO2
− + Fe3+ → CO2 + Fe2+ (13)

•CO2
− + O2 → CO2 + O2

•− (14)

Moreover, •CO2
− could be involved in the formation of product C described above.

Considering, that dihydroxyphenylalanine may be an important intermediate in the for-
mation of product C, we evaluated whether semiquinone radicals of the latter may be
generated under light exposure of MEn in citrate buffer. Upon inclusion of DMPO, we
detected a DMPO-adduct to dihydroxyphenylalanine, suggesting indeed the intermediary
generation of dihydroxyphenylalanine semiquinone radicals. Therefore, it is possible that
the mechanism for the formation of product C includes a reaction of a dihydroxypheny-
lalanine semiquinone radical with •CO2

−. The formation of product C would then require
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chemical transformation(s) of such •CO2
−/dihydroxyphenylalanine semiquinone radical

adduct, but any further conclusions must await the results of additional analytical and
mechanistic experiments. Nevertheless, the generation of •CO2

− during near UV (and
visible) light exposure of citrate buffer is an important detail relevant to the stability of
pharmaceutical formulations.

The photo-chemical generation of •CO2
− in citrate buffer enables additional funda-

mental processes of protein degradation. Radiation chemical studies [39–41] have long
demonstrated the efficient reduction of small molecular weight and protein disulfides by
•CO2

− (Reactions (15) and (16)), where frequently •CO2
− is generated by the exposure of

aqueous solutions of formate to oxidizing radicals produced by ionizing radiation.

•CO2
− + R-S-S-R→ CO2 + [R-S-S-R]•− (15)

[R-S-S-R]•− + H+ → RSH + RS• (16)

Consistent with the formation of •CO2
−, the photo-irradiation of experimental citrate

formulations, containing Fe3+, polysorbate 80, and disulfide-containing peptides (glu-
tathione disulfide, octreotide) or a protein (insulin), resulted in the formation of free thiols,
detected via derivatization with ThioGlo1 [25]. Moreover, the intermediary generation of
thiyl radicals was documented by cis/trans-isomerization of unsaturated fatty acids in the
surfactant polysorbate 80 [25].

4. Photo-Induced Oxidation in the Absence of Added Iron

From a pharmaceutical perspective, it was important to examine whether LMCT-
dependent photo-degradation would occur in the absence of added iron, i.e., whether basal
iron impurities in citrate buffer would be sufficient for product formation. For this, we
quantified basal iron levels in citrate buffers made from various lots of different suppliers.
When 10 mM citrate buffer was prepared from five different lots, the concentrations of Fe3+

varied between ca. 0.02 and 0.22 µM [23]. Importantly, upon photo-irradiation of 1 mM
MEn in these citrate buffers, pH 6.0, with 25.2 Whm−2 near UV light, the yields of Met
sulfoxide correlated strongly with the measured basal Fe3+ concentrations. Under these
experimental conditions of rather low Fe3+ concentrations, Met sulfoxide was the only
significant product [23].

5. Photo-Induced Oxidation Processes in the Presence of Amino Acids

When citrate buffer was replaced by acetate or succinate, photo-irradiation generated
significantly lower yields of H2O2 (where yields were higher in succinate as compared to
acetate buffer) [23]. The addition of MEn to acetate buffer led to low yields of Met sulfoxide
(product A). However, for both citrate and acetate buffer, the addition of common amino
acid excipients, specifically lysine (Lys) and histidine (His), significantly increased the
yields of Met sulfoxide from MEn [24]. These increased yields of Met sulfoxide were not
caused by an increased formation of H2O2. Instead, we proposed that LMCT processes in
amino acid/Fe3+ complexes caused the formation of amino acid-derived peroxyl radicals,
which directly oxidized Met to Met sulfoxide [24]. A potential mechanism for peroxyl
radical formation is displayed in Scheme 4 (Reactions (17)–(19)), a representative for any
peroxyl radical generated via the addition of O2 to an intermediary carbon-centered radical.

Noteworthy, the addition of free Met to the formulations efficiently protected against
the oxidation of the Met residue in MEn. However, specifically in citrate buffer, reaction
products from free Met, such as methional, reacted with the N-terminal Tyr residue of MEn,
generating a condensation product [24].
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6. Conclusions and Outlook

There is a growing interest in the mechanisms, which lead to the photo-induced
degradation of therapeutic proteins specifically under exposure to visible and ambient
light. For example, Sreedhara et al. [5] and Kaiser et al. [7] showed that ambient and
visible light exposure led to the modification of several monoclonal antibodies. However,
mechanistic analysis of the underlying photo-processes is currently rather difficult as
different antibodies and antibody concentrations in different formulations were compared.
These formulations contained either one or more buffers, and sometimes amino acids.
Kaiser et al. [7] only mention buffers in their formulations but not whether additional amino
acids or surfactants were present. Our model studies on advanced oxidation processes
described here show that amino acids such as Lys, His, or arginine (Arg) can promote
the oxidation of Met residues in target peptides [24], suggesting that a similar effect may
also operate with proteins. In the absence of added amino acids, therapeutic proteins
can contain peptide sequences/domains which complex metals, enabling site-directed
LMCT-dependent photo-degradation processes within specific protein domains even in the
absence of added amino acids. Future studies on ambient and visible light-induced protein
degradation should include the possibilities of such reactions in search of the reaction
mechanisms for light-induced protein degradation.
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