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Distributed adaptive fixed‑time 
neural networks control 
for nonaffine nonlinear multiagent 
systems
Yang Li1, Quanmin Zhu2 & Jianhua Zhang1*

This paper, with the adaptive backstepping technique, presents a novel fixed‑time neural networks 
leader–follower consensus tracking control scheme for a class of nonaffine nonlinear multiagent 
systems. The expression of the error system is derived, based on homeomorphism mapping theory, to 
formulate a set of distributed adaptive backstepping neural networks controllers. The weights of the 
neural networks controllers are trained, by an adaptive law based on fixed‑time theory, to determine 
the adaptive control input. The control algorithm can guarantee that the output of the follower agents 
of the system effectively follow the output of the leader of the system in a fixed time, while the upper 
bound of the settling time can be calculated without initial parameters. Finally, a simulation example 
is presented to demonstrate the effectiveness of the proposed consensus tracking control approach. A 
step‑by‑step procedure for engineers and researchers interested in applications is proposed.

In practical engineering, many control systems are modelled by nonlinear dynamics, such as inverted pendu-
lum mechanical  systems1,2. Because it is difficult to solve nonlinear mathematical equations, there is no unified 
methodology of studying different types of nonlinear control systems due to the loss of superposition principle. 
For a system with mild nonlinearity, the linearization-based control method has been widely  used2–4. For systems 
with inherent nonlinearities, such as single-input single-output systems, nonaffine nonlinear systems, triangular 
nonlinear systems, high-order nonlinear  systems5–7, and multiagent nonlinear  systems8–10, various remarkable 
studies have been devoted to the system analysis and control  design11,12.

With the improvement of industrial technology, the actual control systems faced by engineers are becoming 
increasingly complex, and the mathematical models of these systems are increasingly complicated with func-
tionality and structure, which is because the performance request of the modern engineering systems/products 
is increasingly higher to satisfy the human being’s ever increased demands/expectations. Consequently, using 
these corresponding control theories require extremely profound mathematical foundation. There is a certain 
gap between control theory and practical control engineering. It is necessary to study to bridge control theory 
and its applications, such great efforts have been widely  witnessed13–15. At present, there are two predominant 
methodologies used to solve this problem. The first methodology is the computational thinking based artificial 
intelligence technology, such as computer  vision16, language  processing17 and pattern  recognition18. The second 
methodology is the control theory based nonlinear control technology, such as chaotic  synchronization19, multia-
gent consensus, nonlinear tracking  control20, robot  control21, and unmanned aerial vehicle  control22. The two 
types of methodologies have been intensively/extensively adopted to support multiagent systems in academia 
research and  applications23–25.

In engineering practice, most systems often have control objectives within a limited convergence time, such 
as missile systems, because missiles do not need control after explosion. Regarding the finite-time  stability26 and 
stabilization of the controlled system, the convergence time can be determined accurately, which is important 
in applications. However, the approach induces difficulties in applications due to the bound of the convergence 
time in the control systems is always related with initial states and control  gain27–29. To cope with the problem 
of initial state dependent boundness, the fixed-time stability and stabilization approach has been  developed30,31, 
so that the controlled system is stabilized in finite time and the upper bound of the settling time is met by only 
adjusting the parameters of the  controller32. As always, every approach has two side effects. The disadvantage of 

OPEN

1School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, 
China. 2Department of Engineering Design and Mathematics, University of the West of England, Coldharbour 
Lane, Bristol BS16 1QY, UK. *email: jianhuazhang@qut.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-12634-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8459  | https://doi.org/10.1038/s41598-022-12634-2

www.nature.com/scientificreports/

fixed-time control is that the controller is relatively complicated, especially for high order nonlinear  systems33, 
the controller singularity problem could arise in the design of the backstepping iterative  controller34–36. Even 
the challenging issues in math and system analysis and design, the importance of the fixed-time requests to the 
dynamic systems have still actively promoted various top journal  publications37,38 recently. In short, the field of 
the research is relatively new, need wider angle of studies for understanding and solutions.

For the interest of the studying problems—control of multiagent systems in short, in recent years, there have 
been many published papers, name a few for reference, concerning the fixed-time control and analysis of closed 
loop control  systems39–41, finite-time and fixed-time synchronization control for complex network systems with 
distributed  protocols42, finite-time and fixed-time stability analysis for a class of high-order neural networks 
with delays based on the linear inequality matrix  technique43, fixed-time event leader–follower event-triggered 
consensus control for multiple agents, fixed-time tracking control for second-order multi-agent system with 
bounded input uncertainties is studied  in44, fixed-time consensus  framework45, observer based distributed fixed-
time consensus control for nonlinear leader–follower multi-agent  systems46, distributed adaptive neural networks 
consensus tracking control for non-affine nonlinear multi-agent systems is studied  in47.

What more can the study contribute? several recently published authoritative works, related to distributed 
adaptive neural networks consensus for a class of uncertain nonaffine nonlinear multi-agent  systems9,47,48, are 
selected to compare to justify the contribution.

In  papers9,47,48, all the closed-loop signals are locally uniformly bounded, and all the subsystem outputs 
asymptotically stable, therefore, the system is asymptotically stable, the outputs converge exponentially which 
means stability in infinite time. In the new study, fixed-time control is proposed to design the upper bound of 
the convergence time of the controlled system. Based on fixed-time control, the bound of convergence time 
independent from the initial conditions of the system.

In  papers9,47,48, the adaptive law is designed to training neural networks weights, based on Lyapunov stability 
theory, estimated weights convergence to ideal weights infinite time. Once again, this study presents a fixed-time 
adaptive law to training the neural networks weights, which makes the parameters of neural networks iteratively 
updated in fixed time. It is proved that the bound of convergence time between estimated weights and ideal 
weights are independent from the initial conditions of the estimated weights.

In  papers9,47, the states of system are not restricted in process. This study presents homeomorphism mapping 
technology to make a multiagent system transform to ensure steady-state and transient performance. Combining 
with the homeomorphism mapping technology and fixed-time, the designed adaptive fixed-time control has 
guaranteed that all the closed-loop signals are bounded, the system state tracking errors can remain within the 
predesigned performance regions with fixed-time convergence rate.

The rest of the study consists of the following sections: Section "Problem formulation and preliminaries" 
presents a mathematical description of the problem as the foundation for providing solutions. Section "Main 
results" establishes a platform for the distributed adaptive fixed-time neural networks control for nonaffine 
nonlinear leader–follower multiagent system consensus. Section "Simulation study" validates the performance 
of the consensus tracking algorithm by a simulated example and further the computational procedure could 
be a transparent user guide for future expansions and applications. Section "Conclusions" concludes the study.

Problem formulation and preliminaries
Consider a class of leader–follower multiagent nonaffine nonlinear systems that have a leader 0 and followers N
(N ≥ 2) . The i th follower agent of the nonaffine nonlinear multiagent system model is given by

Assumption 1 The sign of ∂fi,m(xi,m ,xi,m+1)
∂xi,m+1

 is assumed to be either strictly positive or strictly negative in most 

articles, and we assume that ∂fi,m(xi,m ,xi,m+1)
∂xi,m+1

> 0 in this article, where m = 1, 2, · · · , ni and xi,ni+1 = ui.

The follower agent system function can be described as follows based on the mean value theorem:

where 0 < �i,m+1 < 1 and u0i = �i,ni ui , with 0 < �i,ni < 1 , where xi,m ∈ R is the m th state of the nonaffine non-
linear multiagent system i , xi,m =

[

xi,1, . . . , xi,m
]T

∈ R
m is the state vector of the system, yi ∈ R is the output of 

the system, ui ∈ R indicates the controller that needs to be designed, and fi,m
(

xi,m, xi,m+1

)

: Rm+1 → R is the 
unknown smooth nonlinear function.

Graph theory. Assume G = (V ,E) is a directed graph, E ⊆ V × V  is the edge set, and V = {v1, v2, · · · , vN } 
is the node set. An edge eji =

(

vj , vi
)

∈ E of graph G indicates that i can get messages from j , where agent j is 
one of agent i ’s neighbours.

(1)

ẋi,m = fi,m
(

xi,m, xi,m+1

)

, m = 1, . . . , ni − 1

ẋi,ni = fi,ni
(

xi,ni , ui
)

yi = xi,1

(2)

ẋi,m = fi,m
(

xi,m, 0
)

+ gi,m
(

xi,m, x
0
i,m+1

)

xi,m+1

ẋi,ni = fi,ni
(

xi,ni , 0
)

+ gi,ni
(

xi,ni , u
0
i1

)

ui,

yi = xi,1
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The node set indicates communication among agents. Hence, agent i ’s neighbour set is Ni =
{

vj
∣

∣

(

vj , vi
)

∈ E
}

 . 
The directed graph is called a weighted graph when the edges have weights A =

[

aij
]

∈ R
N×N (adjacency matrix), 

and such graphs are often used to express the graphical topology. For element aij , it is defined that aij = 1 if 
eji =

(

vj , vi
)

∈ E ; otherwise, aij = 0 . The self-loop is not considered, as usual, i.e., aii = 0 , and the degree matrix 

is denoted as D = diag(d1, d2, · · · dN ) ∈ R
N×N with di =

k
∑

j=1
aij.

For a consensus error δ , where δ=[δ1, . . . , δN ]
T with δi = yi − y0, i = 1, . . . ,N , consider a directed graph as 

{

(vi , vr), (vr , vs), · · · ,
(

vt , vj
)}

 . The local tracking error for agent i can be described as

which can be measured  distributively48. Suppose ξ
i,1
(t) and ξ i,1(t) are known bounds of ξi,1 . To ensure the con-

straint control of system nonlinear homeomorphism  mapping26, system (2) is transformed as follows:

where a = max
(

ξ
i,1
(t), ξ i,1(t)

)

 , and we assume that

RBF (radial basis function) neural networks. RBF neural networks have a strong approximation ability 
for nonlinear functions, such as

where W is the ideal weight of the neural networks and ε(x) is the neural networks approximation error as follows:

Notation  In this article, W  represents the ideal weight, and Ŵ  represents the estimated weight. Then, 
θi,j =

∥

∥Wi,j

∥

∥,θ̂i,j =
∥

∥

∥
Ŵi,j

∥

∥

∥
 and θ̃i,j = θ̂i,j − θi,j hold.

Remark 1 Exponential stability, finite time stability, and fixed-time stability are well known. For example, the 
system ẋ = −x is exponentially stable, the system ẋ = −x

1
3 is finite-time stable, and the system ẋ = −x

1
3 − x3 

is fixed-time stable  (see49 for details). In the next section, Theorem 1 provides the adaptive fixed-time neural 
networks tracking control scheme, which implies the existence of the Lyapunov function, and fixed-time stabil-
ity is also proven.

In the next section, the distributed adaptive fixed-time neural networks controller is designed based on fixed-
time stability theory. The control objective is for the follower agents to be able to track the leader agent in fixed 
time and maintain fixed-time stability based on the distributed adaptive fixed-time neural networks controller. 
The upper bound of settling time can be designed without the initial parameters.

Main results
Distributed adaptive fixed‑time neural networks consensus control scheme. In this section, 
the distributed adaptive design approach incorporates fixed-time stability theory, and the distributed adaptive 
neural networks controller based on the backstepping technique is designed for a class of nonaffine nonlinear 
leader–follower multiagent systems. Neural networks are designed to approximate the unknown parameters. 
Adaptive fixed-time laws are designed to train the weights of the neural networks. Based on the controller, the 
error closed system achieves fixed-time consensus, which means that the follower agent can track the leader 
agent in fixed time.

Remark 2 The control structure block diagram for the nonaffine nonlinear leader–follower multiagent system 
is shown in Fig. 1. The consensus control scheme structure of the closed-loop system is shown in Fig. 1. The 
consensus control objective is that the output of the follower agent can track the leader agent signal. In the next 
section, the stability analysis and mathematical proof based on the fixed-time consensus theorem will be given.

Fixed‑time stabilization based on distributed adaptive fixed‑time neural networks consensus 
control. Based on the dynamics and local tracking error of the i th follower agent (1), local tracking error of 
the i th follower agent (3) and homeomorphism mapping (4), the dynamics of zi,1, i = 1, . . . ,N can be obtained 
as

(3)ξi,1 =

Ni
∑

j=1

aij
(

yi − yj
)

+ bi
(

yi − y0
)

,

(4)ξ =
2a

π
arctan (z), ξ = a tanh (z), ξ = sgn(x)a

(

1− e−z2
)

1
2
,

(5)r =
∂z

∂ξ
.

(6)F(x) = WT�(x)+ ε(x),

(7)W = arg min
W∈ℜl

{

sup
∣

∣

∣
F(x)−WT�(x)

∣

∣

∣

}

.
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and ri = ∂zi,1
∂ξi,1

 ; based on system (2), we have

where

Moreover, the neural networks approximate the nonlinear system

For the neural networks approximation error, assuming that 
∣

∣εi,1
(

Z′
i,1

)∣

∣ ≤ εi,1 , based on the Lemma  in48, the 
following inequality can be obtained:

The virtual control αi,1 is designed as

where

Taking the derivative of zi,m, 2 ≤ m ≤ n yields

Then,

Moreover, the following equation can be obtained:

For the neural networks approximation error, assuming that 
∣

∣εi,m
(

Z′
i,m

)∣

∣ ≤ εi,m , based on the lemma  in48, 
the following inequality can be obtained:

The virtual control αi,m is designed as

(8)żi,1 = ri



(di + bi)ẏi −
�

j∈Ni

aijẏj − biẏ0





(9)żi,1 = ri(di + bi)Fi,1
(

Xi,1

)

+ ri(di + bi)gi,1xi,2 − ribiẏ0,

(10)Fi,1
(

Xi,1

)

= fi,1 −
1

(di + bi)

∑

j∈Ni

aij
(

fj,1 + gj,1xj,2
)

.

(11)Fi,1
(

Xi,1

)

= WT
i,1�

(

Z′
i,1

)

+ εi,1
(

Z′
i,1

)

.

(12)Fi,1
(

Xi,1

)

≤
∥

∥Wi,1

∥

∥

∥

∥�
(

Zi,1
)∥

∥+ εi,1.

(13)

αi,1 = −
kp,i,1z

p
i,1

g
i,1
(di + bi)ri

−
kq,i,1z

q
i,1

g
i,1
(di + bi)ri

−
rizi,1θ̂

2
i,1

∥

∥�
(

Zi,1
)∥

∥

2

g
i,1

(∣

∣

∣rizi,1θ̂i,1

∣

∣

∣

∥

∥�
(

Zi,1
)∥

∥+ η1,i,1

)

−
rizi,1ε

2
i,1

g
i,1

(∣

∣rizi,1
∣

∣εi,1 + η2,i,1
) −

rizi,1b
2
i ẏ

2
0

g
i,1
(di + bi)

(∣

∣zi,1ribiẏ0
∣

∣+ η3,i,1
)

(14)zi,2 = xi,2 − αi,1.

(15)żi,m = fi,m + gi,2xi,m+1 − α̇i,m−1.

(16)Fi,m
(

Xi,m

)

= fi,m − α̇i,m−1 + zi,m−1gi,m−1.

(17)Fi,m
(

Xi,m

)

= WT
i,m�

(

Z′
i,m

)

+ εi,m
(

Z′
i,m

)

.

(18)Fi,m
(

Xi,m

)

≤
∥

∥Wi,m

∥

∥

∥

∥�
(

Zi,m
)∥

∥+ εi,m.

Figure 1.  Consensus control structure diagram of the closed system.
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where

and the control is designed as ui = αi,n , where

The neural networks adaptive law is designed as

Theorem 1 Consider the nonaffine nonlinear leader–follower multiagent system (1) and local tracking error system 
(3); based on the adaptive fixed-time neural networks control scheme and backstepping technique, choose the virtual 
control law as (13) and (19), the distributed adaptive fixed-time law as (22), and the actual controller as (21). The 
tracking error system is a fixed-time consensus, and the upper bound of the settling time T is independent from the 
initial parameters. The settling time T satisfies.

Proof  Choose the Lyapunov candidate functional as

where µi,1 > 0 is a positive constant. Differentiating Vi,1 with respect to time t  yields

Then, the following inequality can be obtained:

Based on the lemma  in48 and the inequality technique, it follows that

The actual controller is designed as

(19)αi,m = −
1

g
i,m



kp,i,mz
p
i,m + kq,i,mz

q
i,m +

zi,mθ̂
2
i,m

�

��
�

Zi,m
��

�

2

�

�

�
zi,mθ̂i,m

�

�

�

�

��
�

Zi,m
��

�+ η1,i,m

+
zi,2ε

2
i,m

�

�zi,m
�

�εi,m + η2,i,m



,

(20)zi,m+1 = xi,m+1 − αi,m,

(21)ui = −
1

g
i,n



kp,i,nz
p
i,n + kq,i,nz

q
i,n +

zi,nθ̂
2
i,n

�

��
�

Zi,n
��

�

2

�

�

�
zi,nθ̂i,n

�

�

�

�

��
�

Zi,n
��

�+ η1,i,n

+
zi,2ε

2
i,n

�

�zi,n
�

�εi,n + η2,i,n



.

(22)˙̂
θi,j = µi,j

(

∣

∣zi,j
∣

∣

∥

∥�
(

Zi,j
)∥

∥− ρi,j θ̂
p
i,j − σi,j θ̂

q
i,j

)

, 1 ≤ i ≤ N , 1 ≤ j ≤ n.

(23)T ≤ Tmax =
2

3−p
2

kp
(

1− p
) +

2

kq
(

q− 1
) .

(24)Vi,1 =
1

2
z2i,1 +

1

2µi,1
θ̃2i,1,

(25)
V̇i,1 = zi,1ri(di + bi)Fi,1

(

Xi,1

)

+ zi,1ri(di + bi)gi,1
(

xi,1, x
0
i,2

)

xi,2

− zi,1ribiẏ0 +
1

µi,1
θ̃i,1

˙̂
θi,1

(26)

V̇i,1 ≤ (di + bi)





�

�rizi,1
�

�

�

�Wi,1

�

�

�

��
�

Zi,1
��

�−
r2i z

2
i,1θ̂

2
i,1

�

��
�

Zi,1
��

�

2

�

�

�rizi,1θ̂i,1

�

�

�

�

��
�

Zi,1
��

�+ η1,i,1





+ (di + bi)

�

�

�rizi,1
�

�εi,1 −
r2i z

2
i,1ε

2
i,1

�

�rizi,1
�

�εi,1 + η2,i,1

�

+
�

�zi,1ribiẏ0
�

�−
r2i z

2
i,1b

2
i ẏ

2
0

�

�zi,1ribiẏ0
�

�+ η3,i,1

−
zi,1ri(di + bi)gi,1

g
i,1

�

kp,i,1z
p
i,1

ri(di + bi)
+

kq,i,1z
q
i,1

ri(di + bi)

�

+
1

µi,1
θ̃i,1

˙̂
θi,1 + zi,1ri(di + bi)gi,1zi,2

(27)

V̇i,1 ≤ −(di + bi)
∣

∣rizi,1
∣

∣

∥

∥�
(

Zi,1
)∥

∥θ̃i,1

+ (di + bi)
(

η1,i,1 + η2,i,1
)

+ η3,i,1 − kp,i,1z
p+1
i,1 − kq,i,1z

q+1
i,1

+
1

µi,1
θ̃i,1

˙̂
θi,1 + zi,1ri(di + bi)gi,1zi,2
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Based on the adaptive law (22) of the controller (28) and the lemma  in32, the following inequality can be 
obtained:

where

We choose the Lyapunov candidate functional as

where µi,m > 0 is a positive constant

Based on the lemma  in48, the following inequality can be obtained:

Based on the adaptive law design, the following inequality can be obtained:

Based on the lemma  in32, the following inequality can be obtained:

where

(28)ui = −
1

g
i,n



kp,i,nz
p
i,n + kq,i,nz

q
i,n +

zi,nθ̂
2
i,n

�

��
�

Zi,n
��

�

2

�

�

�
zi,nθ̂i,n

�

�

�

�

��
�

Zi,n
��

�+ η1,i,n

+
zi,2ε

2
i,n

�

�zi,n
�

�εi,n + η2,i,n



.

(29)

V̇i,1 ≤ −kp,i,1z
p+1
i,1 − kq,i,1z

q+1
i,1 − ρi,1θ̃i,1θ̂

p
i,1 − σi,1θ̃i,1θ̂

q
i,1

+ (di + bi)η1,i,1 + (di + bi)η2,i,1 + η3,i,1

+ zi,1ri(di + bi)gi,1zi,2

≤ −kp,i,1z
p+1
i,1 − kq,i,1z

q+1
i,1 − ρ1,i,1θ̃

p+1
i,1 − σ1,i,1θ̃

q+1
i,1

+ ρ2,i,1θ
p+1
i,1 + σ2,i,1θ

q+1
i,1 + (di + bi)η1,i,1 + (di + bi)η2,i,1 + η3,i,1

+ zi,1ri(di + bi)gi,1zi,2

≤ �i,1 +�i,1 + zi,1ri(di + bi)gi,1zi,2

(30)
�i,1 = −kp,i,1z

p+1
i,1 − kq,i,1z

q+1
i,1 − ρ1,i,1θ̃

p+1
i,1 − σ1,i,1θ̃

q+1
i,1

�i,1 = ρ2,i,1θ
p+1
i,1 + σ2,i,1θ

q+1
i,1 + (di + bi)η1,i,1 + (di + bi)η2,i,1 + η3,i,1.

(31)Vi,m = Vi,m−1 +
1

2
z2i,m +

1

2µi,m
θ̃2i,m,

(32)

V̇i,m ≤ �i,m−1 +�i,m−1 + zi,m−1gi,m−1zi,m

+ zi,mfi,m + zi,mgi,mxi,m+1 +
1

µi,m
θ̃i,m

˙̂
θi,m

≤ �i,m−1 +�i,m−1 −
gi,m

g
i,m

(

kp,i,mz
p+1
i,m + kq,i,mz

q+1
i,m

)

+
∣

∣zi,m
∣

∣

∥

∥�
(

Zi,m
)∥

∥

(

∥

∥Wi,m

∥

∥− θ̂i,m

)

+
∣

∣zi,m
∣

∣

∥

∥�
(

Zi,m
)∥

∥θ̂i,m

−
gi,mz

2
i,mθ̂

2
i,m

∥

∥�
(

Zi,m
)∥

∥

2

g
i,m

(∣

∣

∣zi,mθ̂i,m

∣

∣

∣

∥

∥�
(

Zi,m
)∥

∥+ η1,i,m

) +
∣

∣zi,m
∣

∣εi,m

−
gi,m

g
i,m

z2i,mε
2
i,m

∣
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Based on the Lyapunov functionals (24) and (31), we choose the Lyapunov candidate functional

We choose the virtual control laws as (13) and (19), the distributed adaptive fixed-time law and control based 
on the fixed-time adaptive technique and backstepping; this technique takes the trajectory along the system, 
based on the lemma  in13, and therefore, the following inequality can be obtained:

where

The settling time T satisfies

Therefore, the error closed-loop system has practical fixed-time stability based on the lemma  in32. □

Remark 3 For practical engineering control, finite-time stability is obviously more practical than infinite-time 
stability. However, there are some limitations to finite-time stability because the convergence time of the designed 
system depends on the initial state. Therefore, in this section, we introduce another method, the tracking con-
trol method of nonaffine nonlinear leader–follower multiagent systems based on fixed-time stability theory. 
The upper bound of settling time does not depend on the initial state and can be realized by only adjusting the 
controller parameters.

Remark 4 The main difficulty in studying practical fixed-time stability is the sufficient condition and settling time 
based on the Lyapunov stability theorem. The practical fixed-time stability lemma  in32 is based on fixed-time 
stability theory, and the procedure can be divided into two parts. The first part is the transfer condition to the 
practical fixed-time stability condition; then, the system is stable, and the settling time can be obtained based on 
fixed-time stability theory. There exist some different fixed-time stability conditions, and therefore, the settling 
time of practical fixed-time stability is not unique.

Remark 5 The step-by-step design procedure is shown in Fig. 2.

Step 1: Design the ideal virtual control laws (13) and (19) based on the backstepping control technique.
Step 2: Design the distributed adaptive fixed-time control law (22) based on the fixed-time control theory.
Step 3: Obtain the actual controller (28) recursively through the virtual control signal and the adaptive 

parameter (22).

Simulation study
Multiagent consensus control is widely used in practical industrial control, such as systems composed of multiple 
 robots50 and multiple inverted  pendulums51. In this section, an example (four robust follower agents and one 
lead agent) is presented to demonstrate the effectiveness of the proposed consensus control scheme for a nonaf-
fine nonlinear multiagent  system48. A step-by-step design procedure is shown to explain the control scheme.

Consider the communication graph of the multiagent system in Fig. 3.
The leader agent is described as 5 sin (0.1t) . The follower agents can be described as follows:
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�i,m = �i,m−1 − ρp,i,mθ̃

p+1
i,m − ρq,i,mθ̃

q+1
i,m − kp,i,mz

p+1
i,m − kq,i,mz

q+1
i,m

�i,m = �i,m−1 + η1,i,m + η2,i,m + σp,i,mθ
p+1
i,m + σq,i,mθ

q+1
i,m

(37)V =

n
∑

j=1

z2i,j

2
+

n
∑

j=1

1

2µi,j
θ̃2i,j .

(38)V̇ ≤ −kpV
p+1
2 − kqV

q+1
2 +�,

(39)
kp =

min
{

kp,i,j∈N , ρp,i,j∈N
}

(

max
{

1
2 ,

1
2µi,j∈N

})

p+1
2

, kq =
(2n)

1−q
2 min

{

kq,i,j∈N , σq,i,j∈N
}

(

max
{

1
2 ,

1
2µi,j∈N

})

q+1
2

� = �i,n−1 + η1,i,n + η2,i,n + σp,i,nθ
p+1
i,n + σq,i,nθ

q+1
i,n

(40)T ≤ Tmax =
2

3−p
2

kp
(

1− p
) +

2

kq
(

q− 1
) .

(41)
ẋ1,1 = 0.05 sin

(

x1,1
)

+ x1,2 + 0.1 sin
(

x1,2
)
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Agent 3:

Agent 4:

Step 1: Design of the ideal virtual control laws based on the backstepping control technique.

(42)
ẋ2,1 = 0.1 sin

(

x2,1
)

+ x2,2 + 0.2 sin
(

x2,2
)

ẋ2,2 = 0.2× 4−x22,1 + 20u2 + 2 cos (u2)

(43)ẋ3,1 = u3 + 0.2u3 exp
(

−x23,1
)

(44)ẋ4,1 = sin
(

x4,1
)

x4,1 + u4 + 0.1 sin (u4)

Figure 2.  Design procedure.

1 2

4 3

0

Figure 3.  Topology of the multiagent system.
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Step 2: Design of the distributed adaptive fixed-time control laws based on fixed-time control theory.

Step 3: Obtaining the actual controller recursively through the virtual control signal and the adaptive 
parameter.

where z11 = 4× 2−t + 0.2 , z12 = −2−3t − 0.2 , z21 = 4× 2−t + 0.2 , z22 = −2−3t − 0.2 , z31 = 4× 2−t + 0.2 , 
z32 = −2−3t − 0.2 , z41 = 4× 2−t + 0.2 , and z42 = −2−3t − 0.2.

The control parameters are designed as p = 1
3 , q = 5

3 , kp,i,j = kq,i,j = 1 , and the upper bound of settling time 
is Tmax = 6.7798 , which is calculated by (40).

Figure 1 shows the consensus control structure of the closed error system. Figure 2 shows the step-by-step 
design procedure. Figure 3 is the communication graph of the multiagent system. Figures 4, 5, 6, 7, 8, 9 show 
the simulation results. The simulation results show that the follower agents can follow the leader agent in finite 
time and that the upper bound of settling time does not depend on the initial condition. Figure 4 shows the 
response curves of the outputs of the five agents based on the virtual control laws (45) and (46), and the neural 
networks adaptive controller (48), which indicate the performance of the distributed adaptive fixed-time neural 
networks controller. It should be noted that he reason for output y4 of agent 4 is slightly off the reference trajec-
tory y0 of leader 0 is that the neural networks approximate nonlinear systems, and the error of approximation is 
appeared, but the error is converged to a small neighborhood rather than the origin point. Based on Lyapunov 
stability theorem, the error of the closed-loop system is practically fixed-time stable. Figures 5, 6, 7, 8 show the 
tracking errors between the state and the reference signal along with their bounds, which indicate that the local 
consensus error is bounded in all processes based on homeomorphism mapping technology. It can be observed 
that all the follower agents can follow the leader agent in a fixed time. Figures 5, 6, 7, 8 demonstrate that the 
tracking error of the system reaches consensus in fixed time and remains within the bounds. Figure 9 shows the 
curve of the distributed adaptive neural networks controller, which is bounded and reliable. From the simulation 
data, it can be calculated that the upper bound of the settling time is 6.7798 s. It can be obtained that consensus 
can be achieved in finite time. Therefore, the effectiveness of the proposed scheme can be illustrated. Compare 
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Figure 4.  Output of five agents.
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with result  in47, the advantage of fixed-time control design bound of the settling time, and the disadvantage is 
complex algorithm of controller.

Conclusions
This article develops a fixed-time adaptive neural networks tracking control scheme to provide a new procedure 
for dealing with leader–follower multiagent consensus control systems. A simulation demonstrates the proposed 
scheme. There are several conclusive points, as summarized below.

This article focuses on consensus controller design for nonaffine nonlinear leader–follower multiagent sys-
tems. The controller is designed based on the neural networks technique. A fixed-time adaptive algorithm is 
presented for approximating the parameters of the neural networks. The fixed-time consensus analysis of error 
closed-loop systems is demonstrated based on Lyapunov fixed-time stability theory. The upper bound of settling 
time is independent from the initial parameters. The scheme proposed in this article is not limited to a nonaffine 
nonlinear leader–follower multiagent system. Furthermore, a step-by-step procedure is listed, which can be used 
by engineers to take up the proposed consensus control method with a computer for practical engineering tasks. 
Compared with previous research, the fixed-time neural networks adaptive control has potential for further 
expansion. A similar scheme can be constructed for high-order nonlinear multiagent systems.
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Figure 5.  Error states of the following agents ξ11 along with their bounds.
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Figure 6.  Error states of the following agents ξ21 along with their bounds.
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Figure 7.  Error states of the following agents ξ31 along with their bounds.
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Figure 8.  Error states of the following agents ξ41 along with their bounds.
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