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To be useful, clinical prediction models (CPMs) must be generalizable to patients in new

settings. Evaluating generalizability of CPMs helps identify spurious relationships in data,

provides insights on when they fail, and thus, improves the explainability of the CPMs.

There are discontinuities in concepts related to generalizability of CPMs in the clinical

research and machine learning domains. Specifically, conventional statistical reasons to

explain poor generalizability such as inadequate model development for the purposes of

generalizability, differences in coding of predictors and outcome between development

and external datasets, measurement error, inability to measure some predictors, and

missing data, all have differing and often complementary treatments, in the two domains.

Much of the current machine learning literature on generalizability of CPMs is in terms of

dataset shift of which several types have been described. However, little research exists

to synthesize concepts in the two domains. Bridging this conceptual discontinuity in the

context of CPMs can facilitate systematic development of CPMs and evaluation of their

sensitivity to factors that affect generalizability. We survey generalizability and dataset

shift in CPMs from both the clinical research and machine learning perspectives, and

describe a unifying framework to analyze generalizability of CPMs and to explain their

sensitivity to factors affecting it. Our framework leads to a set of signaling statements

that can be used to characterize differences between datasets in terms of factors that

affect generalizability of the CPMs.

Keywords: generalizability, external validity, clinical prediction models, explainability, prognosis, diagnosis,

dataset shift

1. INTRODUCTION

Clinical prediction models (CPMs), which are often referred to as risk models (Wynants et al.,
2017), inform many healthcare decisions. Healthcare decisions informed by CPMs, including
whether a patient has a disease (diagnosis), whether a patient will develop severe disease or
other outcomes (prognosis), and whether a patient will have a certain outcome in response to a
given treatment (treatment effects), are all based upon predictions given observed information.
Predictions from algorithms using machine learning (ML) methods can be used to support clinical
decisions, provided they have sufficient utility in some form of correctness, such as accuracy
or error. However, the empirically reliable correctness of the predictions is necessary—but not
sufficient—for an algorithm to be useful in practice. Among other considerations, prediction
algorithms are expected to be explainable in order to be put into common use.
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There is little consensus on a definition of explainability for
ML methods. From a technological perspective, explainability is
related to model complexity and how a prediction was computed
given certain inputs (i.e., features). For example, the weights
or coefficients for features from a linear model explain how
the features are transformed into a prediction. A weight in a
linear model can be easily interpreted as the estimated expected
change in the response per unit change in the associated predictor
while holding the other predictors fixed. On the other hand,
deep neural networks are much less parsimonious and non-
linear. In fact, they are often referred to as “black-boxes” because
the specifics of how features are mapped to predictions is
typically not well understood. Although some techniques, such
as saliency maps, provide a post-hoc attempt to shed light on how
a prediction was obtained from a neural network, they are not
foolproof (Adebayo et al., 2018; Ghassemi et al., 2021) and can
provide misleading information.

While there is broad agreement about the goals of
explainability of MLmethods for CPMs and predictions obtained
using them, evidence on how it affects users’ trust and adoption
of the CPMs is limited. Explainability of predictions from
ML methods may engender users’ trust in them. Explanations
are trustworthy and persuasive when they are intuitive and
consistent with expectations given prior knowledge about a
patient’s clinical presentation. As such, the key purpose for
obtaining explainability of predictions that inform clinical
decisions is to justify their use in systems (Tonekaboni et al.,
2019). Transparency, couched in terms of the specific features
input in the model, allows for the validation of predictions
against domain knowledge, i.e., the information used by the
model to reach a prediction. In addition, information about
the contexts in which the model yields inaccurate predictions
enhances transparency. However, transparency in terms of
certainty may decrease user’s trust and adoption of the models
in decision-making (Fügener et al., 2021). As such, the influence
of transparency and model certainty on adoption of predictions
from CPMs in decision-making is not well studied.

Another goal of explainability is to prevent the failure of a
model to reproduce its accuracy in novel populations (Ghassemi
et al., 2021). Failure to replicate model performance can be
driven by spurious correlations in the training data that are not
present in testing data or during real world usage. Correlations
in the training data that represent systematic biases, for example
those reflecting societal prejudices, can lead to models being
biased toward or against specific subpopulations. Evaluating
generalizability, or external validity, of a CPM improves its
explainability through the detection of contexts in which it yields
inaccurate predictions, ruling out spurious associations between
features and the target (outcomes), and analyzing disparity in
performance across subpopulations.

In the context of a CPM, external validity refers to evaluating
it in an independent dataset, i.e., data “collected as part of
an exercise separate from the development of the original
model” (Royston and Altman, 2013). The external dataset is
typically similar to the development dataset, and recruited either
from different study sites (geographic validation) or at different
points in time (temporal validation). Model performance on

the external dataset is typically then evaluated in terms of
discrimination and calibration. Here, discrimination refers to the
extent to which the predicted probability characterizes patients
with different labels (e.g., disease / no disease for diagnostic
models and different risk for prognostic models) and calibration
refers to the correspondence between predicted and observed risk
of outcomes (Altman et al., 2009; Moons et al., 2009b).

In theML literature, model performance on novel data is often
discussed in terms of dataset shift. This refers to heterogeneity
between datasets used to test the model (e.g., data from real-
world settings) and train the model. In the presence of dataset
shift, a model’s performance often fails to generalize to a test
dataset. The shifts in datasets are described with regard to the
empirical distributions of the input and the target or the output
(both marginal and conditional on the input).

There is discontinuity in concepts on generalizability of
CPMs in the clinical research and ML literature. In the
clinical research literature, failure of a CPM to generalize to
a new dataset is dissected in terms of an assumed underlying
population distribution (super-population), which models the
data acquisition and potential biases in the study design
(Hemingway et al., 2013). This approach stands on a firm
theoretical foundation. However, it hinges on the connections
between the superpopulation and sampling models to the
data. On the other hand, in broad strokes, generalizability of
CPMs in the ML literature is evaluated based on the empirical
distributions of observed data. Of course, the lines between these
field-specific approaches to generalizability of CPMs are blurred
in much of clinical and ML research.

Despite this overlap, we argue that the discontinuity persists in
the two field-specific approaches. Furthermore, this discontinuity
is both artificial and wasteful, thus raising the need for an
omnibus approach to generalizability of CPMs. Bridging and
combining concepts from the two field-specific approaches will
enablemore robust algorithmic development and translation. For
example, domain shift, a type of dataset shift, corresponds to both
measurement error and measurement bias. Evaluating domain
shift via the distribution of the predictors or outcomes alone
fails to distinguish and hypothesize about the source of the error
or bias. Such a mapping of domain shift to measurement error
or bias allows for the application of methodology specifically
designed to address the source of error or bias. For example,
mismeasured covariates affect the calibration and discrimination
of models (Rosella et al., 2012; Pajouheshnia et al., 2019; Luijken
et al., 2020) and methods have been developed to mitigate the
impact of error or bias (Khudyakov et al., 2015) in narrow
settings. However, related methodological research on CPMs
employing MLmethods is not as well developed. Our objective is
to propose a framework for unifying concepts on generalizability
of CPMs with the hope of fostering further development merging
the two styles of generalizability.

Our emphasis on generalizability is warranted for several
reasons. From a practical perspective, CPMs support decisions
in patient care. Consistent performance in heterogeneous real-
world clinical settings is a key requirement for broad deployment,
especially for those utilizing complex ML methods. The value
of a CPM depends on how it performs in routine practice,
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on data not seen in training or initial model building and
validation. Lack of clarity about the conditions under which a
CPM does and does not fail in external validation can make it
less useful to decision-makers and potentially harmful to patients.
Furthermore, granular information on sources of error and bias
leading to CPM failure in external validation leads to greater
efficiency in the creation of new algorithms and the improvement
of existing ones.

From a methodological perspective, evidence of
generalizability of a CPM helps rule out the possibility of
overfitting to training data, chance covariate relationships, or
predictor relationships idiosyncratic to the training data. Data
on false positive and false negative predictions can provide
insights on whenMLmethods fail. Information on failure modes
of CPMs promotes trust because users can anticipate when
models are useful and when they are likely to mislead. Finally,
evidence from the evaluation of ML methods in different subsets
of patients can inform consideration of risk and outcomes in
the context of patient preferences and values. Thus, importantly,
addressing generalizability of ML methods can promote patient
centeredness of CPMs.

The manuscript is organized as follows. Section 2 describes
the problem statement for generalizability of CPMs, Section 3
explains design of studies to develop and validate CPMs, Section
4 introduces concepts on dataset shift, Section 5 proposes a
unified framework for concepts on generalizability of CPMs and
we conclude in Section 6.

2. PROBLEM STATEMENT FOR
GENERALIZABILITY OF CPMS

2.1. Notation
We use Xdev to denote the observed predictors to CPMs in
the development dataset, e.g., variables from the medical chart,
images. Ydev represents the observed outcome or target for
prediction in the development dataset, e.g., presence of disease,
severity of disease, risk of outcome. The probability distributions
of these variables in the dataset used to develop the CPM
(development dataset) are denoted by P(Xdev) and P(Ydev).
Sampling weights with which patients in the development
dataset are drawn from the population are represented by Wdev.
In turn, Xext , Yext , and Wext denote the input, output, and
sampling weights in the external dataset, respectively. When the
subscripts are omitted, we do not make a distinction between the
two datasets.

We consider probabilistic CPMs that give estimated
conditional probabilities Pm(Y|X) as output; examples include
(probabilistic) graphical models and neural networks with
sigmoidal output activation functions. The conditional
probability output is denoted as Pm(Y|X) for the development
dataset. One could draw a slight distinction with purely
functional models, which only give either class scores or
direct predictions without a formal reference to a conditional
probability. However, most of these models can typically be
thought of as a special case of probabilistic models through a
functional component of the distribution, such as a mean or

argument maximum. We denote the functional component of
interest as f (X). In addition, one might estimate a conditional
probabilistic model without concern over calibration, i.e., that
the probability is an accurate representation of real world
frequencies and any monotonic function of the conditional
probability would suffice. Regardless, the problem of dataset
shifts impacts CPMs, whether one wants to estimate a calibrated
conditional probability or simply to obtain good functional
prediction estimation and both can benefit from our framework
to assess the risk of dataset shifts.

2.2. Problem Statement for Generalizability
of CPMs
We assume that a CPM is developed within the context of an
underlying biologic disease process such that there is a causal
association between X and Y . This assumption is consistent
with clinicians’ expectations that CPMs will be transparent about
what features are used in the model to predict the outcome.
Transparency on features allows for contrasting algorithmically
important predictors and relationships with clinical judgments
based on established first principles in the preclinical and
clinical sciences. We also assume that the biologic process, and
consequently the causal association between X and Y , may differ
across the distribution of X. For example, the disease process
may differ by patients’ age. Finally, we assume that the CPM was
adequately optimized to the training data.

Then, the absence of generalizability is expressed as:

Pm(Yext|Xext) 6= P(Yext|Xext),

where here we mean equality loosely subject to sampling and
estimation variation or in terms of asymptotic convergence.
A less restrictive version could be given if there is a reduced
functional form of Pm(Yext|Xext) being estimated; then absence
of generalizability is given by:

f (Xext) 6= g{P(Yext|Xext)}

where g is the function performing the summarization, such as:

f (Xext) 6= argmax
Yext∈Yext

P(Yext|Xext)

or

f (Xext) 6=

∫
Yext∈Yext

YextP(Yext|Xext)dYext .

where Yext denotes a set of all possible outcomes in the external
dataset. In other words, absence of generalizability occurs when
the estimated model does not estimate the desired quantity from
the true conditional distribution in the external sample.

3. CONCEPTS ON GENERALIZABILITY OF
CPMS

Generalizability of CPMs is well studied and often evaluated in
the clinical research literature. The design of studies to develop
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CPMs and to evaluate their generalizability involves several
choices that can introduce bias or otherwise limit inference about
validity of the CPMs. Several articles describe the objectives and
design of studies to develop and validate CPMs for diagnosis and
prognosis, their reporting, and risk of bias (Altman et al., 2009;
Royston et al., 2009; Whiting et al., 2011; Moons et al., 2015;
Wolff et al., 2019). CPMs are developed in studies that include
patients who represent a given source population. Studies on
CPMs may include analyses validating them using a subset of the
development dataset, i.e., internal validation, or using an external
dataset obtained from a new sample of patients, i.e., external
validation, or both (Wolff et al., 2019).

Multiple terms related to external validity are described in
the clinical research literature (Justice et al., 1999). Validity of a
CPM in a new sample of patients drawn from an identical source
population as that in the development study is often termed as
reproducibility. On the other hand, validity of a CPM in a new
sample of patients drawn from different—but plausibly related—
population or using different methods to collect data compared
with the development study is referred to as transportability.
In turn, there are different types of transportability, including
historical (validity in samples from different point in calendar
time), geographical (validity in samples from different locations
on the globe), methodologic (validity when data are collected
using different methods), spectrum (validity in patients with
different degrees of disease severity), and follow-up (validity
of CPMs for prognosis in patients who were followed up for
different durations).

Analysis of generalizability of CPMs includes calibration and
discrimination. Calibration refers to the agreement between
predicted probabilities and their underlying estimands. For
example, if the CPM assigns an average probability of 0.4
for a subset of patients, then 40% of the relevant population
in that subset should actually have the outcome. Of course,
population calibration would be evidenced by relevant sample
calibration. It should be emphasized that many standard
validation metrics do not consider calibration. For example, non-
parametrically estimated receiver operating characteristic curves
only depend on the ranks of the predictions, thus can have
no relevant calibration information. Some methods to analyze
calibration are described in Copas (1983), Spiegelhalter (1986),
and Steyerberg (2009). Calibration is primarily a concern in
CPMs if physicians or users will be relying the actual values of
the estimated probability. A good example would be comparing
CPM output with traditional estimates of risk. If the CPM is
not calibrated, such comparisons can not be made, regardless
of how well the algorithm performs at discrimination. To
elaborate, discrimination refers to the ability of the CPM to
separate patients with and without the outcome. A common
measure of discrimination is the C-statistic, which corresponds
to the area under the receiver operating characteristic curve
(Spiegelhalter, 1986). Other important statistical issues about
studies on generalizability of CPMs include sample size, which
are discussed in other sources (Riley et al., 2020).

It is well known that the design of studies to develop CPMs
can introduce biases or errors in their estimated measures of
validity (Whiting et al., 2011; Damen et al., 2019; Wolff et al.,

2019). Studies on generalizability of CPMs are susceptible to bias
in a similar manner. Studies on generalizability include patients
who meet prespecified eligibility criteria, which determine their
similarity to those included in the sample used to develop
the CPM. Of note, duration of follow-up is an important
eligibility criterion, because it allows for the study of follow-up
transportability (Justice et al., 1999). In addition, predictors input
to the CPM and its outputs (i.e., outcomes) should be completely
measured in all patients included in the generalizability study
using processes that do not introduce any more error than
that in the original development study. For predictors and
outcomes with multiple dimensions, e.g., time series, images,
or videos, it is necessary to measure them using processes that
correspond to those used in development of CPMs. Error and
bias in measuring predictors used in CPMs adversely affect
calibration and discrimination (Rosella et al., 2012; Khudyakov
et al., 2015; Luijken et al., 2019, 2020; Pajouheshnia et al., 2019).
In another instance, in generalizability studies on CPMs for
diagnosis, ascertaining the outcome using information on the
predictors can lead to over optimistic estimates of validity, i.e.,
incorporation bias (Whiting et al., 2011).

Studies to develop CPMs using machine learning methods
often ignore potential for bias from various aspects of their
design. For example, only a few among 62 studies developing
CPMs for diagnosis or prognosis of coronavirus disease 2019
(Covid-19) were assessed to be at low risk of bias based on study
design (Roberts et al., 2021). Similar findings were reported in
a comprehensive systematic review of studies developing CPMs
for diagnosis or prognosis of Covid-19 using any data source
(Wynants et al., 2020). This deficit in rigor in study design may
be because well-known concepts on potential sources of biases
from design of studies to develop and evaluate CPMs are not well
disseminated to the ML researchers.

4. DATASET SHIFTS

In the context of CPMs, we consider dataset shifts as the
differences in the distributions between development and
external data. The patterns and types of dataset shifts have been
exhaustively described in theML literature. Storkey has cataloged
the common types of dataset shifts according to their causes
(Storkey, 2008). Subsequently, Moreno-Torres, et.al., categorized
dataset shifts into four groups, namely covariate shifts, prior
probability shifts, concepts shifts, and other types of dataset shifts
(Moreno-Torres et al., 2012). Finally, Kull and Flach extended the
ideas to provide an exhaustive listing of dataset shifts (Kull and
Flach, 2014).

To simplify the discussion on dataset shifts and enable readers
from different scientific domains to identify common concepts,
we consider three basic types of dataset shift: covariate shift,
prior probability shift, and concept shift. Other types of dataset
shift described in the literature result in one or more of the
basic types of dataset shift listed above. We adopt previously
described definitions of the dataset shifts; however, we use
selection diagrams to illustrate them. As noted in Box 1, selection
diagrams are a well developed, succinct, and unifying way to
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denote distributional and structural differences between datasets,
in addition to allowing reproducible analysis of transportability
in both randomized and non-randomized contexts (Pearl and
Bareinboim, 2011). Furthermore, using selection diagrams helps
establish a standard way to describe dataset shifts and facilitate
the discussion, because custom graphical diagrams were devised
in previous works to depict them (Storkey, 2008; Moreno-Torres
et al., 2012; Kull and Flach, 2014).

Our discussion of dataset shifts differs from previous
descriptions in a few ways. First, the three basic types of shifts
are not considered as mutually exclusive or isolated, unlike other
treatments. For example, covariate shift was previously defined
as a shift that causes P(X) to change whereas P(Y|X) remains
unchanged (Storkey, 2008; Moreno-Torres et al., 2012; Kull and
Flach, 2014). In contrast, our definition omits the requirement
that P(Y|X) should remain unchanged under covariate shift. In
addition, we consider the pragmatic scenario that more than one
dataset shift may be simultaneously observed. Finally, we view the
three basic dataset shift types as the fundamental core elements of
dataset shift with the other types being a cause or a combination
of the three basic types. Box 1 shows terminologies used in the
rest of the discussion in this section.

4.1. Three Basic Types of Dataset Shift
4.1.1. Covariate Shift
We define covariate shift as the differences in the distribution of
covariates between datasets, e.g., the development and external
datasets. The covariate is the input to the CPMs, or the predictors,
which can be symptoms or other variables from the medical
chart, images, time series data, etc. Covariates are named as
such because they are presumed to “co-vary” with the outcome,
i.e., their variation is related to outcome variation. For this
discussion, covariate shift only refers to differences in the
distribution; the covariates themselves and their dimension is
assumed to be identical between the datasets. Formally, covariate
shift is observed when P(Xdev) 6= P(Xext). As mentioned, most
previous work (Storkey, 2008; Moreno-Torres et al., 2012; Kull
and Flach, 2014) assumes that P(Ydev|Xdev) = P(Yext|Xext) to
isolate the discussion of covariate shift. We suggest omitting
this requirement, allowing the conditional relationship to depend
on the covariate distribution itself. That is, in the context of
CPMs, not only has the distribution of demographic and health
characteristics in patient population changed, but also their
relationship to the outcome. The easiest way this can occur is
if there is an unmeasured unknown predictor that impacts both
the covariates and the outcome. An example in our own research
contrasted sleep measurement in the general population versus
sleep measurement in patients referred sleep clinics to diagnose
sleep apnea. Subselecting a group in the general population that
matches the clinical population on measured characteristics does
not provide equivalent prediction performance. Why? Because
the entirety of factors that cause a patient to be referred to a sleep
clinic are not measured (Caffo et al., 2010). The selection diagram
shown in Figure 1A illustrates our definition. The selection
variable S points to the variable X denoting the differences in
distribution between the two datasets.

A common example of covariate shift in CPMs is when a
model developed using data from adults is evaluated in children

(Moons et al., 2009a). In addition, covariate shift may arise
from the inclusion of different patient subpopulations (e.g.,
patients of different ages), measurement processes (e.g., spiral
computed tomography vs. conventional computed tomography),
data preprocessing (Um et al., 2019), or incomplete measurement
of the predictors or the outcome (e.g., secondary to change
in testing policy Singh et al., 2019; Subbaswamy et al., 2021).
Covariate shift is particularly concerning when a nonlinear
function maps the predictors to the output (Altman and Bland,
1998). Furthermore, covariate shift in terms of some predictors,
such as sex, gender, ethnicity, race, or age raises concerns about
the fairness of CPMs.

Covariate shift can be avoided if the external dataset is
well designed; that is, the external dataset encapsulates the
distribution of covariates in the development dataset where the
learned causal relationship between X and Y is valid. Then, one
can directly transport the relationship between X and Y to the
external dataset. This transportability is evident because Y is
conditionally independent of S given X.

4.1.2. Prior Probability Shift
Prior probability shift is defined similarly to covariate shift.
Prior probability shift refers to the differences in the prior
distribution of the outcome between the development dataset
and the external dataset. In probabilistic terms, if the P(Ydev) 6=
P(Yext), then a prior probability shift is observed. In biostatistical
parlance, prior probability shift occurs if the disease prevalence
shifts. If the outcome represents a disease, then prior probability
shift corresponds to a difference in the disease prevalence
between the training and evaluation datasets. In previous work
(Storkey, 2008; Moreno-Torres et al., 2012; Kull and Flach,
2014), an additional condition for prior probability shift was
that P(Ydev|Xdev) = P(Yext|Xext). We omit this requirement and
consider the pragmatic scenario in which prior probability shift
may be caused by other types of dataset shifts. Figure 1B shows
the selection diagram for prior probability shift. The selection
variable now points to variable Y denoting the differences in the
distribution of Y between the two datasets.

Prior probability shift is also very common in the context
of CPMs. For example, when a CPM to diagnose deep vein
thrombosis developed using data from a secondary care setting
was evaluated in patients from a primary care setting, it showed
lower sensitivity and specificity (Wells et al., 1997; Oudega
et al., 2005). This adverse effect on model performance is not
surprising, because patients in a secondary care setting are a
select subset of patients seen in primary care who are more
likely to have the target condition. Another common context
for prior probability shift is a difference between datasets in the
duration for which patients were followed up when evaluating
CPMs for prognosis. The natural progression of disease means
that patients who were followed up for different times are at
differing risks of outcome.

The causal relationship between Y and X is transportable, as
X is conditionally independent to S given Y . Consequently, if an
accurate estimate of P(Yext) is available, then we can simply use
P(Yext) instead in the model to address prior probability shifts.
The conventional method to address prior probability shift is to
adjust the intercept in the external dataset (Moons et al., 2012).
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BOX 1 | Terminologies

1. Causal graph or causal diagram (Pearl, 1995): Directed Acyclic Graphs that illustrate conditional independent associations

and qualitative causal influences. By convention, the solid circles denote observable variables such as X, W and Y. The

unobservable variables such as measurement error, Ux , are denoted as hollow circles. The solid arrows represent causal

associations.

2. Transportability (Pearl and Bareinboim, 2011): Given two domains 5dev and 5ext, such as a development dataset and an

external dataset, characterized by probability distributions Pext and Pdev, and causal diagrams Gdev and Gext, respectively, a

statistical relation R is said to be observationally transportable from 5dev to 5ext over Vext, a subset of variables, if R(Pext ) is

identified from P, Pext (Vext ), Gdev, and Gext, where Pext (Vext ) is the marginal distribution of Pext over Vext. Transportability is helpful

to decide whether a learned relationship can be applied in new data.

3. Trivial Transportability (Pearl and Bareinboim, 2011): The relationship R

can be estimated given the causal diagram, Gext, and full probability

distributions, Pext.

4. Selection diagram (Pearl and Bareinboim, 2011): Selection diagrams are augmented causal diagrams. Selection diagrams

contain an extra set of “selection variables”, S. Selection variables correspond to mechanisms by which the variables to which

they point differ between the development dataset and the external dataset. For example, in the selection diagram example

figure on the right, the variable W is pointed by the selection variable S, which means W will be different between the

development dataset and the external dataset.

These selection variables are denoted by solid rectangles. The selection diagram is a succinct and unifying way to identify causal

associations that can transport from the development dataset to the external datasets, and to denote distributional and

structural differences between the development dataset and external datasets.

5. D-separated (Pearl, 1995): Let A, B, and C be three disjoint subsets of nodes in a directed acyclic graph G, and let p be any

path between a node in A and a node in B. The path p here means any successive edges, regardless of their directions. C is

said to block p if there is a node w on p satisfying one of the following two conditions: 1. w has converging arrows along p and

neither w nor any of its descendants are in C, or 2. w does not have converging arrows along p and w is in C.

6. S-admissibility (Pearl and Bareinboim, 2011): Let D be the selection diagram and S be the set of selection variables. The

Z-specific relationship P(Y |X,Z) is transportable from the development dataset to external dataset if Z d-separates Y from S in

the X-manipulated version of D denoted by DX . In DX , nodes in X are excluded. Then, Y ⊥⊥ S|Z in DX . The set of variables in Z

are called S-admissible.

FIGURE 1 | Selection diagrams for dataset shifts. The solid circles denote observable variables. The hollow circles represent unobservable variables. The rectangles

denote the selection variables.
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However, when the CPM is used in clinical practice, it is hard to
obtain an accurate estimate of P(Yext).

4.1.3. Concept Shift
Concept shift is defined as the difference in the conditional
distribution of Y given X between the development dataset
and the external dataset. Concept shift is observed when
P(Ydev|Xdev) 6= P(Yext|Xext). This definition is different from that
in previous works (Storkey, 2008; Moreno-Torres et al., 2012;
Kull and Flach, 2014), since we excluded their requirement that
P(Xdev) = P(Xext). Additionally, we do not consider the dual
problem where the causal relationship is reversed from X causing
Y to Y causing X, because it is less pertinent to CPMs (Section
2.2). Figure 1C shows the selection diagram for concept shift.
Both the selection variable S and X point to variable Y . It denotes
that the relationship from X to Y differs between datasets.

Concept shift is hard to identify, and even harder to mitigate.
Concept shift ensues when the underlying biology or causal
associations between the predictors and the outcome differ.
Some reasons for such differences include distinct patient
subpopulations, and changes in measurement of predictors or
outcomes. Conventional approaches to address failure of CPMs
due to concept shift include updating coefficients for predictors,
and adding new predictors to improve CPM performance in
the external dataset (Moons et al., 2012). However, a difference
in the underlying biology is not necessarily detectable from the
observed data; clinical knowledge is necessary.

In the presence of concept shift, the relationship between
X and Y is only trivially transportable, which means that the
external dataset needs to be fully observed and P(Yext|Xext)
should be re-learned. This requires knowing the full probability
distributions of Y* and X*. Therefore, trivial transportability
is of little use. Importantly, concept shift is disproportionately
impacted in highly non-linear models, like neural networks
and other machine learning approaches. For example, a simple
regression relationship, averaging over non-linearities and
interactions, may continue to hold (thus be transportable), even
if concept shift has occurred. Thus, in the present of concept shift,
summaries of an accurate CPM model may continue to apply in
transport, even if the model itself does not.

4.2. Causes of Dataset Shifts
In this subsection, we describe a few causes of dataset
shifts introduced in Storkey (2008). Since any dataset shift
involves differences in the predictor distribution, the outcome
distribution, or the concept distribution, it can be described as
a cause of at least one of the three basic types of dataset shifts
introduced in the previous subsection.

4.2.1. Domain Shift
Domain shift is caused by changes in the measurement processes,
or the representation of the predictors, outcomes, or both.
These changes result in differences in the measures themselves,
or the type and magnitude of measurement error or both.
When changes in predictor distribution are not accompanied
by corresponding changes in the outcome, concept shift will
be observed. Differences in measurement or description of the

outcome results in prior probability shift. Figure 1D shows the
selection diagram for domain shift. C denotes the measurement
unit, e.g., device used to capture images. Ux represents the
error of measurement, which is typically unobserved. Xo is
the true value of the predictors. This selection diagram only
shows the case when predictors, but not the outcome, are
subject to measurement bias. Differences between datasets in the
measurement units, for example, imaging systems from different
manufacturers or the proficiency of clinicians performing an
exam, introduce domain shift.

The true value of predictors or outcomes are often hard to
obtain. Any predictor or outcome measured for use in CPMs is
subject to measurement error. Hernán and Cole (2009) explain
four types of error in measurement: (1) independent and non-
differential, (2) independent and differential, (3) dependent and
non-differential, (4) dependent and differential. To elaborate,
measurement error in the predictors is independent when it is
not affected by error in measuring the outcome. Measurement
error in the predictors is non-differential when it does not differ
across the distribution or levels of the outcome. The presence
of measurement error implies that the observed relationships
between the measured predictors and the measured outcomes
might not not reflect the actual causal relationship between Xo

and Y .
In the selection diagram shown in Figure 1, Xo is d-

separated from S, so the causal relationship between Xo and
Y is transportable. Furthermore, since C is S-admissible, the
association between X and Y is also transportable given
observations of Cext , as long as the association between C and
Ux, and Ux and X can be estimated and they are not changing
between the development and external datasets.

4.2.2. Sample Selection Bias
Sample selection bias describes the type of dataset
shifts that are caused by sampling weights. The joint
distribution of X and Y is dependent on the sampling
weights. Formally, the joint probability of a sample will be
P(X,Y) = P(X,Y ,W = 1) = P(W = 1|X,Y)P(Y|X)P(X). A
sample is only selected when W = 1. As stated in Moreno-
Torres et al. (2012), three basic patterns of dataset shifts may
occur because of sample selection bias: (1) covariate shift, when
P(W = 1|X,Y) = P(W = 1|X), (2) prior probability shift, when
P(W = 1|X,Y) = P(W = 1|Y), and (3) concept shift whenW is
dependent on P(Y|X). The selection diagram shown in Figure 1E
describes sample selection bias. The selection variable S points
to the sampling weights W. Since S, the predictors X, and the
outcome Y points to W, the dependency from Y to W, X to W,
andW itself could be different between datasets.

Many mechanisms that introduce selection bias in
epidemiologic studies are relevant to understand sample
selection bias and its influence on generalizability of CPMs
(Hernán et al., 2004). Sample selection bias affects generalizability
of CPMs, because the true relationships among X and Y in the
target population are not reflected in the study sample. A
common scenario for sample selection bias is to selectively
recruit patients who may be less or more sick than other patients.
For example, CPMs developed using data from patients admitted
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to hospitals, who are sicker than those in an outpatient setting,
may not generalize to patients in an outpatient setting. Another
common scenario for sample selection bias arises from missing
data from a select subset of patients, because of differential losses
to follow-up or mechanisms to capture data, self-selection of
patients volunteering to participate, etc.

The W variable in the selection diagram shown in figure is
S-admissible, which means should we obtain the Wext and its
conditional relationship with Xext and Yext , we can estimate the
conditional relationship between Xext and Yext .

4.2.3. Source Component Shift
Source component shift is another common reason for dataset
shift (Storkey, 2008; Kull and Flach, 2014). Usually, data are
generated from a variety of sources. Source component shift
happens when the contributions from the sources differs between
the external dataset and development dataset. Source component
shift can be categorized into three subtypes:

• Mixture component shift, which is caused by a change in
the portion of data generated by each source. The original
source of each datum is unknown. Prior probability shift and
covariate shift may occur when the distribution of the prior
and covariates differ among different sources. Concept shift
may also be induced if the sources evolve with time. For
example, consider a prognosis model to predict outcomes
from Covid-19 based on symptoms and imaging at the time
of hospital admission. The relationships among symptoms,
imaging, and disease severity evolve over time for reasons
such as the population being vaccinated, new variants of
the virus, etc.

• Mixing component shift, which is similar to mixture
component shift, except that each datum is averaged or
aggregated from that of each source. Therefore, only mean
values or the aggregated values are observed;

• Factor component shift, which results from differences
between the development and the external datasets in the
weights for each component when the data can be factorized
into several components. One example is when the data are
generated from a mixture of Gaussians. The weights of each
Gaussian could be different between datasets and cause the
distribution of the data to shift.

The selection diagram shown in Figure 1F describes the source
component shift. The variable O denotes the source, which has a
causal relationship with X and Y . The selection variable S points
to O shows that O could be different between the datasets. The
causal relationship between X and Y is not transportable as both
X and Y are dependent on the selection variable S.

5. UNIFIED FRAMEWORK FOR DATASET
SHIFTS FOR CPMS

We discuss generalizability of a CPM between the development
dataset (i.e., dataset used to develop the CPM) and an external
dataset (used to test the CPM). However, our discussion is also
applicable when evaluating a previously developed CPM on two

or more external datasets. Shifts are manifest differences between
datasets that satisfy two conditions: (1) the differences must not
be caused by sampling variability; and (2) the observed patterns
of differences that distinguish the datasets from each other
should be systematic. Typically, one emphasizes the patterns
of differences, but not the underlying mechanisms that cause
the differences. This is because multiple systematic or random
mechanisms may cause an observed pattern of differences
between datasets. For example, non-differential measurement
error may still cause systematic differences if it is dependent upon
the outcome.

Consider a CPM developed using a very large dataset that
uniformly represents the full distribution of the predictors and
outcomes that are measured without error. When the CPM is
tested on a dataset drawn from the same population as the
development dataset, with identical sampling weights, then there
is no dataset shift and any difference in performance of the CPM
between the two datasets depends upon the algorithm’s theory
(e.g., model complexity). Note that we are distinguishing between
random empirical differences in the dataset and differences
in the generating process and mechanisms. Specifically, we
do not consider realized empirical shifts in the distribution,
despite identical data generating processes and mechanisms
as dataset shift.

To elaborate, as shown in Figure 2, we hypothesize that no
shifts are expected between datasets when patients are sampled
from the same source population with identical sampling
weights, the predictors and the outcomes are measured using the
same processes, and there are no missing data, or in the presence
of missing data, there are no difference in types of missingness
and processes introducing missingness. To sample patients from
the same source population, the studies yielding the datasets
should have the same eligibility criteria to include and exclude
patients. These criteria pertain not only to patient characteristics
but also to criteria such as duration of follow-up, feasibility of
outcome measurement, etc.

However, no shift between datasets does not necessarily
mean identical measures of calibration or discrimination for a
CPM evaluated on them; model performance may still differ
because of random sampling variability or error. That is, we
distinguish classical sampling error and dataset shift. Consider a
relatively simple example. We simulated training and evaluation
of a CPM using three different methods including linear
regression, polynomial regression, and a multi-layer perceptron.
Parameters to replicate our simulation are shown in Table 1. To
generate sample datasets, we used a mixture of Gaussians as the
distribution of the covariate. For the linear regression model,
we used a random linear model as the posterior. For both the
polynomial regression model and the multi-layer perceptron,
we used random polynomial models as the posteriors. Given
a distribution of the covariate and a posterior, we uniformly
sampled a training dataset of 10,000 patients and 1,000 test
datasets of different sample sizes shown in Table 1. We trained
each model and computed the mean squared error (MSE) using
each test dataset. Using each set of MSEs from 1,000 test datasets,
we plot a Gaussian with their mean and standard deviation
and a histogram of their density. We expect the distribution
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FIGURE 2 | A framework to unify concepts related to generalizability of clinical prediction models. *This criterion is satisfied when there are no missing data in the

development and external datasets. Furthermore, when there are missing data, there is no difference in assumptions about the missingness between the datasets

(e.g., missing completely at random in both datasets), or there is no difference between the process that introduced missingness in each dataset.

of MSEs from the 1,000 test datasets will be normal, per the
central limit theorem, because the data are independently and
identically drawn from the same source and no dataset shifts
were introduced.

Figure 3 shows expected behavior of estimates of performance
of CPMs when there are no challenges to their generalizability.
Each set of MSEs necessarily followed a normal distribution as
the testing data was large enough for the MSEs from the MLP to
converge. It is well known that test datasets of sufficient sample
size are necessary to minimize bias in the estimate of algorithm
performance, depending onmodel complexity. In practice, CPMs
are evaluated in a few test datasets, unlike the 1,000 test datasets
used in our simulation. Differences in magnitude of prediction
error between a few test datasets does not necessarily indicate
better or worse performance of the CPM. Appropriate measures
of uncertainty and variation, such as employing confidence
intervals, are necessary to compare empirical MSEs. Finally, the
absence of dataset shifts does not guarantee generalizability of
a CPM. The size of the training dataset can influence both
whether there is appropriate information to fit complex models,
and without proper controls, the extent of overfitting. In these
cases, purely empirical reasons can result in poor practical

generalization to testing datasets, even when the testing and
training sets are sampled from the same source without any form
of dataset shifts.

Given our hypothesis (illustrated in Figure 2), and in the
simulation described earlier in this section, we define the full
distribution as the distribution that characterizes the joint
probability of predictors and outcomes in the target population.
The target population is a super-population, i.e. an unobserved
population distribution, in which the CPMs are intended to be
used. However, datasets are created from a subset of the target
population defined by the inclusion and exclusion criteria and
sampling weights in studies to develop and validate CPMs. We
refer to the conditional distribution that characterizes the joint
probability of predictors and outcomes in the subset of the
target population as a sub-distribution (i.e., distribution of a sub-
population). We suggest that varying the following components
in the process of creating datasets (shown in Figure 2) can
introduce shifts between datasets (development vs. external
datasets or among different external datasets) and challenge
generalizability of CPMs:

1. the sub-distributions that are available to be sampled;
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TABLE 1 | Hyper-parameters used in the simulation experiment.

Simulation Mechanism Hyper-

parameters

Value

Covariate

distribution

Mixture of Gaussian # of components 10

Mean (–5,5)†

Variance (0,1)†

Posterior

process

Random linear model

(f(x) = ax + b)

a (–2,2)†

b (–2,2)†

Random polynomial

model

Degree 5

Root range (–5,5)†

Models Linear regression model n - o

hyper-parameters

Polynomial regression

model

Degree 5

Multi-layer perceptron Hidden layers [100,100]

Activation

function

ReLU

Optimizer Adam

Maximum

iteration for

training

1000

Every variable is subject to a noise sampled from N(0,1).

† The value is sampled uniformly from the range. ReLU, Rectified Linear Unit.

2. the observed sub-distributions;
3. the measurement of predictors and/or outcomes;
4. the completeness of the observed sub-distributions.

Our framework in Figure 2 shows a proposed approach to
unify dataset shifts in the context of CPMs. Other details such
as model specification are beyond the scope of this narrative.
Furthermore, we consider the models to be correctly specified
and the challenge to generalization of the CPMs is limited to
dataset shifts.

The four ways to introduce dataset shift shown in Figure 2

correspond to the process by which datasets are created. CPMs
are meant to be used in a target population of patients. The
eligibility criteria to include and exclude patients from whom
data are collected define the source population, i.e., the subset of
the target population that is available to be sampled to create the
study population. Different source populations between datasets
introduce source component shift. The weights used to sample
patients from the source population define the study population.
Different sampling weights between datasets introduce sample
selection bias and source component shift. Predictors and
outcomes are measured in the study population. Different
processes of measuring the predictors and outcomes introduce
domain shift. Finally, the measured predictors and outcomes
may be incomplete, e.g., through missing data or inability to
measure certain predictors or outcomes. Different patterns of
incompleteness of data introduce source component shift.

The four ways to introduce dataset shift described above are
neither mutually exclusive nor tend to occur independently. In
fact, we conjecture that they co-occur more often than not.
For example, datasets collected from patient samples defined

by different eligibility criteria, i.e., source component shift, may
cause a covariate shift, prior probability shift, and concept shift.
In another instance, completeness of observations, as well as
measurement, may be associated with which sub-distributions
are observed (i.e., dependentmeasurement error andmissingness
at random). The interrelated nature of how dataset shifts may be
introduced means that a certain type of shift observed between
datasets may have been introduced in more than one way.
Investigation into the source of the dataset shift should address all
the ways in which it can be introduced. For example, a covariate
shift in the predictors may be because of differences in how they
are measured, or because patients from a different spectrum of
disease severity were sampled using new eligibility criteria. In
addition, if the process of creating two datasets differs in a certain
way (e.g., different measurement processes), then the datasets
should be investigated for more than one type of shift. Finally,
absence of empirical differences in distributions of predictors
or outcomes between datasets should not be misinterpreted as
absence of dataset shift as we have defined it. It is necessary
to characterize the datasets in terms of all four ways in which
datasets shifts can be introduced in order to understand potential
for the shifts.

Table 2 shows signaling statements to characterize a dataset
relative to another dataset. The signaling statements correspond
to the four ways to introduce dataset shifts shown in Figure 2.
Of note, the statements on measurement and completeness apply
to each predictor and outcome in the dataset. The evaluation for
each statement may be described either as a binary response or as
agreement or disagreement on any Likert scale. While we do not
advocate any one evaluation approach, this choice may be guided
by evidence on inter-rater reliability from future research.

Explaining the causes of the dataset shifts in the terms of
the source of the data and the data generating mechanisms
and processes allows for improving the explainability of CPMs.
Understanding how datasets are different from each other
is critical to detect and explain failure to reproduce or
transport, i.e., generalize CPMs. Analysis of sensitivity of a
CPM to dataset shifts described in terms of differences in
patient populations, measurement, and missing data facilitates
explaining the operating characteristics of the CPM.

6. CONCLUSION

In this manuscript we surveyed dataset shifts specifically
connecting the ideas in statistics and epidemiology. We
believe that unifying concepts in clinical research and ML
provides a standardized framework on generalizability of
CPMs. An important distinction we would emphasize is the
difference between observed data differences and conceptual
differences in data generating processes and mechanisms.
This is similar to the distinction between population and
sample characteristics that plague language in the statistical
sciences. As an example, the phrase "the data is normally
distributed" could describe the data generating mechanism
or properties of the observed data. We prefer to define
dataset shift as it relates to the processes underlying the data
generation in lieu of the sample characteristics. Particularly,
absence of empirical differences between datasets does not
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FIGURE 3 | Simulation to illustrate model performance in external datasets with no dataset shifts. 1. The expectation of the estimate of algorithm performance in a

test dataset is the mean of a distribution of estimates obtained by evaluating the algorithm on multiple test datasets. In other words, a difference in the magnitude of

the error in the test and development datasets does not necessarily indicate poor or better algorithm performance. 95% confidence intervals of the estimate in a test

dataset, which indicate the width of true distribution of estimates, are necessary. 2. Test datasets of sufficient sample size are necessary to minimize bias in the

estimate of algorithm performance, depending on model complexity.
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TABLE 2 | Signaling statements to characterize datasets for generalizability of clinical prediction models.

Ways to introduce dataset

shifts

Causes of dataset

shifts

Signaling statements to evaluate potential for shifts between different datasets

The sub-distributions that are

available to be sampled are

different

Source component

shift

• The process for selecting patients from the target population into the source population

for the datasets relied upon the same inclusion and exclusion criteria.

The observed sub-distributions are

different

Sample selection bias

Source component

shift

• The process for selecting patients into the datasets (sampling weights) resulted in different

proportions of sub-populations from a similar source population.

• The association between predictors and the outcomes is likely to differ between the

sub-populations defined in terms of a variable used for sampling patients from the source

population.

The errors or biases affecting the

measurement of predictors and/or

outcomes are different

Domain shift • The processes introducing error into measurement of the predictors in each dataset are

identical.

• The processes introducing error into measurement of the outcomes in each dataset are

identical.

• The definition of the outcomes in each dataset does not include information from the

predictors.

The completeness of the observed

sub-distributions is different

Source component

shift

• Each predictor and outcome in the datasets is either a complete observation (i.e., no

missingness) or it is incomplete with missingness completely at random.

• One or more of the same predictors or the same outcomes in the datasets are incomplete

with missingness at random.

• One or more of the same predictors or the same outcomes in the datasets are incomplete

with missingness not at random.

• The process introducing missingness into each predictor or outcome with missing data is

identical among the datasets.

All three basic types of dataset shifts, i.e., covariate shift, prior probability shift, and concept shift, may result from each way to introduce dataset shifts shown in this table.

necessarily rule out one or more kinds of dataset shifts. Our
proposed framework enables characterization of datasets in
terms of ways to introduce shifts and therefore, assess the
potential for dataset shifts. In turn, characterizing datasets
in terms of factors that affect generalizability of CPMs can
allow an explanation of failure modes of CPMs and their
operating characteristics.
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