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ABSTRACT
Purpose: The microbiome is considered an environmental factor that contributes to the 
progression of several neurodegenerative diseases. However, the association between micro-
biome and glaucoma remains unclear. This study investigated the features of the oral 
microbiome in patients with glaucoma and analyzed the microbiome biomarker candidates 
using a machine learning approach to predict the severity of glaucoma.
Methods: The taxonomic composition of the oral microbiome was obtained using 16S rRNA 
gene sequencing, operational taxonomic unit analysis, and diversity analysis. The differentially 
expressed gene (DEG) analysis was performed to determine the taxonomic differences between 
the microbiomes of patients with glaucoma and the control participants. Multinomial logistic 
regression and association rule mining analysis using machine learning were performed to 
identify the microbiome biomarker related to glaucoma severity.
Results: DEG analysis of the oral microbiome of patients with glaucoma revealed significant 
depletion of Lactococcus (P = 3.71e−31), whereas Faecalibacterium was enriched (P = 9.19e−14). 
The candidate rules generated from the oral microbiome, including Lactococcus, showed 96% 
accuracy for association with glaucoma.
Conclusions: Our findings indicate microbiome biomarkers for glaucoma severity with high 
accuracy. The relatively low oral Lactococcus in the glaucoma population suggests that 
microbial dysbiosis could play an important role in the pathophysiology of glaucoma.
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Introduction

Glaucoma is a progressive optic neuropathy character-
ized by the degeneration of the retinal ganglion cells and 
their axons, with a corresponding visual field defect [1]. 
Intraocular pressure (IOP) is a major risk factor for 
glaucoma development. A high IOP exerts tremendous 
stress and strain on the lamina cribrosa, consequently 
blocking the axoplasmic flow [2]. However, glaucoma-
tous axon loss also occurs in individuals with normal 
IOP, and the risk of glaucoma development might differ 
even in individuals with the same IOP; thus, glaucoma 
should be assessed as a complex neurodegenerative dis-
ease. Candidate factors associated with glaucoma patho-
genesis include aging, inflammation [3], and immune 
responses, including heat shock proteins or local inflam-
matory responses [4–8]. As progressive retinal ganglion 
cell loss is a pathophysiological feature in patients, glau-
coma shares signs and symptoms with other neurode-
generative diseases, including Alzheimer’s disease [9]. 
A population-based cohort study reported a significant 
association of glaucoma with Alzheimer’s disease, 

suggesting a potential link between neurodegenerative 
brain diseases and retinal neurodegenerative diseases 
[10,11].

Technological advances in next-generation sequen-
cing (NGS) and bioinformatics tools have identified an 
association of human microbiota with neurodegenerative 
diseases and autoimmunity. The altered human micro-
biome, or microbial dysbiosis, can contribute to the 
pathogenesis of several diseases [12]. Although the ocular 
microbiome is related to eye diseases, non-ocular micro-
biome such as an oral microbiome could influence the 
pathogenesis of eye disease [3,6,13,14]. The microbiota- 
gut-brain axis involves a cross-talk between the gut and 
microbiota; enteric bacteria enters the circulation and 
crosses the blood-brain barrier, or to penetrates the 
brain via the vagus nerve [15,16]. Since the oral micro-
biome is a part of the gut microbiome family and 5% of 
oral species are found in the intestine, the microbiome- 
gut-retinal axis may have clinical importance. A previous 
study that investigated the relationship between micro-
biota and glaucoma reported high oral bacterial loads, 
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such as Streptococcus species, in patients with glaucoma 
[7]. To date, only a few studies have investigated the 
influence of the gut microbiome on glaucoma. 
Therefore, this study aimed to investigate the differences 
in the oral microbiome in patients with glaucoma based 
on the microbiota-gut-retinal axis, and identify the can-
didate microbiome biomarkers related to glaucoma 
pathogenesis and severity using machine learning pre-
diction models.

Material and methods

Participants

This multicentric study was conducted by researchers 
from Veterans Health Service (VHS) Medical Center, 
Daegu Veterans Hospital, Pusan National University 
Yangsan Hospital, and Pusan National University 
Hospital. The study protocol was approved by the 
Institutional Review Board of each participating cen-
ter. The study was performed in accordance with the 
tenets of the Declaration of Helsinki and written 
informed consent was obtained from all participants 
before their enrollment.

During the study period, the research team 
enrolled patients with glaucoma who satisfied the 
inclusion criteria. Glaucoma was defined as having 
glaucomatous optic neuropathy, such as rim thin-
ning, notching, retinal nerve fiber layer (RNFL) 
defect, or glaucomatous visual field defects. The con-
trol group was defined as participants with 1) a visual 
acuity of 20/40 or better; and/or those without 2) 
a glaucomatous optic nerve head or RNFL defect, 
visual field defect, or other retinal diseases; or 3) 
a history of IOP-lowering treatment. Participants 
with a history of ocular surgery (except uncompli-
cated cataract surgery), history of ocular trauma, or 
other diseases affecting the visual field (e.g. diabetic 
retinopathy) were excluded. Participants with 
a dental issue, those with probiotics use within the 
last 1 month, those with upper respiratory infection 
symptoms within the last two weeks, and those taking 
antibiotics or using topical antibiotic eye drops 
within the last one month were additionally excluded.

Sample collection and DNA extraction

The oral microbiome was collected by swabbing the 
right and left buccal surfaces and under the tongue 
four times using the Gene kit (Daeil pharm company, 
Korea) after washing the oral cavity with clean drinking 
water. Metagenomic DNA was individually extracted 
from swabs using the GeneAll ExgeneTM Blood/Clinic/ 
Cell SV mini kit (GeneAll, Seoul, Korea) according to 
the manufacturer’s instructions. The DNA was stored at 
−80°C following DNA extraction, and the quantity and 

quality of the isolated DNA were measured using 
Trinean Dropsense 96 (Unchained Labs, Pleasanton, 
CA, USA) and PicoGreen (Thermo Fisher Scientific, 
Waltham, MA, USA).

Sequencing of 16S rRNA gene amplicon

A 16S rRNA sequencing library was generated 
according to the 16S metagenomic sequencing library 
preparation protocol (Illumina, San Diego, CA, 
USA), targeting the V3 and V4 hypervariable regions 
of the 16S rRNA gene, which were selected based on 
the results reported previously [17]. The KAPA HiFi 
HotStart ReadyMix (Kapa Biosystems, Wilmington, 
MA, USA) and Agencourt AMPure XP system 
(Beckman Coulter Genomics, Brea, CA, USA) were 
used for polymerase chain reaction (PCR) amplifica-
tion and amplicon purification, respectively. The 
Illumina adapter overhang nucleotide sequences 
were added to the gene-specific sequences. The fol-
lowing full-length primer sequences were used to 
target these adapters:

16S Amplicon PCR Forward Primer:
5ʹ TCGTCGGCAGCGTCAGATGTGTATAAGA 

GACAGCCTACGGGNGGCWGCAG
16S 3ʹ
Amplicon PCR Reverse Primer
5ʹ GTCTCGTGGGCTCGGAGATGTGTATAAGA 

GACAGGACTACHVGGGTATCTAATCC 3ʹ
After magnetic bead-based purification of the PCR 

products, a second PCR with a limited cycle was 
performed using primers from the Nextera XT 
Index Kit (Illumina). Subsequently, the purified 
PCR products were visualized using gel electrophor-
esis and quantified with a Qubit dsDNA HS Assay Kit 
(Thermo Fisher Scientific) on a Qubit 3.0 fluorom-
eter. The samples were pooled and assayed using 
Agilent 2100 bioanalyzer (Agilent) for pre- 
sequencing quality analysis. The previously generated 
sequencing libraries were quantified by qPCR using 
the CFX96 Real-Time System (Bio-Rad, Hercules, 
CA, USA). After normalization, the libraries were 
sequenced on the MiSeq system (Illumina) with 300 
bp paired-end reads.

Pre-processing

The adaptor sequences were removed from the origi-
nal paired-end reads using CutAdapt v1.11. Next, 
merged reads were generated using the adaptor- 
trimmed paired-end reads using FLASH v1.2.11. 
The low-quality merged reads were filtered according 
to the following criteria: reads that had ≥2 ambiguous 
nucleotides, reads with average quality score <20, and 
reads with length <300 bp after trimming of low- 
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quality bases. Finally, potential chimeric reads were 
removed using UCHIME v4.2.40 [18].

Calculation of Operational Taxonomic Units 
(OTUs) and diversity analysis

The pre-processed reads from each sample were used to 
calculate the number of OTUs, which were determined 
by clustering the sequences from each sample with a 97% 
sequence identity cut-off using QIIME software (v.1.9.0, 
www.quiime.org) [19,20]. The taxonomic abundance 
was counted with Ribosomal Database Project (RDP) 
Classifier v1.1, with a confidence threshold of 0.8 derived 
from the pre-processed reads of each sample [21]. The 
microbial composition in the samples was normalized 
using the value calculated by a division between the 
taxonomic abundance count and the number of pre- 
processed reads for each sample. Consensus sequences 
were clustered using cd-hit v4.6 using the following 
parameters – identify, >99%; and coverage, >80% – and 
then, aligned with the reference sequences from the 
National Center for Biotechnology Information (NCBI) 
database using the Megablast algorithm. Finally, taxo-
nomic profiling was performed for the assembled gen-
ome using NCBI taxonomy information. The alpha- 
diversity for observed OTUs and Shannon index within 
the samples were calculated. Principal component ana-
lysis (PCoA) was performed using the result from the 
beta-diversity for the glaucoma and control groups, as 
well as for subgroup analysis.

Machine learning-based identification of 
microbiome biomarker for glaucoma severity

Machine learning-based identification of glaucoma 
biomarkers consisted of three steps: significant 
taxon level identification by Random Forest (RF), 
identification of a significant taxon by Tag Count 
Comparison (TCC), and rule mining of the micro-
biome. RF model-based machine learning was per-
formed with the R software (R Foundation for 
Statistical Computing, Vienna, Austria) using ‘ranger’ 
package [22]. Within each run, the number of trees 
(num.tree) was set to build the RF model [23–25]. 
The number of variables/taxa that could be selected 
in each splitting node (mtry) was set to a range of 
one-tenth of the maximum taxon number at each 
taxonomic level. The Gini index evaluated the impor-
tance of each taxon, and the prediction accuracy was 
determined by TruePostive TPð ÞþTrueNegative TNð Þ

TPþTNþFalsePositiveþFalseNegative . Hundred 
runs were performed for each mtry parameter within 
each taxonomic hierarchy. We calculated the signifi-
cant taxa using TCC (http://bioconductor.org/), 
which provides functions for differential expression 
analysis of genes (DEG) with normalization and 

multi-group comparison [25]. With TCC analysis, 
significant oral microbiome differences were analyzed 
in the glaucoma group, compared to the control 
group, and in the primary open-angle glaucoma 
(POAG) subgroups, compared to the control group.

Before rule mining, a multinomial logistic regres-
sion (MLR) was performed to analyze the significance 
of the identified microbiome biomarker in patients 
with glaucoma based on the clinical factors, such as 
age, baseline IOP level, RNFL thickness (assessed using 
optical coherence tomography [OCT]), and mean 
deviation value in the Humphrey visual field. Patients 
aged <60 years comprised the younger age group, and 
those ≥60 years comprised the older age group. The 
baseline IOP cut-off was 20 mmHg; normal baseline 
IOP, <20 mmHg; and high baseline IOP, ≥20 mmHg. 
Although arbitrary, this value is acceptable for statis-
tical processing since the IOP criterion for normal- 
tension glaucoma is based on a cut-off of 21 mmHg, 
and the mean IOP of Asians is 1–2 mmHg lower than 
the other ethnicities. For glaucoma severity, the glau-
coma group was divided into ≥80 μm and <80 μm 
subgroups based on the RNFL thickness. For func-
tional glaucoma severity, the glaucoma group was 
stratified according to Anderson’s glaucoma stage cri-
teria: ≥−6.0 dB, −6.0 to −12.0 dB, and <−12.0 dB.

The classification based on the predictive associa-
tion rules (CPAR) algorithm was used to generate 
a complete ruleset [24]. This algorithm, which uses 
information metrics to generate rules, is more suited 
for bioinformatics applications than conventional 
support-confidence based measures for market basket 
data analysis [26]. The Laplace accuracy evaluated the 
accuracy of the CPAR-derived rules. Using rule r, the 
Laplace accuracy is defined as below:

Laplace accuracy rð Þ ¼
Ng þ 1ð Þ

Ntotalþmð Þ

where m, number of target groups; Ntotal, total 
number of examples that satisfy the body of the 
rules; and Ng, number of examples that belong to 
the predicted target group. Only the POAG subgroup 
was used for subgroup analysis using MLR and CPAR 
because of insufficient sample size in secondary glau-
coma (SG) group.

Data analyses

All the data analyses were performed using the 
R Statistical Package, Version 3.6.2 (R Foundation 
for Statistical Computing, Vienna, Austria). 
Statistical significance was set at P < 0.05. For multi-
ple comparison tests in DEG analysis, the false dis-
covery rate was controlled using the Benjamini– 
Hochberg step-up procedure [27,28].
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Results

Patient characteristics and metagenomic data

Ninety-six patients with glaucoma and 25 controls 
were recruited from March 2019 to December 2019. 
The glaucoma group had 62 POAG and 34 SG 
patients (SG cases were mostly uveitic glaucoma). 
There was no difference in age and sex between 
patients with glaucoma and the normal participants 
(Table 1). In the glaucoma groups, the baseline IOP 
was 18.49 mmHg, which was higher than that 
(13.76 mmHg) of the normal participants. RNFL 
thickness, a structural indicator of glaucoma, was 
low in glaucoma patients, and the visual field index, 
a functional indicator, was moderately advanced 
glaucoma. The number of the average lead counts/ 
sample of the control group was higher than that of 
the glaucoma group (P = 0.038). Results of machine 
learning using the RF method showed that genus 
level identification was significant in 193 mtry (accu-
racy, 0.5714–0.7429) than those identified based on 
family, order, and phylum, and Lactococcus had the 
highest Gini indices (Figure 1, Table 2).

Diversity analysis in glaucoma patients and 
control subjects

On comparisons of the alpha-diversity of oral micro-
biome between glaucomatous and control subjects, 
the observed OTUs (P = 0.003 and P = 0.011, respec-
tively) and the Shannon index (P = 6.1e−6 and 
P = 3.6e−5, respectively; Figure 2) were significantly 
higher in the control participants than that in the 
glaucoma group and glaucoma subgroups. PCoA of 
beta-diversity for the oral microbiome showed that 
the microbial clusters in the glaucoma and control 
groups differed in their taxonomy (Figure 3). On 
subgroup analysis, the microbial clusters in POAG 
and SG subgroups were similar, but that in the con-
trol group was different. The beta-distance calculated 
from the RDP classifier showed significant differ-
ences, but the beta-distance from the NCBI method 

was not different between the glaucoma and control 
groups (P < 2.2e−16, P = 0.52, respectively; Figure 4), 
whereas the beta-distance of subgroup analysis 
showed a significant difference in the oral micro-
biome (P < 2.2e−16).

DEG analysis in glaucoma group and subgroup

For TCC-based taxon significance analysis, the MA 
plot revealed the different quantities of some species 
and the DEG analysis showed various taxa such as 
Lactococcus and Atopobium were significantly 
depleted (P = 3.71e−31, P = 6.69e−21, respectively), 
whereas Faecalibacterium was enriched in the glau-
coma group (P = 9.19e−14) compared with control 
participants (Figure 5, Supplementary Table S1). On 
subgroup analysis, the volcano plot of the oral micro-
biome showed that Lactococcus, Candidatus 
Pelagibacter, and Isobaculum were significantly 
depleted P = 1.67e−20, P = 9.37e−20, and 
P = 1.43e−18, respectively, whereas Faecalibacterium 
and Lachnospiracea incertae sedis were enriched 
(P = 7.21e−16 and P = 6.02e−12, respectively) in the 
POAG subgroup compared with the control group 
(Figure 6 and Supplementary Table S2).

MLR and association rules mining analysis for 
biomarkers of glaucoma

The Lactococcus, Candidatus Pelagibacter, and 
Atopobium were the significant taxa for factors age 
and baseline IOP. In addition, they were significantly 
associated with glaucoma severity based on RNFL 
thickness and visual field index (Table 3). 
Association rule generated by CPAR showed two 
‘glaucoma’ rules and four ‘normal’ rules generated 
with a high accuracy in the 0.9–0.96 range (Table 
4). ‘Glaucoma’ rule 1 is the most accurate, which 
states that if the microbial composition is 
Atopobium ≤0.347, Candidatus Pelagibacter ≤0.001, 
Endobacter ≤0.015, and Lactococcus ≤0.013, the sam-
ple patients is glaucomatous (accuracy, 96.0%). 

Table 1. Demographic and baseline characteristics of glaucoma subjects.

Variables
Glaucoma 

n = 96
Control subject 

n = 25 P-value*

Age, years 61.48 ± 13.08 62.68 ± 1.73 0.385
Male/Female 66/30 18/7 0.753
BCVA, logMAR 0.21 ± 0.32 0.00 ± 0.20 <0.0001
Diagnosis, n (%)
POAG/Secondary glaucoma 62 (64.58)/34 (35.42) -
Glaucoma medication period (yr) 2.74 ± 3.09 -
Baseline IOP, mmHg 18.49 ± 6.60 13.76 ± 1.01 <0.0001
RNFL thickness, µm 73.44 ± 14.52 105.36 ± 5.62 <0.0001
Visual field (MD), dB −8.93 ± 8.44 0.03 ± 0.17 <0.0001
Visual field (VFI), % 76.97 ± 26.52 99.84 ± 0.47 <0.0001
Number of lead counts/sample 77,140.05 ± 23,087.21 83,310.64 ± 8,812.47 0.038

P-value* was calculated by independent T-test for continuous variables, Chi-square test was performed in case of numeric variable 
IOP: intraocular pressure, BCVA: best-corrected visual acuity, logMAR: logarithm of the minimum angle of resolution, MD: mean deviation. VFI: 

visual field index, RNFL: retinal nerve fiber layer, POAG: primary open angle glaucoma 
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Similarly, ‘glaucoma’ rule 2 states that if the composi-
tion is Lactococcus, ≤0.013, the patient is ‘glaucoma’ 
(accuracy, 90.0%). Contrarily, ‘normal’ rule 1 states 
that if the composition is Candidatus Pelagibacter, 
0.001–0.014 and Lactococcus, 0.013–0.889, the patient 
is ‘normal’ (accuracy, 92.0%).

MLR and association rules mining analysis for 
biomarkers of POAG

In patients with POAG aged <60 years, Lactococcus 
was the significant taxon, whereas Lactococcus, 
Candidatus Pelagibacter, and Atopobium were the 

Figure 1.Metagenome analysis using machine learning and statistical models.
a: Schematic of machine learning for the study of algorithms and statistical models [23–25] TCC, tag count comparison; CPAR, Classification 
based on predictive association rules

b: Using Random Forest method, the significant taxa and genus levels in the oral microbiome were identified.

c: The top 10 species of the oral microbiome as identified from the Ribosomal Database Project (RDP) Data Base; Lactococcus was the most 
significant species in glaucoma patients and control subjects.
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significant taxa in patients with POAG aged 
≥60 years (Table 5). In the POAG group with base-
line IOP <20 mmHg, Lactococcus, Candidatus 
Pelagibacter, and Atopobium were the significant 

taxa, whereas Lactococcus and Atopobium were the 
significant taxa in the POAG group with baseline 
IOP≥20 mmHg (Table 5). According to glaucoma 
severity based on RNFL thickness and visual field 

Table 2. Gini index for accuracy condition in genus levels using random forest machine learning.
Taxon Level Ntree Ratio mtry Times Accuracy 95% CI P-Value†

*genus 200 0.1 193 100 0.5714 ~ 0.7429 0.3935 ~ 0.8751 2.81e−08 ~ 0.0003783
genus 200 0.2 385 100 0.5714 ~ 0.7143 0.3935 ~ 0.8536 1.869e−07 ~ 0.0003783
genus 200 0.3 578 100 0.6 ~ 0.7143 0.4211 ~ 0.8536 1.869e−07 ~ 0.0001039
genus 200 0.4 771 100 0.6 ~ 0.7143 0.4211 ~ 0.8536 1.869e−07 ~ 0.0001039
genus 200 0.5 964 100 0.5714 ~ 0.7143 0.3935 ~ 0.8536 1.869e−07 ~ 0.0003783
genus 200 0.6 1156 100 0.6 ~ 0.7143 0.4211 ~ 0.8536 1.869e−07 ~ 0.0001039
genus 200 0.7 1349 100 0.6 ~ 0.6857 0.4211 ~ 0.8315 1.089e−06 ~ 0.0001039
genus 200 0.8 1542 100 0.5714 ~ 0.7143 0.3935 ~ 0.8536 1.869e−07 ~ 0.0003783
genus 200 0.9 1734 100 0.6 ~ 0.7143 0.4211 ~ 0.8536 1.869e−07 ~ 0.0001039
genus 200 1 1927 100 0.5714 ~ 0.7429 0.3935 ~ 0.8751 2.81e−08 ~ 0.0003783

*Best accuracy condition in genus level, P-Value† was calculated by machine learning using random forest model 
95% CI: confidential Interval 

Figure 2.Comparison of alpha-diversity in glaucoma patients as compared with the control subjects.
(a) Observed OTUs was higher in the control group than in the glaucoma (P = 0.003). It was also higher in the control group than in the two 
subgroups (P = 0.011)

(b) Shannon index was higher in the control group than in the glaucoma group (P = 6.1e−06). It was also higher in the control group than in 
the two subgroups (P = 3.6e−05). POAG, primary open-angle glaucoma; SG, secondary glaucoma
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index in the POAG group, Lactococcus, Candidatus 
Pelagibacter, and Atopobium were the significant 
taxa. CPAR-derived association rule shows one 
‘POAG’ rule and four ‘normal’ rules derived with 
high accuracy (Table 6). The ‘POAG’ rule 1 states 
that if the composition is Atopobium, ≤0.433; 
Candidatus Pelagibacter, ≤0.001; Endobacter, 
≤0.015; and Lactococcus, ≤0.015, the patient has 
POAG (accuracy, 93.0%). The ‘normal’ rule 1 states 
that if the composition is Candidatus Pelagibacter, 
0.001–0.014, the patients is ‘normal’ (accu-
racy, 93.0%).

Discussion

In this study, we demonstrated that the oral micro-
biome in patients with glaucoma was different from 
that of the elderly without glaucoma, and identified 
candidate microbiome biomarkers for glaucoma 
severity with high accuracy using machine learning. 
Our study findings are consistent with those of pre-
vious studies in that we suggested a possible relation-
ship between microbiome and glaucoma [3–5,7,29]. 
This relationship can be interpreted in several ways. 
As an immunity problem, the microbiome acts as 
a possible antigen, which may activate T-helper cell 
development and increased the production of anti-
bodies. The trabecular meshwork cells can recognize 
the bacterial antigen, a pathogen-associated molecu-
lar pattern, such as the toll-like receptor, to generate 

imbalanced signaling of inflammation [30]. Although 
this mechanism is not fully understood, it is consid-
ered that this cascade results in the anterior chamber- 
associated immune deviation, which induces immune 
cell activation as well as homing to the ocular 
region [29].

A previous study on the association of glaucoma 
and the oral microbiome has shown that altered 
commensal microbiome induces changes in cytokine 
signaling and complement activation [7]. In addition, 
one possible mechanism by which the microbiome 
could aid the management of glaucoma is by mod-
ulating brain-derived neurotrophic factor levels, as 
shown in an animal model [31]. From the perspective 
of neuroprotection, microbiome research suggests 
that the pathogenesis of glaucoma may be identified. 
According to the study by Astafurov et al., oral bac-
terial load, such as of Streptococcus spp., in glaucoma 
cases was increased compared with the control [7]. 
However, in our study, the bacterial diversity was not 
significantly high in glaucoma patients, but there was 
a significant difference in the composition of the 
bacteria, such as Faecalibacterium, which was over-
expressed in patients with glaucoma. 
Faecalibacterium modulated the butyrate metabolite 
in the gut, which was known to be related to anti- 
inflammatory effect [32]. Mental health disease such 
as major depression negatively correlated with 
Faecalibacterium, which was different in Alzheimer's 
disease and Parkinson’s disease [32]. However, it 

Figure 3.Differences in the oral microbiome of glaucoma patients compared with control subjects using principal component 
analysis for beta-diversity.
Beta-diversity was calculated in two ways – RDP and NCBI library. PCoA shows the different clusters in glaucoma vs. control groups, and POAG 
and SG subgroups vs. control group.

RDP, Ribosomal Database Project Classifier; NCBI, National Center for Biotechnology Information; POAG, Primary open-angle glaucoma; SG, 
secondary glaucoma
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should be judged in consideration of the overall 
microbiome composition. Additionally, another 
study on the intestinal microbiota profile and 
POAG showed that Megamonas and Bacteroides 
load was decreased in POAG [33]. The study found 
negative correlations between visual acuity and 
Blautia and between the mean deviation of visual 
field and Faecalibacterium, and a positive correlation 
between RNFL thickness and Streptococcus. This 
study also showed that the gut microbiome might 
differ between glaucoma and control subjects, which 
is consistent with the results of our study, although 
taxa expression level was different due to differences 
in the targeted gut microbiome.

The reduced Lactococcus load in the oral micro-
biome suggests that dysbiosis in the microbiota 

could play a role in the pathophysiology of glau-
coma and can be used as a surrogate marker for 
glaucoma. It may be due to competition with other 
taxa in the oral microbiome or decreased antimicro-
bial activity of H2O2 produced by downregulation of 
the lactic acid bacteria. Gastrointestinal permeability 
is altered depending on diet and microbiota. In this 
regard, diet enriched with a high sugar content may 
cause a decrease in the number of beneficial 
microbes [34], which may directly or indirectly 
affect the development of glaucoma. The carbohy-
drate ingestion in POAG patients showed systemic 
autonomic dysregulation [35], whereas ketogenic 
diets and modified gut microbiome and permeabil-
ity may play a role in neuroprotection in glaucoma 
patients [36,37].

Figure 4.Beta-Diversity differences in the microbiome of glaucoma patients and control subjects.
Beta-diversity (estimated by RDP method) was significantly higher in glaucoma group than in control groups (P < 2.2e−16); however, the beta- 
diversity using NCBI was not different between control and glaucoma groups (P = 0.52).

RDP, Ribosomal Database Project Classifier; NCBI, National Center for Biotechnology Information; POAG, Primary open-angle glaucoma; SG, 
secondary glaucoma

8 B. W. YOON ET AL.



Figure 5.MA and volcano plots generated using analysis with tag count comparison for oral microbiome of glaucoma patients 
and control subjects.
a: MA plot of glaucoma vs control subjects (DE number of the upper panels 166 vs. that of the lower panels 171; P < 0.05)

b: Volcano plot of DEG in glaucoma vs control subjects Lactococcus and Candidatus Pelagibacter were downregulated in the glaucoma group 
DEG, differential expression of genes
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Figure 6.MA and volcano plots generated using subgroup analysis with tag count comparison for oral microbiome in the POAG 
subgroups compared with the control group.
a: MA plot of POAG vs control subjects (DE number of the upper panels 175 vs. that of the lower panels 142; P < 0.05)

b: Volcano plot of DEG in POAG vs control subjects DEG, differential expression of genes; POAG, primary open-angle glaucoma
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Several similarities may exist in glaucoma and neu-
rodegenerative disease, as the optic nerve is a part of the 
central nerve system [38,39]. Hence, the microbiome 
study of Parkinson’s disease and Alzheimer’s disease 
may provide new insights into glaucoma research, sug-
gesting that microbial dysbiosis can induce or exacer-
bate the disease via toxic effects from direct invasion or 
epigenetic changes [40]. One example of commensal 
pathogenic bacteria is H. Pylori, which has been asso-
ciated with the risk of several neurodegenerative dis-
eases, including Parkinson’s disease, Alzheimer’s 
disease, and POAG [41–43].

A major strength of our study is the inclusion of 
a relatively large number of glaucoma samples from 

multiple centers using metagenomic analysis. In addition, 
our study used recently developed bioinformatics tech-
nology and machine learning for analysis. However, there 
are several limitations to this study. First, it was difficult to 
determine causality in this study; we could not determine 
whether the microbiome biomarker alone is a bystander 
or culprit. This study is worthwhile as an early study to 
suggest biomarkers that could be related to the identifica-
tion of the severity of glaucoma. Additional verification is 
needed using cell-based and animal model studies for 
mechanisms. The validation study by PCR would provide 
for more reliable results, although the NGS technology 
has improved. Another limitation was the small sample 
size of the control group compared to that of glaucoma 

Table 3. Multinomial logistic regression analysis of factors related taxon in glaucoma group compared with control subjects.

coefficient SD
Odd 
ratio P-value coefficient SD

Odd 
ratio P-value*

Taxa Age < 60 Age ≥ 60
Lactococcus −210.481 55.386 3.88e−92 0.0001 −172.977 45.470 7.53e−76 0.0001
Endobacter 0.223 1.750 1.25e+00 0.8984 −27.032 15.330 1.82e−12 0.0778
Rikenella 89.032 237.423 4.63e+38 0.7077 −80.714 338.227 8.83e−36 0.8114
Candidatus 

Pelagibacter
−560.729 205.488 3.01e−244 0.0064 −921.479 259.819 0.00e+00 0.0004

Atopobium −3.561 1.322 0.02842 0.0071 −4.122 1.244 0.01620 0.0009
Baseline IOP < 20 mmHg Baseline IOP ≥ 20 mmHg

Lactococcus −177.477 45.896 8.37e−78 0.0001 −191.253 52.588 8.70e−84 0.0003
Endobacter −13.841 12.697 9.75e−07 0.2757 0.094 1.730 1.10e+00 0.9567
Rikenella 14.974 47.738 3.18e+06 0.7538 33.475 46.674 3.45e+14 0.4732
Candidatus 

Pelagibacter
−509.789 171.543 3.99e−222 0.0030 −319.291 145.031 2.16e−139 0.0277

Atopobium −4.134 1.252 1.60e−02 0.0010 −3.561 1.310 2.84e−02 0.0065
RNFL thickness ≥ 80 μm RNFL thickness < 80 μm

Lactococcus −207.229 53.820 1.00e−90 0.0001 −173.639 45.928 3.89e−76 0.0002
Endobacter −13.957 15.484 8.68e−07 0.3674 −0.536 1.711 5.85e−01 0.7542
Rikenella −38.900 295.676 1.28e−17 0.8953 61.128 142.806 3.53e+26 0.6686
Candidatus 

Pelagibacter
−679.649 250.852 6.80e−296 0.0067 −782.464 226.057 0.00e+00 0.0005

Atopobium −4.731 1.622 8.81e−03 0.0035 −3.545 1.118 2.89e−02 0.0015
coefficient SD Odd 

ratio
P-value

Early glaucoma Moderate glaucoma Advanced glaucoma
Lactococcus −155.716 46.085 2.36e−68 0.0007 −231.783 65.006 2.18e−101 0.0004 −218.896 60.662 8.60e−96 0.0003
Endobacter −25.875 17.045 5.79e−12 0.1290 −6.534 10.847 1.45e−03 0.5469 0.488 1.756 1.63e+00 0.7813
Rikenella −35.096 155.035 5.73e−16 0.8209 32.121 63.202 8.91e+13 0.6113 43.848 62.576 1.10e+19 0.4835
Candidatus 

Pelagibacter
−1695.298 445.654 0.00e+00 0.0001 −1370.249 457.311 0 0.0027 −1342.329 430.780 0 0.0018

Atopobium −5.753 1.710 3.17e−03 0.0008 −15.354 5.126 2.15e−07 0.0027 −2.135 0.941 1.18e−01 0.0232

P-value* was calculated using multinomial logistic regression analysis 
IOP: intraocular pressure, RNFL: retinal nerve fiber layer, SD: standard deviation 

Table 4. Association rules generated by association rule mining for glaucoma using oral microbiome data.
Glaucoma rules

Rule 1 Atopobium = [1] Candidatus Pelagibacter = [1] Endobacter = [1] Lactococcus = [1] → Glaucoma 0.96
Rule 2 Lactococcus = [1] → Glaucoma 0.9

Normal rules
Rule 1 Candidatus Pelagibacter = [2] Lactococcus = [2] → Normal 0.92
Rule 2 Lactococcus = [2] → Normal 0.85
Rule 3 Candidatus Pelagibacter = [2] → Normal 0.7
Rule 4 Atopobium = [2] → Normal 0.65

Rule explanations (Rule 1)
Original rule Atopobium = [1] Candidatus Pelagibacter = [1] Endobacter = [1] Lactococcus = [1] → Glaucoma 0.96
Rule explanations If the compositions of Atopobium ≤ 0.347 Candidatus Pelagibacter ≤ 0.001 Endobacter ≤ 0.015 Lactococcus ≤ 0.013; the sample is 

Glaucoma with 96.0% accuracy
Applied category for rule generation

Category Atopobium Candidatus Pelagibacter Endobacter Lactococcus Rikenella

[1] ≤ 0.347 ≤ 0.001 ≤ 0.015 ≤ 0.013 ≤ 0.001
[2] 0.347–2.908 0.001–0.014 0.015–1.106 0.013–0.889 0.001–0.159

CPAR (classification based on predictive Association Rules) algorithm used [24]. 
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patients. A large number of control subjects (over 50 
control subjects) and other replication cohorts will be 
required for further validation. The sample size for meta-
genomics research is usually 30; as such, our sample size 
was not very small. However, larger-scale prospective 
studies in the future are necessary to support our study 
results. This study was conducted as a multi-center study, 
and it could potentially be biased by the inclusion of 
people living at various locations of Korea. The micro-
biome may vary according to different time points and 
physical conditions. The repeatability of microbiome 
results can be established by obtaining different samples 

from the same individuals. Finally, the taxa preferentially 
selected for analysis were limited by the computing 
resources for machine learning modeling.

In conclusion, the oral microbiome in patients with 
glaucoma was different from that in control participants 
that indicated disturbing environmental influences on 
the pathogenesis of glaucoma via the microbiota-gut- 
retina axis. Our findings highlight the identification of 
microbiome biomarkers for glaucoma severity with 
high accuracy. The reduced Lactococcus count in the 
oral cavity suggests that dysbiosis in microbiota could 
play a role in the pathogenesis of glaucoma.

Table 5. Multinomial logistic regression analysis of factors related taxon in primary open-angle glaucoma.

coefficient SD
Odd 
ratio P-value coefficient SD

Odd 
ratio P-value*

Age < 60 Age ≥ 60
Lactococcus −175.539 65.322 5.81e−77 0.0072 −157.432 45.664 4.25e−69 0.0006
Endobacter −10.362 14.712 3.16e−05 0.4813 −57.292 24.940 1.31e−25 0.0216
Rikenella 95.277 195.573 2.39e+41 0.6261 −97.172 373.910 6.29e−43 0.7950
Candidatus 

Pelagibacter
−328.189 215.986 2.95e−143 0.1286 −637.095 220.119 2.06e−277 0.0038

Atopobium −3.874 2.006 0.0208 0.0534 −3.826 1.297 0.02179 0.0032
Baseline IOP < 20 mmHg Baseline IOP ≥ 20 mmHg

Lactococcus −159.538 46.999 5.17e−70 0.0007 −163.518 56.609 9.66e−72 0.0039
Endobacter −27.835 15.960 8.15e−13 0.0812 −52.336 33.014 1.87e−23 0.1129
Rikenella 18.174 46.865 7.81e+07 0.6982 39.064 45.859 9.23e+16 0.3943
Candidatus 

Pelagibacter
−602.133 230.776 3.14e−262 0.0091 −435.431 232.158 7.85e−190 0.0607

Atopobium −5.446 1.773 4.31e−03 0.0021 −2.531 1.203 7.96e−02 0.0353
RNFL thickness ≥ 80 μm RNFL thickness < 80 μm

Lactococcus −204.775 58.817 1.17e−89 0.0005 −140.536 46.567 9.24e−62 0.0025
Endobacter −44.285 25.725 5.85e−20 0.0852 −28.076 16.803 6.41e−13 0.0947
Rikenella −41.052 327.684 1.48e−18 0.9003 64.161 125.357 7.32e+27 0.6088
Candidatus 

Pelagibacter
−323.115 164.296 4.71e−141 0.0492 −401.957 172.983 2.71e−175 0.0201

Atopobium −4.243 1.712 1.44e−02 0.0132 −3.599 1.341 2.74e−02 0.0073
coefficient SD Odd 

ratio
P-value

Early glaucoma Moderate glaucoma Advanced glaucoma
Lactococcus −125.291 45.677 3.86e−55 0.0061 −229.962 79.424 1.35e−100 0.0038 −216.259 72.337 1.20e−94 0.0028
Endobacter −31.014 18.134 3.39e−14 0.0872 −29.294 25.434 1.89e−13 0.2494 −45.306 32.995 2.11e−20 0.1697
Rikenella −28.362 105.738 4.82e−13 0.7885 29.192 42.020 4.76e+12 0.4872 39.907 41.176 2.14e+17 0.3325
Candidatus 

Pelagibacter
−1122.831 394.907 0.00e+00 0.0045 −854.987 435.199 0 0.0495 −777.340 372.864 0 0.0371

Atopobium −5.434 1.875 4.36e−03 0.0038 −19.236 7.884 4.42e−09 0.0147 −1.926 1.071 1.46e−01 0.0722

P-value* was calculated using multinomial logistic regression analysis 
IOP: intraocular pressure, RNFL: retinal nerve fiber layer, SD: standard deviation 

Table 6. Association rules generated by association rule mining for primary open-angle glaucoma.
POAG rules

Rule 1 Atopobium = [1] Candidatus Pelagibacter = [1] Endobacter = [1] Lactococcus = [1] → POAG 0.93
Normal rules
Rule 1 Candidatus Pelagibacter = [2] → Normal 0.93
Rule 2 Lactococcus = [2] → Normal 0.8
Rule 3 Atopobium = [2] → Normal 0.73
Rule 4 Endobacter = [2] → Normal 0.53

Rule explanation (Rule 1)
Original rule Atopobium = [1] Candidatus Pelagibacter = [1] Endobacter = [1] Lactococcus = [1] → POAG 0.93
Rule explanations If the compositions of Atopobium ≤ 0.433 Candidatus Pelagibacter ≤ 0.001 Endobacter ≤ 0.015 Lactococcus ≤ 0.015; the sample is 

POAG with 93.0% accuracy
Applied category for rule generation

Category Atopobium Candidatus Pelagibacter Endobacter Lactococcus Rikenella

[1] ≤ 0.433 ≤ 0.001 ≤ 0.015 ≤ 0.015 ≤ 0.001
[2] 0.433–2.908 0.001–0.014 0.015–0.475 0.015 − 0.889 0.001–0.159

CPAR (classification based on predictive Association Rules) algorithm used [24]. 
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