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Abstract: Citrate, generated in the mitochondria, is a key metabolite that might link metabolism with
signaling, chromatin structure and transcription to orchestrate mesenchymal stem cells (MSCs) fate
determination. Based on a detailed morphological analysis of 3D reconstruction of mitochondria and
nuclei in single cells, we identified contact sites between these organelles that drastically increase in
volume and number during the early stage of mesenchymal stem cell differentiation. These contact
sites create a microdomain that facilitates exchange of signals from mitochondria to the nucleus.
Interestingly, we found that the citrate derived from mitochondria is necessary for osteogenic lineage
determination. Indeed, inhibition of the citrate transporter system dramatically affected osteogenesis,
reduced citrate levels that could be converted in α-ketoglutarate, and consequently affected epigenetic
marker H3K9me3 associated with the osteogenesis differentiation process. These findings highlight
that mitochondrial metabolites play key regulatory roles in the MSCs differentiation process.
Further in-depth investigation is needed to provide novel therapeutic strategies in the field of
regenerative medicine.

Keywords: osteogenesis; citrate; α-ketoglutarate; mitochondrial metabolism; mesenchymal stem
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1. Introduction

Mesenchymal stem cells (MSCs) are multipotent cells that give rise to osteoblasts, adipocytes, and
chondrocytes [1–3], whereby the studying of their differentiation processes is of great interest for their
promising application in tissue engineering of mesenchymal tissues.

MSC nuclear reprogramming during differentiation processes has been widely characterized [4],
but several recent studies have focused on the novel mechanisms involving mitochondrial activities in
stem cell biology.

Variations in the abundances, morphology, and functions of mitochondria in different stem cell
types have been described [3,5–9], and it has been established that upregulation of mitochondrial
biogenesis and metabolic shifts toward oxidative phosphorylation are hallmarks of differentiation in
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MSCs [10,11]. In particular, osteogenesis is followed by the development of cristae, with increased
levels of proteins involved in mitochondrial biogenesis as well as enzymes of the tricarboxylic acid
(TCA) cycle and subunits of respiratory chain complexes. Consequently, the oxygen consumption
rate, the mitochondrial membrane potential, and the intracellular ATP content also increase,
indicating enhanced oxidative metabolism in mitochondria during MSC differentiation [11,12].

In addition to a well-established role in cellular energy metabolism, mitochondria are critical
mediators of cell signaling [13]; however, little is known regarding the direct effect of metabolic pathway
activity on chromatin dynamics and MSC differentiation. Extensive epigenetic remodeling is necessary
for the differentiation of MSCs, including covalent histone or DNA modification by methylation,
acetylation, and glycosylation to regulate transcription. Moreover, recent evidence suggests that
metabolic intermediates of cellular metabolism are required as cofactors for epigenetic modulators,
providing a direct link between mitochondrial metabolism and gene expression [14].

In this study, we identified citrate and its derivativeα-ketoglutarate (αKG) as pivotal mitochondrial
metabolites that play a specific role in stem cell fate determination toward the osteogenic lineage.

2. Materials and Methods

2.1. Cell Culture

MSCs were extracted from human adipose tissues of healthy female patients undergoing
cosmetic surgery procedures following guidelines from the Clinic of Plastic Surgery, University
of Padova. Adipose tissues were digested with 0.075% collagenase type II from Clostridium
hystoliticum (Sigma–Aldrich, St Louis, MO, USA) in phosphate-buffered saline (PBS). Floating adipocytes
were discarded, and cells from the stromal-vascular fraction were pelleted, rinsed with medium,
and centrifuged. MSCs were obtained after a red blood cell lysis step in NH4Cl for 10 min at
room temperature.

2.2. Flow Cytometry

After dissociation by trypsin, cells were suspended in flow cytometry staining buffer (R&D
Systems, Minneapolis, MN, USA) at a final cell concentration of 1 × 106 cells/mL. After 30 min of
incubation with mouse anti-human CD14 R-PE, CD34 FITC, CD44 FITC, CD45 APC, CD73 APC, CD90
R-PE, CD105 PE-Cy 7, and HLA-DR FITC (all purchased from eBioscience TM, Thermo Fisher Scientific,
Waltham, MA, USA), cells were washed twice with 2 mL of flow cytometry staining buffer. The labeled
cells were suspended in 500 µL of flow cytometry staining buffer, and analyzed on Attune NxT flow
cytometer (Thermo Fisher Scientific).

2.3. In Vitro Differentiation Protocol

MSCs isolated from human adipose tissues were grown in Dulbecco’s Modified Eagle’s medium
(DMEM)-low-glucose (LG) (EuroClone S.p.A., Milan, Italy) supplemented with 10% fetal bovine serum,
2 mM L-glutamine, and antibiotics (penicillin 100 µg/mL and streptomycin 10 µg/mL) at 37 ◦C in a
humidified atmosphere of 5% CO2.

For adipogenic differentiation, DMEM-LG was replaced with DMEM-high-glucose (HG)
(EuroClone S.p.A) plus 10 µg/mL insulin, 0.5 mM IBMX, 0.1 mM indomethacin, and 1 µM
dexamethasone for 3, 7, and 21 days. For osteogenic differentiation, LG was replaced with DMEM-HG
plus 10 nM dexamethasone, 10 ng/mL FGF-β, and 10 mM β-glycerophosphate for 3, 7, and 21 days.
All growth factors were purchased from Sigma-Aldrich.

2.4. Immunofluorescence Microscopy

Immunofluorescence microscopy was performed according to standard procedures. Briefly, cells
were fixed in 4% PFA for 20 min at room temperature, washed three times with PBS and permeabilized
with 0.1% Triton X-100 for 5 min at room temperature. Thereafter, unspecific binding sites were blocked
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by incubating cells in PBS supplemented with 2% bovine serum albumin (BSA, used as blocking buffer)
for 1 h at room temperature. Cells were then incubated overnight at 4 ◦C with primary antibodies
and then revealed using appropriate AlexaFluor 488® or AlexaFluor 594® conjugates (Thermo Fischer
Scientific). The nucleus was stained by Hoechst. Images were acquired using an LSM 510 confocal
microscope (Carl Zeiss Microscopy, LLC, Jena, Germany) with a Plan-Apochromat 63x/1.4 oil objective
(Carl Zeiss Microscopy, LLC).

2.5. Measurement of Mitochondrial Number, Volume, and Identification of Mitochondrion-Nucleus
Contact Sites

After differentiation, cells were fixed on a glass coverslip; nuclei were stained with Hoechst and
mitochondria with an anti-TOM20 antibody (Ab). After Z-stack acquisition, images were deconvoluted
using Huygens Essential software (Scientific Volume Imaging B.V., Hilversum, The Netherlands), and a
3D reconstruction of the mitochondrial network and nucleus in a single cell was created using Imaris 7
(Bitplan, Zurich, Switzerland) software.

The mitochondrial number and volume were measured for single cell. The TOM20 channel was
used to create the 3D mitochondrial isosurface by Imaris 7, and the total volume and number of objects
were analyzed for each of these isosurfaces.

The colocalization between TOM20 and Hoechst, the two fluorescent signals were analyzed
by the Imaris colocalization tool, and a colocalization channel was created. Finally, two isosurfaces
(mitochondria and colocalization channel) were generated, and the total volume and number of objects
were analyzed for each of these isosurfaces.

2.6. Antibodies

The following primary antibodies were used for immunoblotting: rabbit anti-GAPDH [2118]
(1:5000) from Cell Signaling; rabbit anti-TOM20 [sc-11415] (1:1000) and mouse anti-HSP60 [sc-13115]
(1:1000) from Santa Cruz Biotechnology (Dallas, TX, USA); anti-VDAC [ab-15895] (1:1000) from Abcam
(Cambridge, UK); anti-TIM23 [611222] (1:1000) from BD Bioscience (San Jose, CA, USA). The following
primary antibodies were used for immunofluorescence images: TOM20 [sc-11415] (1:100) from Santa
Cruz Biotechnology, H3 [14269] (1:100), H3K9ac [9649] (1:100), and H3K9me3 [13969] (1:100) from Cell
Signaling (Danvers, MA, USA).

2.7. XF Bioenergetic Analysis

Oxygen-consumption rates were measured using the SeahorseXF96 instrument according to
the manufacturer’s protocols. After differentiation, MSCs were seeded in a poly-lysine-coated XF96
microplate at a density of 50,000 cells per well in 175 µL unbuffered XF assay medium (pH 7.4)
supplemented with 5.5 mM glucose, 1 mM sodium pyruvate, and 1 mM glutamine for 60 min in a
37 ◦C non-CO2 incubator; sensor cartridges were calibrated prior to the start of assays. Respiration
was measured in four blocks of three for 3 min. The first block measured the basal respiration
rate. Next, 1 µM oligomycin was added to inhibit complex V (second block); 1 µM carbonylcyanide
4-(trifluoromethoxy)-phenylhydrazone (FCCP) was added to uncouple respiration (third block). Finally,
2 µM antimycin A and 2 mM rotenone were added to inhibit complex III (fourth block). All reagents
were from Agilent Technologies, Seahorse Biosciences (Santa Clara, CA, USA). Immediately after
finishing the measurements, cells were washed with PBS, fixed with 4% paraformaldehyde (PFA),
and stained with 0.1% crystal violet (1 mol/L acetic acid); absorbance at 595 nm was measured as an
index of the number of cells.

2.8. Oil Red O Staining

Oil red O (Sigma-Aldrich) staining of cytoplasmic droplets of neutral lipids was performed
according to a standard procedure. Monolayer cultures were fixed in 10% neutral-buffered formalin for
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10 min. Oil Red O working solution was added to wells for 10 min at room temperature. After washing,
stained cells were assessed by light microscopy.

2.9. Alizarin Red Staining

For Alizarin Red S (ARS) staining, cells were fixed with 10% neutral-buffered formalin for
10 min and stained with 40 mM Alizarin Red S solution (pH 4.2) at room temperature for 10 min.
After washing, the stained cells were examined by light microscopy.

2.10. RNA Extraction and Quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted with TRIzol Reagent (Invitrogen, Carlsbad, CA, USA). RNA was
purified with RNeasy Mini Kit (QiagenGmbH, Hilden, Germany), and DNase digestion was performed
with RNase-Free DNase Set (Qiagen). The RNA quality and concentration were measured using a
NanoDrop TM ND-1000 (Thermo Scientific). For first-strand cDNA synthesis, 1000 ng of total RNA
from each sample was reverse-transcribed with M-MLV Reverse Transcriptase (Invitrogen/ Thermo
Fisher Scientific, Waltham, MA, USA) following the manufacturer’s protocol.

Real-time PCR was carried out using primers designed for human genes at a concentration
of 300 nM and with FastStart SYBR GreenMaster (Roche Diagnostics, Mannheim, Germany) and a
Rotor-Gene 3000 (Corbett Research, Sydney, Australia). The thermal cycling conditions were as follows:
10-min denaturation at 95 ◦C, followed by 40 cycles of denaturation for 10 s at 95 ◦C, annealing for
20 s at 60 ◦C, and elongation for 30 s at 72 ◦C. Data analysis was performed using the 2∆∆Ct method:
values were normalized to expression of the Transferrin Receptor (TFRC) internal reference, and results
are reported as the fold change of target genes in the test group with respect to the control.

2.11. Cell Growth Assay

After 21 days of treatment, cells were washed with PBS, fixed in 4% PFA, and stained with
0.1% crystal violet. Crystal violet was dissolved with 1 mol/L acetic acid, and absorbance at 595 nm
was measured.

2.12. Statistical Analysis

Results are expressed as the mean ± SD. The probability of significant differences between
experimental groups was determined by analysis of variance (ANOVA), and results from treatments
showing significant overall changes were subjected to post-hoc Bonferroni tests. Student’s t-test was
employed to determine statistical significance between two groups. p values < 0.05 were considered
statistically significant. Different labels indicate * p < 0.05, ** p < 0.001, *** p < 0.0001, and **** p< 0.00001.

3. Results

3.1. Mitochondrion-Nucleus Contact Sites Increase Following Differentiation Processes and
Mitochondrial Modification

Stem cell fate regulation is principally characterized by marked nuclear reprogramming, yet the
important dynamic rearrangement of mitochondria during differentiation suggests their direct
involvement in these finely tuned processes.

To investigate the role of mitochondria in MSCs, cells were isolated from human adipose tissues
and characterized for surface markers (Supplementary Figure S1) as previously described [15,16].
Adipose-derived MSCs were then differentiated into adipogenic (AD) and osteogenic (OS) lineages for
21 days.

Mitochondria were stained by Ab-TOM20 and nuclei by Hoechst, and the colocalization channel
between the two signals was used to identify sites of contact between the two organelles in a single
cell. Using 3D reconstruction of mitochondria and the colocalization channel, we showed that the
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mitochondrial total volume and number, as well as the volume and number of mitochondrion-nucleus
contacts, increased dramatically after 7 days of adipogenic and osteogenic differentiation (Figure 1a,b).

Figure 1. Mitochondria-nucleus contacts. Mesenchymal stem cells (MSCs) were cultured in low-glucose
(LG), adipogenic (AD) and osteogenic (OS) media for 3, 7, and 21 days, as indicated. (a) Representative
3D images of mitochondrial morphology, as detected by anti-TOM20 Ab immunofluorescence, and
contact sites identified by creating the isosurface of the colocalization channel between nuclear
staining (Hoechst) and TOM20. Magnification 40x. Scale bar 10 µm (in zoom panel, scale bar 5 µm).
(b) Quantification of mitochondrial total volume, number, and total volume and number of contacts.
Data are derived from ≥45 acquired cells/condition from ≥3 independent experiments. Data are shown
as the mean ± SD. ANOVA, * p < 0.1, ** p < 0.01, *** p < 0.001, **** p < 0.0001 with respect to the LG
condition at the same time point.

In addition, alterations in mitochondrial content and physiology were analyzed via detection
of mitochondrial markers by immunoblotting and using a Seahorse Extracellular Flux Analyzer
(Agilent), which measures the mitochondrial oxygen consumption rate (OCR) and the extracellular
acidification rate (ECAR), key metrics of mitochondrial function. Our data revealed that adipogenesis
is characterized by a progressive increase in mitochondrial mass, as shown by increase in levels of
mitochondrial proteins such as HSP60, TOM20, VDAC, and TIM23 (Figure 2a,b). In addition, analysis
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of the OCR/ECAR phenogram confirmed that differentiation processes are characterized by an essential
metabolic switch. Indeed, differentiating MSCs switched from glycolytic to oxidative metabolism,
as demonstrated by a reduction in ECAR (Figure 2c,d). In contrast to osteogenesis, two conditions
were identified: after 7 days, mitochondrial mass increased drastically, particularly due to the consistent
increase in the number of mitochondria; after 21 days of differentiation, mitochondrial mass decreased
significantly (Figures 1a,b and 2a,b), as also reflected in the metabolic phenogram (Figure 2c–e).

Figure 2. Mitochondria in MSC differentiation processes. (a) Representative immunoblot and
(b) quantification of HSP60, TOM20, VDAC, and TIM23 protein levels normalized to GAPDH levels.
(c) XF phenograms representing the metabolic switching of MSCs during differentiation, as detected
using an Extracellular Flux Analyzer (Seahorse Bioscience). (d,e) Oxygen consumption rate (OCR)
measurements and relative derived parameters after the addition of oligomycin [1 µM], 1 µM
carbonylcyanide 4-(trifluoromethoxy)-phenylhydrazone (FCCP) [1 µM], and antimycin A [2 µM]
+ rotenone [2 µM] in MSCs cultured in low-glucose (LG), adipogenic (AD), and osteogenic (OS) media
for (d) 7 and (e) 21 days. Data are derived from ≥45 acquired cells/condition from ≥3 independent
experiments and are shown as the mean ± SD. ANOVA, * p < 0.1, ** p < 0.01, *** p < 0.001, **** p < 0.0001
with respect to the LG condition at the same time point.

The important decrease in mitochondrial mass and basal respiration after 21 days of osteogenesis
suggests that the mitochondria formed at 7 days should be exhausted and destined for turnover.
Mitophagy is a specialized type of autophagy specific for mitochondrial degradation through
lysosomes [17], and to better characterize this interesting dynamic that occurs in mitochondria
during osteogenesis, levels of specific mitochondrial proteins and markers of autophagy/mitophagy
were followed during osteogenesis (Supplementary Figure S2).

We showed that a decrease in mitochondrial protein levels (Supplementary Figure S2a,b) is followed
by an increase in autophagy, as shown by the marker LC3-II [18] and a decrease in PARKIN [19]
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(Supplementary Figure S2a). Moreover, colocalization of LC3-GFP dots and TOM20 confirmed that the
late phase of osteogenesis is linked to the mitophagy process (Supplementary Figure S2c).

3.2. Inhibition of Citrate Transporters Impairs Osteogenesis

Mitochondrial metabolism plays a central role in cell energy metabolism, and the generation
of mitochondrial metabolites represents a possible way by which mitochondria regulate stem cell
fate. In fact, pivotal enzymes that regulate chromatin, and thus transcription, rely on mitochondrial
metabolic intermediates [20–22]. Among the several metabolites of the TCA cycle, acetyl coenzyme A
(acetyl-CoA) and αKG participate in the regulation of histone acetylation and methylation, respectively.
Their common precursor is citrate, which is produced in the mitochondrial matrix and can enter
the oxidative phase of the Krebs cycle or be transported from mitochondria to the cytosol where it
can be reconverted in acetyl-CoA or αKG (through isocitrate as an intermediate). Citrate exits the
mitochondria through mitochondrial citrate transport protein (CTP), a membrane-embedded protein
that catalyzes translocation of citrate across the mitochondrial inner membrane [23] (Figure 3a).

Figure 3. Inhibition of the citrate transport system impaired osteogenic, but not adipogenic,
differentiation. MSCs were cultured in low-glucose (LG), adipogenic (AD), and osteogenic (OS)
media; where indicated, 1,2,3-benzenetricarboxylate (BTC) [5 mM] and CTP inhibitor (iCTP) [500 µM]
were added to inhibit the transport of citrate produced in mitochondria to the cytosol. (a) Schematic
representation of the acetyl-CoA transport system. In the mitochondrial matrix, acetyl-CoA is converted
to citrate by citrate synthase. Citrate is then transported by the citrate transporter to the cytosol, where
it is reconverted to acetyl-CoA by citrate lyase. (b,c) Cell survival assay to determine the concentration
of BTC (b) and iCTP (c). Adipogenic differentiation was detected by (d) Oil Red O staining after
7 and 21 days of differentiation and by (e) analysis of relative mRNA levels of adipogenic markers
(GLUT4, PPARγ, ADIPOQ, C/EBPα, and FABP4) after 21 days. ANOVA-test refers to the control (CTR)
condition (adipogenic medium). Osteogenic differentiation was detected by (f) Alizarin Red staining
after 7 and 21 days of differentiation and by (g) analysis of relative mRNA levels of osteogenic markers
(RUNX2, RANKL, osteocalcin (OC), osteopontin (OPN), osterix (OSX), and alkaline phosphatase (ALP))
after 21 days. Data are derived from ≥3 independent experiments and are shown as the mean ± SD.
ANOVA-test refers to the CTR condition (osteogenic medium). * p < 0.5, ** p < 0.01, *** p < 0.001.

CTP inhibitor (referred to herein as iCTP), the first purely competitive inhibitor to be discovered,
inhibits of mitochondrial CTP and is more potent than 1,2,3-benzenetricarboxylate (BTC), the classic
and defining inhibitor of mitochondrial CTP [24].
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In the present study, MSCs were differentiated toward adipogenic and osteogenic lineages,
and 5 mM BTC or 500 µM iCTP, a dose that does not affect cell proliferation, was added as indicated
(Figure 3b,c). BTC and iCTP treatment did not affect MSC adipogenesis, as shown by staining of
lipid drop accumulation (Figure 3d and by the mRNA levels of adipogenic markers (GLUT4, PPARγ,
ADIPOQ, C/EBPα, and FABP4) (Figure 3e).

In contrast, BTC and especially iCTP strongly inhibited osteogenic differentiation. The calcium
deposits detected by Alizarin Red staining were reduced in MSCs cultured in osteogenic medium plus
BTC or iCTP compared to CTR conditions at both 7 and 21 days (Figure 3f). In addition, analysis of the
mRNA profile of osteogenic markers (RUNX2, RANKL, osteocalcin, osteopontin, osterix, and alkaline
phosphatase) confirmed that inhibition of mitochondrial citrate transport strongly impaired MSC
osteogenic differentiation (Figure 3g).

BTC also affected osteogenic-induced changes in mitochondrial morphology and
mitochondrion-nucleus contact sites. As a result, MSCs treated with BTC resembled MSCs
in the undifferentiated condition, confirming that mitochondrial changes are linked to the osteogenic
differentiation (Figure 4a,b).

Figure 4. Inhibition of the citrate transport system impaired mitochondrial behavior. MSCs were
cultured in low-glucose (LG), adipogenic (AD), and osteogenic (OS) media; where indicated, BTC
[5 mM] and iCTP [500 µM] were added to inhibit the transport of citrate produced in mitochondria
to the cytosol. (a) Representative images and (b) analysis of mitochondrial total volume and number
detected by the anti-TOM20 Ab and the total volume and number of mitochondrion-nucleus contact
sites. Magnification 40x. Scale bar 10 µm (in zoom panel, scale bar 5 µm). Data are derived from
≥45 acquired cells/condition from ≥3 independent experiments and are shown as the mean ± SD.
ANOVA-test. * p < 0.5, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.3. Citrate is Converted to αKG to Promote Osteogenesis

Citrate in the cytosol can be converted to acetyl-coA or αKG (Figure 5a), two key metabolites able
to regulate histone acetylation and methylation states.
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Figure 5. Citrate from mitochondria increases the level of α-ketoglutarate to promote osteogenesis.
(a) Citrate can be converted to acetyl-CoA by citrate lyase (inhibited by BMS) or to α-ketoglutarate
(αKG), two metabolites that can mediate mitochondrion-nucleus communication. (b,c) Analysis of
relative mRNA levels of osteogenic markers (RUNX2, RANKL, osteocalcin (OC), osteopontin (OPN),
osterix (OSX), and alkaline phosphatase (ALP)) in MSCs cultured in low-glucose (LG) and osteogenic
media (OS); where indicated, BMS [1 mM], BTC [5 mM], and αKG [1 mM] were added for 21 days.
(d) Representative images and analysis of mitochondrial total volume and number detected by the
anti-TOM20 Ab and the total volume and number of mitochondrion-nucleus contact sites in MSCs
cultured in LG and osteogenic media (OS); where indicated, BTC [5 mM] and αKG [1 mM] were added
for 21 days. (e) Representative images and quantification of H3K9me3 in MSCs cultured in LG and OS
media; where indicated, BTC [5 mM] and αKG [1 mM] were added for 21 days. Magnification 40x. Scale
bar 10 µm (in zoom 5 µm). Data are derived from ≥45 acquired cells/condition from ≥3 independent
experiments and are shown as the mean ± SD. ANOVA-test. * p < 0.5, ** p < 0.01, *** p < 0.001.
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Several reviews have reported the effect of epigenetic modifications on MSCs multipotency and
differentiation [25–27], among which H3K9ac and H3K9me3 are considered key epigenetic signatures
indicative of transcriptional activation and inactivation, respectively [28]. These signatures interact
with the osteogenic master transcriptional factor RUNX2 during osteogenesis [29].

We confirmed in our model that H3K9ac levels increased during osteogenesis (Supplementary
Figure S3a) and that the osteogenesis defect caused by CTP inhibition resulted in H3K9ac levels that
were comparable those of undifferentiated cells (low glucose). Without affecting cell growth, citrate
conversion to acetyl-CoA by citrate lyase was inhibited by 1 mM BMS (Supplementary Figure S3c).
Although BMS treatment was able to decrease the levels of H3K9ac (Supplementary Figure S3b),
it also increased the osteogenic potential of MSCs (Figure 5b). This suggests that citrate accumulation
due to citrate lyase inactivation promoted osteogenesis. To investigate whether αKG is necessary for
osteogenesis, exogenous αKG (1 mM, Supplementary Figure S3d) was added to the differentiation
medium, which promoted osteogenesis and partially rescued the phenotype due to CTP inhibition
(Figure 5c).

αKG is a substrate for the Jumonji-C (JmjC) domain-containing histone demethylase family of
proteins that catalyze histone demethylation [30]. Because removal of H3K9me3 marks is required
for osteogenesis [31], H3K9me3 levels were investigated. We confirmed that osteogenesis is linked
to a reduction in H3K9me3 marks, whereas CTP inhibition resulted in levels comparable to those of
undifferentiated cells; furthermore, αKG addition promoted demethylation (Figure 5e).

Finally, to confirm that citrate should exit mitochondria and enter the nucleus to be converted into
αKG and play a regulatory role in the methylation status of histones, we added αKG under conditions
in which CTP was inhibited (αKG + BTC). Under this condition, osteogenic potential (Figure 5c) and
methylation status (Figure 5e) were partially restored, as were mitochondrial morphology and contact
sites (Figure 5d), confirming our hypothesis that citrate derived from mitochondria is essential to
induce osteogenic differentiation.

4. Discussion

MSC differentiation has largely been investigated from a transcription factor point of view, whereas
little is known concerning how metabolism might regulate this complex process. Due to the very
distinct metabolic and energetic demands of differentiated cell types, stem cell differentiation requires
variations in the number, structure, function, and intracellular distribution of mitochondria [32–34].
In particular, mitochondrial DNA copy number and intracellular ATP content as well as levels of
protein subunits of the respiratory enzymes increase during osteogenic differentiation of MSCs [11,35].

In this study, we performed a detailed morphological analysis of the mitochondrial network
by 3D reconstruction in a single cell. We showed that during the early phase of adipogenic and
osteogenic differentiation, mitochondria volume and number increased dramatically in agreement with
the enhanced mitochondrial respiration (Figures 1 and 2), confirming previous evidence detected by the
classical immunofluorescence technique [6,36]. The large number of mitochondria suggests increased
mitochondrial biogenesis during both adipogenesis and osteogenesis. Our data are supported by
a previous study [7], in which it was shown that the protein level of TOM20 was greatly increased
during adipogenic differentiation, confirming the increase in mitochondrial mass. Interestingly,
in the late phase of the differentiation process, adipogenic cells exhibited a conspicuous number of
mitochondria, whereas osteogenic cells had few of these organelles (Figures 1 and 2). Recent studies
have demonstrated a pivotal role of autophagy in the osteo-differentiation of hBMSCs [37–39],
and mitophagy has been showed to be essential for the maintenance of hematopoietic stem cell [40].
Our data showed that autophagy and mitophagy levels are dynamically regulated during osteogenesis
(Supplementary Figure S2), suggesting a possible crucial role of mitophagy in the MSCs differentiation
process which should be deeply investigated in future studies.

In addition to the general mitochondrial alterations commonly accepted, we deeply investigated
the localization of mitochondria in relation to the nucleus, identifying sites of contact between the
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two organelles. It is generally accepted that mitochondria mainly accumulate around the nucleus
in undifferentiated cells, whereas they are more uniformly distributed throughout the cytoplasm of
differentiated cells [41,42]. Nonetheless, the number and volume of contact sites between the nucleus
and mitochondria were found to increase following the early stage of the differentiation process
(Figure 1). This let us to hypothesize a crucial communication between mitochondria and the nucleus,
whereby contact sites create microdomains in which exchange of metabolites may be heightened to
promote differentiation.

Mitochondrial metabolism might be pivotal for stem cell fate regulation; indeed, metabolites
generated in the TCA cycle can act as cofactors or substrates for chromatin-modifying enzymes. In fact,
a growing body of evidence suggests that the metabolic profile of cells can influence cytoplasmic
signaling and epigenetics [43–45]. Interestingly, several mitochondrial enzymes associated with the
TCA cycle are essential for epigenetic remodeling and are transiently and partially localized to the
nucleus during embryonic development [46].

Citrate plays a central role in highly proliferating undifferentiated stem cells and in their
differentiation toward specific functional cell types [47]. In particular, we show that inhibition of the
citrate transporter system dramatically affects osteogenesis, as opposed to adipogenesis (Figure 3).
This finding highlights that mitochondrial citrate is fundamental for determining stem cell fate.

Bone contains extremely high levels of citrate, which is an essential component of the apatite
nanocrystal [48], and osteoblasts are the source of citrate that is incorporated into bone during bone
formation [49]. Moreover, citrate functions as a chelating agent and binds physiologically relevant
cations such as Ca2+, Zn2+, and Mg2+; thus, citrate constitutes the major store of calcium in bones [50].
For this reason, altered citrate metabolism may occur during the differentiation of mesenchymal stem
cells to functional citrate-producing osteoblasts.

In addition, citrate plays a role in the regulation of epigenetic markers. Although citrate can be
converted to acetyl-coA or αKG (via isocitrate), we demonstrate that conversion of citrate to the latter
rather than the former allows osteogenic differentiation (Figure 5).

αKG can enter the nucleus where it is used as a substrate by ten-eleven translocation (TET) proteins
for DNA demethylation and by Jumonji C domain demethylases (JHDMs) for histone demethylation
(linked to context-dependent gene silencing or activation) [51].

It has been reported that the maintenance of proper α-KG levels is fundamental in determining
the identity and fate of embryonic stem cells (ESCs). Specifically, a high α-KG/succinate ratio promotes
the activity of DNA and histone demethylases, and modifying this ratio is sufficient to regulate
multiple chromatin modifications [52]. Lastly, we linked α-KG levels to H3K9me3, an epigenetic
marker associated with the osteogenesis differentiation process.

Taken together, our data suggest that during MSC differentiation, mitochondria assemble close to
the nucleus to create microdomains to facilitate the exchange of metabolites from the mitochondrial
matrix to the nucleus. Citrate exiting from mitochondria is converted to αKG, which promotes
histone modification, leading to transcriptional activation of osteogenic-related genes. These findings
highlight that mitochondrial metabolites play a key regulatory role in the differentiation process, which
should be deeply investigated in the future and may reveal novel therapeutic strategies in the field of
regenerative medicine.
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