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Diabetes is a metabolic disorder that affects more than 400 million people worldwide. Most existing approaches for measuring fasting blood
glucose levels (FBGLs) are invasive. This work presents a proof-of-concept study in which saliva is used as a proxy biofluid to estimate FBGL.
Saliva collected from 175 volunteers was analysed using portable, handheld sensors to measure its electrochemical properties such as
conductivity, redox potential, pH and K+, Na+ and Ca2+ ionic concentrations. These data, along with the person’s gender and age, were
trained and tested after casewise annotation with their true FBGL values using a set of mathematical algorithms. An accuracy of
87.4 ± 1.7% and a mean relative deviation of 14.1% (R2 = 0.76) was achieved using a mathematical algorithm. All parameters except the
gender were found to play a key role in the FBGL determination process. Finally, the individual electrochemical sensors were integrated
into a single platform and interfaced with the authors’ algorithm through a simple graphical user interface. The system was revalidated on
60 new saliva samples and gave an accuracy of 81.67 ± 2.53% (R2 = 0.71). This study paves the way for rapid, efficient and painless
FBGL estimation from saliva.
1. Introduction: Diabetes mellitus is a global health epidemic with
as many as 415 million people suffering from its worldwide. This
number is predicted to reach a staggering 642 million by 2040
[1]. If left untreated, diabetes can cause various medical
complications such as heart diseases, diabetic retinopathy and
kidney dysfunction [2]. Many a time, these conditions can be
prevented or at least be delayed by early intervention and regular
monitoring of fasting blood glucose level (FBGL), a prime
indicator of diabetes using glucometers [3]. Blood is the natural
choice for measuring elevated blood glucose levels (BGLs), but it
poses a risk of contamination and sepsis, especially when
samples are collected at point-of-care. Several recent studies have
shown that alternate biofluids such as urine, saliva, tears and
sweat can also be used instead of blood as they carry residual
amounts of glucose [4, 5]. This has enabled the development of
continuous glucose monitoring systems [6–9] that provide blood
glucose information every 1–5 min. The results, however, often
suffer from poor sensitivity and reproducibility owing to pH and
temperature fluctuations, or electromagnetic interferences
[10, 11]. In other approaches, intervening tissues such as bone or
skin are used for measuring trace amounts of glucose, but again,
they have had limited success due to practical limitations of
sample extraction [12, 13]. Saliva is perhaps one of the simplest
biofluids to retrieve and has a proven track record as a proxy
biofluid (to blood) for diagnostic applications [14]. The salivary
glucose has gotten raised during diabetes since the salivary
glands, controlled by neural and hormonal activity, act as a filter
for blood glucose and cause loss of homeostasis [15]. Thus,
many groups have reported direct glucose sensing in saliva using
enzymatic approaches wherein, glucose oxidase is typically
immobilised on a filter paper [16] or a surface containing
polymers or carbon nanotubes [17], and an outcome is obtained
as an electrical or optical signal readout.
In this Letter, we explore an alternate route for blood glucose

estimation based on the variation in electrochemical parameters
of saliva during diabetes. Since this approach is based solely
on the physical attributes of saliva, it can potentially be more
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cost-effective, robust and scalable than the current enzymatic
methods. There is substantial evidence to suggest that the compos-
ition, pH, viscosity and buffering capacity of saliva vary significant-
ly during diabetes [18, 19]. For instance, while the salivary pH in
healthy individuals is around 7–7.5, in diabetics is typically
below 7. This acidic pH is a result of higher microbial activity in
the mouth caused by greater levels of glucose in saliva [13, 14].
This also makes the diabetics significantly more susceptible to
oral cavities [20]. Similarly, calcium [18] and potassium [21]
ionic concentrations are found to be significantly higher in the dia-
betic group compared to healthy individuals [22]. This increase
in Ca2+ is attributed due to the reduction in the fluid output (oral
dehydration) which in turn increases the protein concentration in
the oral cavity and hence, possibly Ca2+ due to the alteration in
ionic affinity [18]. The increase in K+ ions is either due to increased
activity of Na+ K+ ATPase or because of the changes in the basal
membrane of the salivary gland [23]. The elevation in oxidative
stress in saliva during diabetes is well observed clinically due to
persistent hyperglycemia, which increases the production of free
radicals, especially reactive oxygen species (ROSs), in all tissues
due to glucose auto-oxidation and protein glycosylation [24].
Hyperglycemia also influences the electrical charge distribution
on the surface of the cell membrane and results in increased con-
ductivity [24].

Our group has previously shown that a combination of salivary
electrochemical parameters such as pH, oxidation–reduction
potential (ORP), conductivity and individual cationic concentra-
tions can be collectively used to estimate FBGLs in healthy and
diabetic adults. This was done using mathematical algorithms like
logistic regression, artificial neural network and support vector
machine which had the limitation that the output classes were
finite, i.e. 0 below a threshold FBGL value and 1 above it [25].
In this Letter, we have extended this concept to use of regression
models such as kernel ridge regression (KRR) [26], neural networks
regression (NNR) [27] and neuralNet boosting regression (NBR)
[28] instead of classifiers to estimate the actual FBGLs in patients
and healthy volunteers. Also, the relative contribution from each
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input salivary electrochemical parameter is estimated using the
weights of perceptron of neural network to identify the critical set
of design parameters required to conceptualise an integrated elec-
trochemical sensor having minimum feature attributes. Finally,
our optimised algorithm has been implemented on a standalone
platform in which all the sensors are integrated and interfaced to
a single display using an embedded microprocessor and a GUI.
A complete process flow diagram of our proof of concept study
is shown in Fig. 1.

2. Methodology
2.1. Sample collection: The protocol for sample collection and the
inclusion criteria used for volunteer selection was as described
earlier [29]. Briefly, 175 volunteers comprising half diabetic and
half healthy in the age range of 18–69 yr were recruited. The
volunteers were divided into two groups – (i) healthy volunteers
(FBGL: 80–120 mg/dl; 41 females; 46 males; age range of
18–62 yr; mean age 35 ± 11 yr), (ii) clinically diagnosed type II
diabetes mellitus patients (FBGL ≥120 mg/dl; 47 females;
41 males; age range of 21–69 yr; mean age 47 ± 10 yr).
Approximately 3 ml of saliva was collected from each volunteer
and immediately analysed for conductivity (Cond.), redox
potential (ORP), pH, and calcium, potassium and sodium ionic
concentrations. The pH and ORP values were measured using the
F-71 Laqua Lab (Japan) pH/ORP meter. The conductivity and
concentration of Na+, K+, and Ca++ electrolytes were recorded
using the Horiba Laqua twin series ion selective models. The
venous plasma FBGL values of these volunteers were measured
using an automatic biochemical analyser (COBAS INTEGRA
400 plus).

2.2. Data fitting: To find the optimal mapping between the input
and output variables, we used three different mathematical
regression algorithms – KRR, NNR and NBR, with successively
increasing complexity. A brief introduction to these regression
algorithms is provided in SI. All the 175 sample data points were
represented as an eight-dimensional vector containing six
real-valued electrochemical parameters of saliva, integer
parameter of age and a Boolean parameter for gender, and
mapped against their FBGL value. The nine parameter values
were then linearly normalised between [0, 1] (i.e. the lowest
value mapped to 0 and the highest to 1). As the FBGL values
were all integers, they were approximated as real values by the
range space approximation. This converted the problem of
learning space transformation into a classical problem of
regression. The data underwent uniform random shuffling,
followed by partitioning into two parts – 70% training and 30%
testing sets. The training set was further subjected to five-fold
cross-validation. To deal with data complexity, non-linear
regression techniques such as KRR and NRR were applied using
Python 2.7 along with its numpy and scipy libraries. The learning
Fig. 1 Process flow diagram for our study

88
This is an open access article published by the IET under the
Creative Commons Attribution -NonCommercial License
(http://creativecommons.org/licenses/by-nc/3.0/)
process was further improved by using the ideas of ensemble
learning and boosting through the NBR model. Both the input
and output parameters were represented as numpy arrays with
shapes (175, 8) and (175, 1), respectively. The estimated FBGL
values were further classified as 0 or 1 based on an assumed
threshold value of 120 mg/dl (1 for FBGL ≥120 mg/dl) [30] and
the performance of each regression model was evaluated in terms
of R2, mean relative deviation, accuracy, specificity, precision,
sensitivity and F1 score (see SI for details).

2.3. Feature contribution: The mining of feature importance
was performed by weight analysis of the neural network’s
hidden layer. Since the output layer in regression had only one
perceptron, the feature importance was calculated by the
coefficients of the input features and finding their respective
relative percentage values in that neural network

Feature importance xi
( ) =

∮
∀xj ,j=i

∂ NeuralNet X( )( )
∂xi

where X = x1, x2, . . . , xn
[ ]

and ∀xk , 0 ≤ xk ≤ 1

(1)

2.4. Integrated platform design for direct sensing: The commercial
sensors used for our conductivity and ion-selective measurements
were opened and the analog output signals from the conditioning
unit (OPAMP-LMC6042 CMOS Dual Micropower) were
directly extracted and connected to the input of an Arduino
microcontroller (RoboKart UNO R3 board with DIP
ATmega328). Similarly, the pH and ORP device signals were
also connected via an Arduino-compatible kit (SKU: SEN0161)
(Fig. S1). The processed output from the controller was synced
with our optimised algorithm using Matlab2014a. A GUI was
then developed in MATLAB that allowed user-related data entry
(personal details such as ID number, age, sex etc.), system
calibration, and display of FBGL and salivary electrochemical
parameters on a laptop screen. The sensors were calibrated using
the standard solutions provided by the vendor and showed a good
correlation of 0.9 with the original sensor suggesting that our
‘reverse-engineering approach’ had little effect on the sensor
performance (see SI for details). To revalidate the integrated
system, 60 new volunteers were recruited and divided into
two groups – (i) healthy (FBGL: 80–120 mg/dl; 14 females;
16 males; 20–60 yr; mean age 31 ± 7 yr) and (ii) clinically
diagnosed type II diabetic (FBGL ≥120 mg/dl; 18 females;
12 males; 20–63 yr; mean age 45 ± 11 yr). Each volunteer’s
fasting saliva was collected in the same manner as described
above and analysed using the integrated system. The performance
of the integrated platform was determined using the Clarke error
grid analysis approach that is used to assess the clinical
significance of differences between the glucose measurement
technique under test and the reference venous blood glucose
measurements (see SI for more details).

3. Results
3.1. Data collection and normalisation: The number of samples
(n= 175) used for our model fitting was chosen as per the
Chebyshev’s inequality which states that the minimum number of
data points required to estimate an outcome in the bound
confidence interval of δ with a confidence level of (1− ɛ) can be
given by the following equation:

P(|Xsample − Xpopulation| ≥ d) ≤ s2

nd2
= 1

or, n = s2

1d2

(2)
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Fig. 3 NBR model
a Accuracy of NBR with an increasing number of models
b Correlation between actual blood glucose values and those estimated by
NBR for the test data
where Xsample and Xpopulation are the sample and population means,
respectively. By assuming (i) the total population of India to be
1.25 billion, (ii) 65% of the people to lie in the range of 20–79 yr
age group (target population), (iii) 9% of the target population to
have diabetes, (iv) the population follows a Bernoulli’s
distribution with σ2 variance, (v) δ= 10%, and (vi) (1− ɛ) = 95%,
we estimated that the minimum number of samples to be tested
should be at least 164 in order to correctly represent the wider
dataset. Therefore, a total of 175 volunteers were recruited for our
study.

3.2. Mathematical analysis: A 175 × 8 shaped matrix was created
from the data collected from the volunteers. To minimise the bias
towards a particular parameter due to differences in their units of
measurement, all the data were linearly normalised within their
original ranges and then subjected to model fitting. In all the
cases, the results were classified as per high and low FBGL
values taking 120 mg/dl as the threshold. In the KRR model, a
mean relative deviation was obtained to be 29.4% with a
coefficient of determination, R2 equal to 0.41 after fully
optimising the α and γ space parameters (Fig. S2). The results of
other performance parameters are listed in Table 1.
In the NNR model, the training data were iterated until the valid-

ation error between the actual and estimated FBGL values con-
verged and reduced to ∼0.05 at around 10,000 iterations
(Fig. 2a). The maximum number of cases fell in the range
of ± 25 mg/dl blood glucose deviation (Fig. 2b). At this configur-
ation, the NRR model resulted in an accuracy of 84.7 ± 2.1% with
an R2 value of 0.45 and mean relative deviation of 21.0% for
estimating the FBGL values. It was also observed that there was
an undesirable residual pattern between the error and the estimated
value of BGL (data not shown). To overcome this issue and to learn
from the trend in error to estimate the FBGL more efficiently, the
NBR model was investigated next.
Different models were tried to improve the estimated accuracy

of the NBR model (Fig. 3a). The estimation accuracy saturated at
the fourth degree giving the best performance with the primary
neural network of configurations 8, 16, 4, 1 and subordinate
neural networks of configurations 1, 3, 1. At these conditions, the
test accuracy was obtained as 87.4 ± 1.7% with an R2 value of
Table 1 Comparison of the three regression models used for FBGL
estimation

Algorithm Accuracy Precision Sensitivity F1 score

KRR 73.8 ± 1.9 65.7 ± 2.1 83.1 ± 0.4 73.3 ± 1.3
NRR 84.7 ± 2.1 73.7 ± 2.9 93.3 ± 1.7 83.3 ± 2.2
NBR 87.4 ± 1.7 79.1 ± 1.7 88.7 ± 2.1 83.6 ± 1.8

Fig. 2 NNR model
a Convergence of error at final layer with several iterations of the training
dataset
b Frequency distribution of deviation of estimated FBGL from an actual
value

Healthcare Technology Letters, 2019, Vol. 6, Iss. 4, pp. 87–91
doi: 10.1049/htl.2018.5081
0.76 and mean relative deviation of 14.14% (Fig. 3b). An overall
comparison between all the three non-linear regression models is
summarised in Table 1.

3.3. Importance of parametric contribution: The best-learnt NBR
model was further used for extracting the relative importance
of each input feature variable for estimating the FBGL. This
becomes relevant while designing the actual sensor hardware so
that the most optimum system may be developed for any real
application. To achieve this information, a partial differentiation
was taken concerning each individual parameter and substituted
with zero to determine its relative contribution in estimating the
BGL value. The results obtained showed that all parameters
except a person’s gender played an important role in the FBGL
estimation (Table 2).

3.4. Performance of the integrated sensing platform: To
demonstrate proof-of-concept, we integrated all the relevant
sensors into a single platform to collectively display one output
using a simple GUI. For this purpose, commercial sensors were
reengineered to obtain their analogue signal outputs (Fig. 4 and
see SI). Analogue voltages corresponding to the standard
solutions (provided by the company) were measured to
understand the working principle of the sensors. The measured
concentrations from our sensor setup were then correlated to the
actual concentrations obtained by the ion meters (see SI). For pH
and ORP, a highly compatible Arduino controller kit was
employed and an Arduino UNO R3 was used for processing the
sensors output. The obtained analogue signals from different
sensors were then fed into the analogue pins of Arduino, which
converted them into computer-compatible signals through serial
communication. The processed outputs from Arduino were then
synced with the algorithms in MATLAB to estimate FBGL values.

For efficient implementation of our system, a simple GUI was
developed in MATLAB. The GUI had four independent operators:
connect, disconnect, calibrate and test. By pressing the ‘connect’
tab, the system established communication between the sensors
and the algorithms in a MATLAB environment. The ‘calibrate’
button enabled system calibration to be done manually with the
different standard solutions. Once done, the ‘test’ tab could be
pressed to run the algorithms in MATLAB which would read the
respective values of all the sensors through Arduino and display
them onto the GUI layout editor window within a few seconds.
Accordingly, different messages were displayed if the FBGL was
found lower or higher than 120 mg/dl. Finally, the sensor interface
could be disconnected from the MATLAB environment by pressing
the ‘disconnect’ button. Using this approach, the efficacy of the
integrated system was tested on 60 samples by applying the NBR
model. The results gave an accuracy of 81.67 ± 2.53%, a mean
relative deviation of 15.0% and a coefficient of determination of
0.71. The performance of the developed interface was also validated
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Table 2 Relative percentage contribution of individual parameters in the estimation of the blood glucose value

Sex ORP Age Na+ pH Ca2+ Cond. K+

0.5% 11.7% 11.9% 13.6% 14.2% 15.0% 16.1% 17.0%

Fig. 4 Experimental setup to estimate FBGL
a Block diagram of the experimental setup
b Actual integrated sensor setup with the GUI displayed on the laptop screen

Fig. 5 Clarke’s error grid analysis of the developed interface shows that
80% of the data lie in the A zone while 20% in the B zone
using the Clarke error grid analysis for comparison with the ISO
guidelines (Fig. 5).
4. Discussion: The problem of blood glucose estimation using
electrochemical parameters of saliva is a classic regression
problem with high variability and non-linearity in parameters.
Classically, one of the standard techniques used for model fitting
is ordinary least square regression which was discarded in our
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case due to its underlying assumption that all the parameters of
input vector X are independent of each other which may not be
true. This would make the X matrix almost singular and highly
prone to errors. Thus, ridge regression was chosen as the next
best model by imposing a cost to the size of the coefficients.
In this, a Gaussian kernel was chosen to account for the
non-linearity in the data. Ridge regression showed a fair
performance in terms of accuracy of estimation for critical and
non-critical cases based on the estimated FBGL values. However,
a low R2 value of 0.41 meant that statistically only 41%
variability between the electrochemical parameters and blood
glucose was being taken into account. Neural networks allowed
improving the mapping ability further by capturing the data
non-linearity, non-convexity and feature extraction from the
parameter space. Although this significantly improved the
accuracy, the R2 value of 0.45 obtained was still low, which
indicated that the model was still not good enough to capture a
considerable amount of variability in the system. The results and
errors when analysed also showed a non-ideal correlation
between the error of estimation and estimated value. This finally
led us to choose a four-degree ensemble NBR model to train a
second-order model and estimate error from the first-order
estimated value of FBGL. Theoretically, any large enough order
model number (n) may be chosen to eliminate the correlation
between the error and estimated values.

The individual contribution of input parameters suggested that
gender plays little role in the estimation of FBGL. This makes
our approach more inclusive. The highest contribution by K+ ions
is not surprising considering hyperkalemia is known to exist in
diabetic patients due to the body’s altered physiology [31, 32].
This happens because the lack of insulin in people with diabetes
causes the breakdown of their fat cells releasing ketones into the
blood, particularly in type 1. This makes the blood more acidic, a
condition is known as diabetic ketoacidosis. The acidosis and
high BGL work together to cause the fluid and potassium to
move out of the cells into the blood circulation. Also, patients
with diabetes have diminished kidney function and may not be
able to excrete potassium into the urine as effectively. Dying
cells during tissue destruction may further add to this condition
by releasing potassium ions into the blood circulation. Our results
for Ca2+ contribution are also in agreement with the literature that
suggests that salivary Ca2+ increases in diabetics as compared to
healthy ones [33, 34]. The reason for lower levels of pH seen in dia-
betics is likely due to the tendency of their oral cavity to get dry as a
result of the changes in their metabolism [35]. Similarly, ORP, age
and Na+ ions although slightly less important, cannot simply be
neglected when designing a saliva-based biosensor for FBGL
estimation.

The latest ISO guidelines (15197–2013(E)) for in vitro diagnostic
systems used for self-testing of diabetes mellitus require that 95% of
the measured glucose values fall within ± 15 mg/dl of the average
measured values of the reference measurements for glucose concen-
trations <100 mg/dl and within ± 15% for glucose concentrations
≥100 mg/dl [36]. Using our NBR model, we found that only
83.3% of the <100 mg/dl cases lay within the prescribed limit
of ± 15 mg/dl and around 73.3% cases tested positive for
≥100 mg/dl, as shown by the Clarke error grid analysis (Fig. 5).
Here, 80% of the data lay in the A zone and 20% in the B zone.
The lower accuracy of our outcome may be attributed to the low
number of samples used for establishing our proof of concept.
Nevertheless, this approach provides a rapid, painless and effortless
Healthcare Technology Letters, 2019, Vol. 6, Iss. 4, pp. 87–91
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way to estimate FBGL and opens new avenues for further investi-
gations of salivary potential in diabetes. Moreover, our approach
is non-enzymatic, so it overcomes the disadvantages associated
with enzymatic processes that produce corrosive hydrogen peroxide
as a byproduct and suffer from interferences from structurally
similar organic substances like uric acid, lactate, dopamine and
ascorbic acid during sensing. More samples in future may ensure
better learnability of the mathematical algorithms and for choosing
a more stringent confidence interval. For instance, a 5% confidence
interval for 95% confidence level would require a diverse set of
720 samples. This will allow a more accurate diagnosis of diabetes
using a simple, non-invasive approach.

5. Conclusion: Three non-linear regression models, namely KRR,
NNR and NBR, were applied to check the correlation between a
person’s age, gender and salivary electrochemical parameters to
their actual FBGL values. NBR showed the best-classifying
accuracy of 87.4 ± 1.7% (R2 = 0.76) and no correlation pattern
between the error and the estimated values. Gender had little role
to play in the estimation of FBGL value, whereas all other input
parameters contributed significantly. K+ ions had the maximum
relative impact at 17% by the known physiology of diabetic
patients. An integrated platform was developed that allowed
non-invasive estimation of FBGL within a few seconds with an
accuracy of 81.67 ± 2.53% using the NBR model. These results
suggest that a few drops of morning saliva may be as effective as
blood for measuring FBGLs. In the future, a low-cost, handheld
integrated sensor with multiple ion-selective electrodes may be
developed using state-of-the-art microfabrication technology. One
may also study the role of salivary anions and other input
variables such as body mass index to further refine the estimation
model and increase its robustness and accuracy for blood glucose
estimation.
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