
entropy

Article

Bayesian and Frequentist Inferences on a Type I Half-Logistic
Odd Weibull Generator with Applications in Engineering

Mahmoud EL-Morshedy 1,2,∗ , Fahad Sameer Alshammari 1 , Abhishek Tyagi 3 , Iberahim Elbatal 4,
Yasser S. Hamed 5 and Mohamed S. Eliwa 2

����������
�������

Citation: EL-Morshedy, M.;

Alshammari, F.S.; Tyagi, A.; Elbatal, I.;

Hamed, Y.S.; Eliwa, M.S. Bayesian

and Frequentist Inferences on a Type I

Half-Logistic Odd Weibull Generator

with Applications in Engineering.

Entropy 2021, 23, 446. https://

doi.org/10.3390/e23040446

Academic Editor:

Antonio M. Scarfone

Received: 8 February 2021

Accepted: 25 March 2021

Published: 10 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, College of Science and Humanities in Al-Kharj,
Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.alshammari@psau.edu.sa

2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
mseliwa@mans.edu.eg

3 Department of Statistics, Chaudhary Charan Singh University, Meerut 250004, India;
abhishektyagi033@gmail.com

4 Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University
(IMSIU), Riyadh 13318, Saudi Arabia; iielbatal@imamu.edu.sa

5 Department of Mathematics and Statistics, College of Science, Taif University, Taif 21944, Saudi Arabia;
yasersalah@tu.edu.sa

* Correspondence: m.elmorshedy@psau.edu.sa

Abstract: In this article, we have proposed a new generalization of the odd Weibull-G family by
consolidating two notable families of distributions. We have derived various mathematical properties
of the proposed family, including quantile function, skewness, kurtosis, moments, incomplete
moments, mean deviation, Bonferroni and Lorenz curves, probability weighted moments, moments
of (reversed) residual lifetime, entropy and order statistics. After producing the general class, two
of the corresponding parametric statistical models are outlined. The hazard rate function of the
sub-models can take a variety of shapes such as increasing, decreasing, unimodal, and Bathtub
shaped, for different values of the parameters. Furthermore, the sub-models of the introduced
family are also capable of modelling symmetric and skewed data. The parameter estimation of the
special models are discussed by numerous methods, namely, the maximum likelihood, simple least
squares, weighted least squares, Cramér-von Mises, and Bayesian estimation. Under the Bayesian
framework, we have used informative and non-informative priors to obtain Bayes estimates of
unknown parameters with the squared error and generalized entropy loss functions. An extensive
Monte Carlo simulation is conducted to assess the effectiveness of these estimation techniques. The
applicability of two sub-models of the proposed family is illustrated by means of two real data sets.

Keywords: odd Weibull-G family; Type I half logistic distribution; estimation methods; hazard rate
function; simulation

1. Introduction

In the last few decades, many efforts have been made to improve the modelling
of different types of data arising from several fields such as actuarial, environmental,
economics, engineering, medicine and biological sciences. These activities have led to the
creation of powerful methods for creating new lifetime models. Among these various
techniques of generating new models, in the widely used method, we define new classes
of univariate continuous models by adding one or more additional shape parameter(s)
to the baseline model. This induction of additional parameter(s) has been proved useful
in studying the tail properties and also for providing wider modelling flexibility of the
generator (G) family. Thus, several classes by adding one or more parameters have been
proposed in the statistical literature. Initially, Eugene et al. [1] introduced a general class
of distributions from the logit of the beta random variable. They studied beta-normal
distribution as a special model of this family and showed that it is enough capable of
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modelling the symmetric heavy-tailed, skewed and bimodal data. With a similar idea as of
Eugene et al. [1], Zografos and Balakrishnan [2] developed the gamma-G family by Stacy’s
generalized gamma variables and discussed its important properties.

Cordeiro and Castro [3] introduced Kumaraswamy-G (Kw-G) family based on the
Kumaraswamy distribution. They investigated some special distributions of this family
such as the Kw-Normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian
distribution. Tahir et al. [4] developed logistic-X family based on a logistic random variable.
They figured out that its density function can be symmetrical, left-skewed, right-skewed,
and reversed-J shaped, and can take increasing, decreasing, bathtub, and upside-down
bathtub shaped hazard rates. They also examined logistic-Fréchet distribution as a particular
model. Tahir et al. [5] introduced a new generator from the Weibull random variable called
the Weibull-G family. They showed that the density and hazard rate function can assume
a variety of shapes. Cordeiro et al. [6] invented a generalized odd log-logistic family
of distributions with two extra shape parameters. They also produced the log-odd log-
logistic Weibull regression model with censored data based on the odd log-logistic-Weibull
distribution. Afify et al. [7] formulated odd exponentiated half logistic-G family. They
provided some special models of this family and demonstrated that special models are
capable of modelling various shapes of ageing and failure criteria.

Haghbin et al. [8] introduced a new generalized odd log-logistic family of distribu-
tions with three extra parameters. The authors pointed out that the family contains several
important classes available in the literature as sub-models such as the proportional re-
versed hazard rate and odd log-logistic classes. El-Sherpieny and EL-Sehetry [9] developed
Kumaraswamy type I half logistic-G family and figured out that the new family extends
well-known distributions as well as it provides great flexibility to model specific real data.
El-Morshedy and Eliwa [10] originated a new generator of continuous distributions called
the odd flexible Weibull-H family and studied its properties.

Recently, Eliwa et al. [11] presented the odd Chen-G family and discussed its various
properties. Further, Eliwa et al. [12] provided an exponentiated version of the odd Chen-G
family and named it as Exponentiated odd Chen-G family. They also pointed out that its
hazard rate function can be increasing, decreasing, unimodal-bathtub shaped. Alizadeh
et al. [13] proposed a new class of distributions called the odd log-logistic Lindley-G fam-
ily. The authors also demonstrated a special model of the proposed family that can have
symmetrical, right-skewed, left-skewed and reversed-J shaped densities, and decreasing,
increasing, bathtub, unimodal and reversed-J shaped hazard rates. Badr et al. [14] intro-
duced a new family of flexible distributions called the transmuted odd Fréchet-G family
and they exhibited that the particular models of the proposed family can assume different
kinds of monotonic and non-monotonic shapes for the probability density and hazard
rate functions. Tahir et al. [15] proposed a new Kumaraswamy-G family of distributions
for the bounded unit interval. The authors also studied the new Kumaraswamy-Weibull
(NKwW) distribution as a special model of the Kumaraswamy-G family. Eliwa et al. [16]
introduced a discrete version of the Gompertz-G family. They also examined some of its
distributional and reliability properties and discussed three special models in detail. Most
recently, Zaidi et al. [17] invented a new class named as log-logistic tan generalized family.
They also showed that the special models of this family can assume a variety of shapes for
density and hazard function.

Bourguignon et al. [18] invented a new continuous family of models, which became
popular as the odd Weibull-G (OW-G) family. The cumulative distribution function (CDF)
and the probability density function (PDF) of the OW-G family, respectively, can be written as

ΠOW-G(x; β,ϕ) = 1− e
−
(

G(x;ϕ)
G(x;ϕ)

)β

; x > 0 (1)

and

πOW-G(x; β,ϕ) = βg(x;ϕ)
G(x;ϕ)β−1

G(x;ϕ)β+1
e
−
(

G(x;ϕ)
G(x;ϕ)

)β

; x > 0, (2)



Entropy 2021, 23, 446 3 of 30

where the shape parameter β ∈ <+ (positive real line), g(x;ϕ) and G(x;ϕ) = 1− G(x;ϕ)
are, respectively, the PDF and survival function of the baseline model depend on a vector
of parameters, ϕ. Cordeiro et al. [19] provided a new flexible generator of models with
an additional shape parameter λ ∈ <+, and labeled it as type I half logistic-G (TIHL-G)
family. The CDF and PDF of the TIHL-G family, respectively, can be written as

Π∗TIHL-G(x; λ,ϕ) =
1− [1− G(x;ϕ)]λ

1 + [1− G(x;ϕ)]λ
; x > 0 (3)

and

π∗TIHL-G(x; λ,ϕ) =
2λg(x;ϕ)[1− G(x;ϕ)]λ−1[

1 + [1− G(x;ϕ)]λ
]2 ; x > 0. (4)

In this article, the main objective is to construct a new class of the type I half logistic odd
Weibull-G (Type I HLOW-G) by combining the type I half logistic and odd Weibull families.
The CDF of the Type I HLOW-G family is

FType I HLOW-G(x; λ, β,ϕ) =

[
1− e

−λ
(

G(x;ϕ)
G(x;ϕ)

)β
][

1 + e
−λ
(

G(x;ϕ)
G(x;ϕ)

)β
]−1

; x > 0, (5)

where λ ∈ <+ and β ∈ <+ are the scale and shape parameter, respectively. The odds
ratio G(x;ϕ)

G(x;ϕ)
satisfies the following conditions: G(x;ϕ)

G(x;ϕ)
∈ [l, m] for 0 < l < m < ∞; G(x;ϕ)

G(x;ϕ)

is monotonically non-decreasing and differentiable, and G(x;ϕ)
G(x;ϕ)

→ l as x → 0, but G(x;ϕ)
G(x;ϕ)

→ m as x → ∞. For further details regarding the physical meaning of the odds ratio, see
Cooray [20]. The PDF of Type I HLOW-G family can be inscribed as

fType I HLOW-G(x, λ, β,ϕ) =
2λβg(x;ϕ)G(x;ϕ)β−1

G(x;ϕ)β+1

[
1 + e

−λ
(

G(x;ϕ)
G(x;ϕ)

)β
]−2

e
−λ
(

G(x;ϕ)
G(x;ϕ)

)β

; x > 0. (6)

The hazard (failure) rate function (HRF) of the Type I HLOW-G family is

hType I HLOW-G (x, λ, β,ϕ) =
λβg(x;ϕ)G(x;ϕ)β−1

G(x;ϕ)β+1

[
1 + e

−λ
(

G(x;ϕ)
G(x;ϕ)

)β
]−1

; x > 0. (7)

The main objectives of proposing the Type I HLOW-G family can be stated as follows:
to list the special distributions containing different shaped HRF (increasing, decreasing,
unimodal, and Bathtub); to provide more flexibility for skewness and kurtosis as compared
to the baseline model; to consistently produce superior fits as compared to other generated
distributions with the same baseline model; and to illustrate how different estimators of
the unknown parameters of the particular sub-model perform for varied sample size and
various combinations of the parametric values. Table 1 reports G(x;ϕ)/ G(x;ϕ) with the
associated parameters for some particular models.

Table 1. Some special models of Type I HLOW-G family.

G(x;ϕ) G(x;ϕ)
G(x;ϕ)

Reduced Distribution ϕ

1− e−ax eax − 1 Type I HLOW-exponential a
1− e−

a
2 x2

e
a
2 x2 − 1 Type I HLOW-Rayleigh a

1−
(
1 + ax

a+1
)
e−ax (

1 + ax
a+1
)−1eax − 1 Type I HLOW-Lindely a

1− e−(
x
b )

a
e(

x
b )

a
− 1 Type I HLOW-Weibull (a, b)

e−(
a
x )

b
(

e(
a
x )

b
− 1
)−1

Type I HLOW-Fréchet (a, b)

1−
(
1 + x

b
)−a (

1 + x
b
)a − 1 Type I HLOW-Lomax (a, b)
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The rest of the study is organized as follows: In Section 2, linear representation for the
Type I HLOW-G density are derived. Section 3 contains several statistical characteristics of
the Type I HLOW-G family. In Section 4, some particular distributions are investigated. In
Section 5, the estimation of family parameters are explored through different estimation
techniques, viz, method of maximum likelihood, least squares and weighted least squares
methods, Cramér-von Mises distance estimators, and Bayesian estimation. Section 6 deals
with the Monte Carlo simulations for small, moderate, and large samples. In Section 7, two
real life data sets are examined to exemplify the flexibility of the Type I HLOW-G family.
Finally, some conclusions about the proposed study are made in Section 8.

2. Linear Representation for the Type I HLOW-G Density

In this Section, we have used some useful expansion functions that follow the general-
ized binomial series. If | s |< 1 and d > 0 is a real non-integer, then the following power
series holds

(1 + s)−d =
∞

∑
l=0

(−d
l )s

l (8)

and

(1− s)−d =
∞

∑
l=0

(−1)l(−d
l )s

l . (9)

Using Equations (8) and (9) to the last term in Equation (6), we get

fType I HLOW-G(x, λ, β,ϕ) = 2λβg(x;ϕ)
∞

∑
i=0

(−2
i )

G(x;ϕ)β−1

G(x;ϕ)β+1
e
−λ(i+1)

(
G(x;ϕ)
G(x;ϕ)

)β

, (10)

expanding e
−λ(i+1)

(
G(x;ϕ)
G(x;ϕ)

)β

through exponential series, we can write

e
−λ(i+1)

(
G(x;ϕ)
G(x;ϕ)

)β

=
∞

∑
j=0

(−1)jλj(i + 1)j

j!
G(x;ϕ)βj

G(x;ϕ)βj
,

insert the above term in Equation (10) we get

fType I HLOW-G(x, λ, β,ϕ) = 2λβ
∞

∑
i,j=0

(−1)jλj(i + 1)j

j!
(−2

i )g(x;ϕ)
G(x;ϕ)β(j+1)−1

G(x;ϕ)β(j+1)+1
, (11)

by using Equation (9) into Equation (11), we get

G(x;ϕ)−[β(j+1)+1] =
∞

∑
k=0

(−1)k(−β(j+1)−1
k )G(x;ϕ)k, (12)

inserting Equation (12) in Equation (11), the Type I HLOW-G density function can be
written as infinite mixture of Expo-G density function as follows

fType I HLOW-G(x, λ, β,ϕ) =
∞

∑
j,k=0

κ(λ,β)
(j,k)

π[β(j+1)+k](x;ϕ), (13)

where

κ(λ,β)
(j,k)

= 2β
∞

∑
i=0

(−1)j+kλj+1(i + 1)j

j!(β(j + 1) + k)
(−2

i )(
−β(j+1)−1

k )

and
π[β(j+1)+k](x;ϕ) = [β(j + 1) + k]g(x;ϕ)G[β(j+1)+k]−1(x;ϕ),

is the Exp-G PDF with power parameter [β(j + 1) + k]. As Type I HLOW-G density function
can be expressed as an infinite linear combination of Exp-G density functions, therefore
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several mathematical quantities of the Type I HLOW-G family can be determined obviously
from those of Exp-G family. For instance, the simple and incomplete moments, probability
weighted moments, moment generating function of the Type I HLOW-G model can be
derived directly from those expressions of the Exp-G model.

Similarly, the CDF of the Type I HLOW-G family can also be written as a mixture of
Exp-G CDF as follows

FType I HLOW-G(x; λ, β,ϕ) =
∞

∑
j,k=0

κ(λ,β)
(j,k)

Π[β(j+1)+k](x;ϕ), (14)

where Π[β(j+1)+k] is the Exp-G CDF with power parameter [β(j + 1) + k]. The expressions
in Equations (13) and (14) are the main result of this segment.

3. Statistical Properties
3.1. Quantile Function (QF)

The QF plays a very crucial role not only in theoretical aspect but also in various
statistical applications and Monte Carlo methods. Monte Carlo simulations use QF to
simulate continuous random variables from existing and newly proposed models. The QF
of the Type I HLOW-G family can be derived by inverting Type I HLOW-G CDF as follows

F−1
Type I HLOW-G(u) = Q(u) = G−1


{
− 1

λ log
[

1−u
1+u

]} 1
β

1 +
{
− 1

λ log
[

1−u
1+u

]} 1
β

,

where Q(u) denotes the QF corresponding to G(x;ϕ), G−1(.) is the inverse of the base-
line CDF, and U is a uniform random variable on (0, 1). Subject to the QF, Kenney and
Keeping [21] and Moors [22] proposed two of the earliest skewness (Sk) and kurtosis (Ku)
measures, respectively, as follows

Sk =
Q( 3

4 ) + Q( 1
4 )− 2Q( 1

2 )

Q( 3
4 )−Q( 1

4 )
and Ku =

Q( 7
8 )−Q( 5

8 ) + Q( 3
8 )−Q( 1

8 )

Q( 6
8 )−Q( 2

8 )
.

One remarkable thing about these measures is that they are less affected by outliers and
they can be obtained even for distributions without moments.

3.2. Moments and Moment Generating Function (MGF)

Various important features such as Sk, Ku, measures of central tendency and variation
can be derived from the rth moment. The rth moment of the Type I HLOW-G family can
be developed by Equation (13) as follows

µ
/

r = E(X r) =
∞

∑
j,k=0

κ(λ,β)
(j,k)

E(W r
[β(j+1)+k]), (15)

where W r
[β(j+1)+k] denotes the Exp-G random variable (RV) with power parameter

[β(j + 1) + k]. For ξ > 0, the rth moment of the Exp-G RV can be proposed by

E(W r
ξ ) = ξ

∫ ∞

−∞
xrg(x;ϕ)G(x;ϕ)ξ−1dx or E(W r

ξ ) = ξ
∫ 1

0
uξ−1QG(u)rdu,

where QG(u) = G−1(u). The Sk and the Ku can be calculated, respectively, as follows

Sk =
(

µ
′
3 − 3µ

′
2µ
′
1 + µ

′3
1

)
/
(

µ
′
2 − µ

′2
1

)3/2

and
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Ku =
(

µ
′
4 − 4µ

′
3µ
′
1 − 3µ

′2
2 + 12µ

′
2µ
′2
1 − 6µ

′4
1

)
/
(

µ
′
2 − µ

′2
1

)2
.

If the RV X has the Type I HLOW-G family, then the nth central moments and MGF can be
derived, respectively, as

Mn(x) =
∞

∑
r=0

∞

∑
j,k=0

(n
r)(−µ

/

1)
n−r κ(λ,β)

(j,k)
E(W r

[β(j+1)+k])

and

MX(t) = E(etX) =
∞

∑
j,k=0

κ(λ,β)
(j,k)

M[β(j+1)+k](t), (16)

here M(β(j+1)+k)(t) is the MGF of the Exp-G family. A second alternative formula to the
MGF of the Type I HLOW-G family is based of the QF, and can be presented as

MX(t) =
∞

∑
j,k=0

κ(λ,β)
(j,k)

υ(t, [β(j + 1) + k]), (17)

where υ(t, κ) = κ
∫ 1

0
uκ−1etQG(u)du.

3.3. Incomplete Moments and Mean Deviation

The incomplete moments are mostly used to describe the Bonferroni and Lorenz
curves (BLC) which are greatly applicable in reliability, insurance, medicine, economics,
and demography. Moreover, the BLC can be utilized to evaluate the mean deviations (MDs).
For more detail on BLC, one can refer Bonferroni [23] and Lorenz [24]. Let X follows the
Type I HLOW-G family, the sth incomplete moments can be derived as

ηs(t) =
∞

∑
j,k=0

κ(λ,β)
(j,k)

Υs
[β(j+1)+k](t); s > 0, (18)

where ηs(t) =
∫ t

−∞
xs fType I HLOW-G(x, λ, β,ϕ)dx and Υs

[β(j+1)+k](t) represents the sth in-

complete moments of the Exp-G family. Based on Equations (15) and (18), the MDs of the
Type I HLOW-G family about the mean (µ

/

1) and median can be listed, respectively, as

δ
µ

/
1
(X) = E | X− µ

/

1 |= 2µ
/

1 FType I HLOW-G(µ
/

1)− 2η1(µ
/

1) (19)

and

δQ( 1
2 )
(X) = E | X−Q

(
1
2

)
|= µ

/

1 − 2η1

[
Q
(

1
2

)]
. (20)

The MD is the most appropriate tool to measure the average absolute deviation of the
observations. It is used in many important fields including economics, insurance and
reliability theory.

For a positive RV, the BLC of the Type I HLOW-G family for a given probability p can
be written as

Bonferroni(p) =
1

pµ
/
1

η1(q) and Lorenz(p) =
1

µ
/
1

η1(q), (21)

where q = Q (p) is the QF of the Type I HLOW-G family at p.
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3.4. Probability Weighted Moments

The probability weighted moments (PWMs) are the generalization of the ordinary
moments of a probability distribution (PD) and can be obtained for any PD whose usual
moments exist. The PWM method can usually be applied to estimate the parameters of a
PD whose inverse CDF cannot be extracted in a closed-form. If the RV X has the Type I
HLOW-G family, then the (r, s)th PWM is given as

Ξ(r,s) = E{XrF(x)s} =
∞

∑
j,k=0

ε
(s)
j,k Ψs

[β(j+1)+k], (22)

where Ψs
[β(j+1)+k] is the PWM of the Exp-G family with power parameter [β(j + 1) + k],

and

ε
(s)
j,k = 2β

∞

∑
i,m=0

(−1)m+j+k λj+1(i + m)j

j!(β(j + 1) + k)
( s

m)(
−s−2

i )(−β(j+1)−1
k ).

3.5. Moments of Residual and Reversed Residual Lifetimes

In reliability analysis, the additional lifetime provided that a unit has survived until
time t is known as the residual lifetime (RLT) function of the unit, and it is presented by
the conditional RV X− x|X > x. If the RV X has the Type I HLOW-G family, the rth order
moment of the RLT can be obtained as

vr(x) = E[(X− x)r | X > x] =
1

1− FType I HLOW-G(x, λ, β,ϕ)

∞

∑
j,k=0

κ∗
j,k

Ψ∗r[β(j+1)+k](x), (23)

whereκ∗
j,k
= κ(λ,β)

(j,k) ∑r
m=0 (

r
m)(−t)r−m, and Ψ∗r

[β(j+1)+k] (x) =
∫ ∞

x yr π[β(j+1)+k](y)dy. Putting
r = 1 in Equation (23), the mean RLT (MRLT) can be derived. The MRLT is a well-known con-
cept in reliability and survival analysis (see, Gupta and Gupta [25]; Kundu and Nanda [26]).

The reversed mean residual lifetime (RRLT) (or inactivity time) can be described as a
conditional RV x− X | X < x which indicates the time elapsed from the failure of a unit
provided that its lifetime is less than or equal to time x (see, Nanda et al. [27]). For the Type
I HLOW-G family, the rth order moment of the RRLT can be derived as

v∗r (x) = E[(x− X)r | X ≤ x] =
1

FType I HLOW-G(x, λ, β,ϕ)

∞

∑
j,k=0

κ∗
j,k

Ψ∗∗r[β(j+1)+k](x), (24)

where Ψ∗∗r
[β(j+1)+k] (x) =

∫ x
0 yr π(β(j+1)+k)(y)dy. Putting r = 1 in Equation (24), we can

obtain the mean RRLT (MRRLT) at age t.

3.6. Rényi Entropy (RiEy)

In general, entropy belongs to statistical mechanics, more specifically microscopic
variables. The RiEy is useful in many fields such as statistical inference, problems iden-
tification in statistics, communication, physics, econometrics and pattern recognition in
computer science. It is a important measure of the variation of uncertainty and complexity
(see, Rényi [28]). If the RV X has the Type I HLOW-G family, then the RiEy can be defined
as (ρ > 0, ρ 6= 1)

IR(ρ) =
1

1− ρ
log
[∫ ∞

−∞
f ρ
Type I HLOW-G(x, λ, β,ϕ)dx

]
=

1
1− ρ

log

[
∞

∑
j,k=0

∆j,k

∫ ∞

−∞
g(x;ϕ)ρ G(x;ϕ)β(ρ+j)+k−ρdx

]
, (25)

where (ρ > 0, ρ 6= 1) and
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∆j,k = (2λβ)ρ
∞

∑
i=0

(−1)j+k λj(ρ + i)j

j !
(−2ρ

i )(−β(ρ+j)−ρ)
k ).

Shannon entropy (SEy) can be listed as a special case of RiEy when ρ tends to 1,
where SEy = −E[log f (x; λ, β,ϕ)]. Furthermore, many authors proposed various types of
entropy with some applications, for instance, Di Crescenzo and Longobardi [29] studied
the characteristics of past entropy which represents the entropy of the inactivity time
of a system (t− X|X < t). Baratpour et al. [30] proposed entropy properties of record
statistics. Sunoj et al. [31] introduced the interval entropy which is the use of SEy for doubly
truncated random variables. It plays a significant role in studying the various aspects of a
system when it fails between two time points. Another entropy concept has been reported
in the statistical literature, for example, Havrda and Charvát [32], Arimoto [33], Tsallis [34],
and among others. Based on the proposed family in a linear representation formula, the
previous entropies can be calculated by utilizing Maple software. For ρ 6= 1 and ρ > 0, the
Havrda and Charvát (HC), Arimoto (A) and Tsallis (T) entropies can be reported as follows

HCR(ρ) =
1

21−ρ − 1

 ∞

∑
j,k=0

∆j,k

∞∫
−∞

[g(x;ϕ)]ρ[G(x;ϕ)]β(ρ+j)+k−ρdx− 1

,

AR(ρ) =
ρ

1− ρ


 ∞

∑
j,k=0

∆j,k

∞∫
−∞

[g(x;ϕ)]ρ[G(x;ϕ)]β(ρ+j)+k−ρdx

 1
ρ

− 1

,

and

TR(ρ) =
1

γ− 1

1−
∞

∑
j,k=0

∆j,k

∞∫
−∞

[g(x;ϕ)]ρ[G(x;ϕ)]β(ρ+j)+k−ρdx

; γ > 0,

respectively, where

HCR(ρ) =
1

21−ρ − 1

 ∞∫
−∞

f ρ
Type I HLOW-G(x; λ, β,ϕ)dx− 1

,

AR(ρ) =
1

1− ρ


 ∞∫
−∞

f ρ
Type I HLOW-G(x; λ, β,ϕ)dx

 1
ρ

− 1


and

TR(ρ) =
1

γ− 1

1−
∞∫
−∞

f ρ
Type I HLOW-G(x; λ, β,ϕ)dx

; γ > 0.

3.7. Order Statistics (OrSt)

The OrSt has great importance in inference and non-parametric statistics. In view of this,
here, we have derived the PDF for the ith OrSt of Type I HLOW-G family. Suppose x1, . . . , xn
be a random sample (RS) from the proposed distribution family, and assume that x1:n, . . . , xn:n
denotes the corresponding OrSt. Then, the PDF of the ith OrSt is given as follows

fi:n(x; λ, β,ϕ) =
n!

(i− 1)!(n− i)!
fType I HLOW-G (x; λ, β,ϕ)Fi−1

Type I HLOW-G (x; λ, β,ϕ)
[
1− FType I HLOW-G (x; λ, β,ϕ)

]n−i

=
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(−1)j(n−i
j ) fType I HLOW-G (x; λ, β,ϕ)Fi+j−1

Type I HLOW-G (x; λ, β,ϕ) (26)

=
n!

(i− 1)!(n− i)!

n−i

∑
j=0

∞

∑
m,k=0

(−1)j(n−i
j )Υ(j)

m,k π[β(m+1)+k](x;ϕ),
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where

Υ(j)
m,k = 2λβ

∞

∑
d,h=0

(−1)d+k+m[λ(h + d) + 1]m

m!(β(m + 1) + k)
(−i−j−1

h )(i+j+1
d )(−β(m+1)−1

k ).

Using Equation (26), we can obtain the moments of Xi:n for the Type I HLOW-G family.

4. Special Type I HLOW-G Models
4.1. The Type I HLOW-Fréchet (Type I HLOWFr) Distribution

Consider the CDF of the Fréchet (Fr) model with parameters (a, b) ∈ <+ (see, Table 1).
Then, the CDF corresponding to the Type I HLOWFr model is

FType I HLOWFr(x; λ, β, a, b) =

1− e
−λ

(
e(

a
x )

b
−1
)−β
1 + e

−λ

(
e(

a
x )

b
−1
)−β
−1

; x > 0. (27)

Figure 1 illustrates various shapes of PDF and HRF of Type I HLOWFr model for different
values of the parameters λ, β, a and b.
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Figure 1. The various plots of PDF (left panel) and HRF (right panel) for Type I HLOWFr distribution.

Figure 1 shows that the PDF can be used to fit positively skewed, negatively skewed,
and symmetric data sets. Moreover, the HRF can take various shapes (increasing–decreasing–
unimodal). So, the Type I HLOWFr can be employed to analyze different types of data in
various fields, especially, in engineering and weather forecasting areas. Based on the rth
moment, the skewness and kurtosis of the Type I HLOWFr distribution for some particular
choices of (a, b) = (0.1, 3.5) “left panel” and (a, b) = (0.3, 8.5) “right panel” as function of λ
and β are displayed in Figure 2.

From Figure 2, we can observe that as the value of λ and β increases, the Type I
HLOWFr distribution changes from negatively skewed to positively skewed, while the
kurtosis of the proposed model transforms from leptokurtic to mesokurtic. Additionally,
for large values of a and b, the skewness and kurtosis of the Type I HLOWFr model change
rapidly. Hence, it is worth saying that the parameters λ and β greatly affect the shape of
the Type I HLOWFr model.
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Figure 2. The various plots of skewness and kurtosis for Type I HLOWFr distribution.

4.2. The Type I HLOW-Exponential (Type I HLOWEx) Distribution

Consider the CDF of the exponential (Ex) model with parameter a ∈ <+ (see, Table 1).
Then, the CDF corresponding to the Type I HLOWEx model is

FType I HLOWEx(x; λ, β, a) =
[
1− e−λ(eax−1)β

][
1 + e−λ(eax−1)β

]−1
; x > 0. (28)

Figure 3 depicts the PDF and HRF plots of the Type I HLOWEx distribution for different
choices of the parameters λ, β and a. From this figure, it can be seen that the PDF of the
Type I HLOWEx model can be utilized to fit negatively skewed, positively skewed and
symmetric data sets. Moreover, the PDF can be uni-modal and bi-modal-shaped which
can be useful in different fields, especially, in medical, weather forecasting, insurances and
engineering areas. Another important advantage of Type I HLOWEx distribution is that its
HRF can have different shapes (increasing–bathtub).
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Figure 3. The various plots of PDF (left panel) and HRF (right panel) for Type I HLOWEx distribution.

Based on the rth moment, the skewness and kurtosis of the Type I HLOWEx model
for some choices of a = 2.5 “left panel” and a = 3.5 “right panel” as function of λ and β are
listed in Figure 4.

From Figure 4, we can see that for small values of λ and β Type I HLOWEx distribution
can take a negatively skewed or positively skewed shape, but as the value of β increases, it
becomes symmetric. On the contrary, the kurtosis of the proposed model changes rapidly
from leptokurtic to mesokurtic when the value of β and a increases. So, we can say that the
parameters λ and β greatly affect the shape of the Type I HLOWEx model.

Figure 4. Cont.
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Figure 4. The plots of skewness and kurtosis for Type I HLOWEx distribution.

5. Different Estimation Techniques
5.1. Maximum Likelihood Estimation (MLE)

Suppose x1, . . . , xn be a RS of size n generated from the Type I HLOW-G family, and
Θ = (λ, β,ϕ)T be q× 1 vector of unknown parameters. Then, the log-likelihood (l) function
can be derived as

l(x; Θ) = n log(2λ) + n log(β) + ∑n
i=1 log g(xi;ϕ) + (β− 1)∑n

i=1 log G(xi;ϕ)

− (β + 1)∑n
i=1 log(G(xi;ϕ))− λ ∑n

i=1 tβ
i − 2 ∑n

i=1 log
[

1− e−λtβ
i

]
,

where ti =
G(xi ;ϕ)
G(xi ;ϕ)

. The components of score function U(Θ) = (Uλ, Uβ, Uϕ)T are

Uλ =
∂ln
∂λ

=
n
λ
−∑n

i=1 tβ
i − 2 ∑n

i=1

tβ
i e−λtβ

i

1− e−λtβ
i

,

Uβ =
∂ln
∂β

=
n
β
+ ∑n

i=1 log G(xi;ϕ)−∑n
i=1 log(G(xi;ϕ))

− λ ∑n
i=1 tβ

i log(ti)− 2λ ∑n
i=1

tβ
i e−λtβ

i log(ti)

1− e−λtβ
i

and

Uϕk
=

∂ln
∂ϕk

= ∑n
i=1

g′(xi;ϕk)

g(xi;ϕk)
+ (β− 1)∑n

i=1
G′(xi;ϕk)

G(xi;ϕk)
− (β + 1)∑n

i=1
G′(xi;ϕk)

G(xi;ϕk)

− λβ ∑n
i=1 tβ−1

i ( ∂ti
∂ϕk

)− 2 ∑n
i=1

λβtβ−1
i e−λtβ

i

1− e−λtβ
i

( ∂ti
∂ϕk

),

where g′(xi;ϕk) =
∂g(xi ;ϕk)

∂δk
, G′(xi;ϕk) =

∂G(xi ;ϕk)
∂δk

, G′(xi;ϕk) =
∂G(xi ;ϕk)

∂δk
and ϕk denotes the

kth item of the vector of unknown parameters. The MLEs of parameters λ, β, and ϕk are
extracted by solving Uλ = Uβ = Uϕk

= 0 and the simultaneous solution of these equations
provides the MLE(Θ̂). We can solve the above equations computationally through any
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iterative method. Since the exact distribution of the MLE is difficult to obtain, therefore by
using the asymptotic distribution of the MLE, we can compute the standard errors (SEs) of
the estimates. Although to obtain the MLEs and the associated SEs, we can simply use the
package maxLik( ) available in the R software (R Core Development Team).

5.2. Simple and Weighted Least-Squares Estimators

Suppose x(1), x(2), . . . , x(n) be the OrSt corresponding to a RS of size n from the pro-
posed distribution family. The least squares estimators (LSEs) of the family parameters,
say, λ̂LS, β̂LS and ϕ̂kLS are achieved by minimizing

V(λ, β,ϕ) =
n

∑
j=1

[
FType I HLOW-G(x(j)|λ, β,ϕk)−

j
n + 1

]2
,

with respect to λ, β, and ϕk; k = 1, 2, 3, . . . . The weighted least squares estimators (WLSEs)
of the Type I HLOW-G family parameters, say, λ̂WLS, β̂WLS and ϕ̂kWLS can be computed
by minimizing

W(λ, β,ϕ) =
n

∑
j=1

(n + 1)2(n + 2)
j(n− j + 1)

[
FType I HLOW-G(x(j)|λ, β,ϕk)−

j
n + 1

]2
,

with respect to λ, β, and ϕk; k = 1, 2, 3, . . . Computationally, we can minimize the statistics
V and W through various inbuilt functions like nls( ) function (available in the stats package
of R software). Furthermore, as the exact distribution of the statistics, V and W are not easily
obtainable, therefore, such functions can also be used to compute the SEs of the estimates.

5.3. Cramer-Von Mises Minimum Distance Estimators

Minimum distance estimators (MDEs) are those estimators that minimize the differ-
ence between theoretical and empirical CDFs. Here, we have used an eminent MDE, called
the Cramér-von Mises estimator (CVME). The main advantage of this MDE is that it has
less bias than other MDEs. The CVMEs of the Type I HLOW-G family parameters, say
λ̂CVM, β̂CVM and ϕ̂kCVM are derived by minimizing

C(λ, β,ϕ) =
1

12n
+

n

∑
i=1

[
FType I HLOW-G(x(i)|λ, β,ϕk)−

2i− 1
2n

]2
,

with respect to λ, β and ϕk; k = 1, 2, 3, . . . . We can use the inbuilt functions of R software to
compute the CVMEs along with the SEs of the unknown parameters.

5.4. Estimation through Bayesian Viewpoint

In this sub-section, we have evolved the Bayesian estimation for some particular models
of the proposed family. Since, in this article, we have demonstrated Type I HLOWFr and
Type I HLOWEx as special models, so we have used these distributions to draw Bayesian
inferences. The main advantage of Bayesian paradigm is that it enables us to incorporate the
prior knowledge with the experimental information. The prior information can be informative
(non-informative) in the sense that it has a more (or less) impact on the likelihood function.
The likelihood function of the Type I HLOWFr distribution can be inscribed as

L(x|λ, β, a, b) ∝ λnβnanbbn
(

n
∏
i=1

x−b
i

)
exp

(
−β

n
∑

i=1
(a/xi)

b − λ
n
∑

i=1

(
exp(a/xi)

b − 1
)−β

)
×

n
∏
i=1

{(
1 + exp

(
−λ
(

exp(a/xi)
b − 1

)−β
))−2(

1− exp
(
−(a/xi)

b
))(−β−1)

}
.

To proceed further, we have assumed independent Gamma priors for λ, β, a, and b,
i.e., λ ∼ Gamma(c1, c2), β ∼ Gamma(d1, d2), a ∼ Gamma(δ1, δ2), and b ∼ Gamma(ν1, ν2).
Here, the hyper parameters are known and non-negative and can be set to reflect the
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informative and non-informative beliefs about the unknown parameters. Thus, via Bayes
theorem, the unnormalized joint posterior density function of (λ, β, a, b) given data can be
presented as

P1(λ, β, a, b|x) ∝ λn+c1−1 exp
(
−λ

(
c2 +

n
∑

i=1

(
exp(a/xi)

b − 1
)−β

))
×βn+d1−1 exp

(
−β

(
d2 +

n
∑

i=1
(a/xi)

b +
n
∑

i=1
log
(

1− exp
(
−(a/xi)

b
))))

×aδ1−1 exp(−δ2a)
n
∏
i=1

{(
1 + exp

(
−λ
(

exp(a/xi)
b − 1

)−β
))−2(

1− exp
(
−(a/xi)

b
))−1

}
×bn+ν1−1 exp

(
−b
(

ν2 − n log(a) +
n
∑

i=1
log xi

))
.

(29)

To obtain Bayes estimators (BEs) of the unknown parameters or any of their functions,
the loss functions play a very important role. They give a measure of the financial conse-
quences arising from an incorrect estimate of an unknown parameter. Here, we have used
a well-known symmetric loss function popularized as a squared error loss (SEL) function.

It takes the form as L1(θ, θ̂) =
(

θ̂ − θ
)2

, where θ̂ is an estimate of the parameter θ. It
facilitates equal weightage to negative as well as positive error. Under the SEL function,
the BE of any function of parameters, Θ = (λ, β, a, b), say, v(Θ) can be acquired as

v̂SEL(Θ|x) = EΘ|x(v(Θ)) =
∫
Θ

v(Θ)P1(Θ|x)dΘ . (30)

Sometimes, in the estimation of a population parameter, positive and negative errors
can have different consequences. Therefore, in such situations, we should consider a loss
function that is asymmetric in nature. In view of this, here we have also used an asymmetric
loss function known as generalized entropy loss (GEL) function. It can be expressed as

L2(θ, θ̂) ∝
(

θ̂
θ

)κ
− κ log

(
θ̂
θ

)
− 1, where the sign and magnitude of the shape parameter

κ( 6= 0) represent the direction and degree of asymmetry, respectively. The GEL function
has some important features as follows: for κ > 0, GEL function gives more weightage to
positive errors as compare to negative errors and vice-versa; if we set κ = −1, then BEs
under GEL function becomes BEs with SEL function; for κ = 1, one can obtain the BEs
under entropy loss (EL) function; for κ = −2, it provides the BEs under precautionary loss
(PL) function.

Under the GEL function, the BE of v(Θ) can be derived as

v̂GEL(Θ|x) =
[

EΘ|x((v(Θ))(−κ))
]−(1/κ)

=

∫
Θ

v(Θ)P1(Θ|x)dΘ

−(1/κ)

. (31)

Due to the non-closure form of joint posterior density in Equation (29), we have used
famous Monte Carlo Marko Chain (MCMC) methods such as Gibbs sampler (Geman
and Geman [35]) and Metropolis-Hasting (M-H) algorithm (Metropolis and Ulam [36];
Hasting [37]). These techniques allow us to simulate complex posterior densities and to
make sample-based inferences on the unknown parameters. For the execution of Gibbs
sampler, the marginal distributions can be obtained as follows:

p14(b|a, x) ∼ Gamma(n + ν1, ν2 − n log(a) +
n
∑

i=1
log xi),

p12(β|a, b, x) ∼ Gamma(n + d1, d2 +
n
∑

i=1
(a/xi)

b +
n
∑

i=1
log(1− exp(−(a/xi)

b))),

p11(λ|β, a, b, x) ∼ Gamma(n + c1, c2 +
n
∑

i=1
(exp(a/xi)

b − 1)−β),
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and

p13(a|λ, β, b, x) ∼ aδ1−1 exp(−δ2a)
n
∏
i=1
{(1 + exp(−λ(exp(a/xi)

b − 1)−β))−2(1− exp(−(a/xi)
b))−1}.

Thus, we can generate λ, β, and b from the above mentioned Gamma distributions
under the Gibbs algorithm. Since it is not possible to generate the parameter a directly
through p13(a|λ, β, b, x), therefore, we have used the M-H algorithm. Hence, to determine
the BEs of unknown parameters of the model, the whole process can be described through
the following hybrid algorithm:

Step 1. Initialize (λ0, β0, a0, b0) as starting guess of (λ, β, a, b).
Step 2. Set j = 1.
Step 3. For given values of n and x, generate bj, β j, and λj from their respective posterior

densities p14(b|aj−1, x), p12(β|aj−1, bj, x), and p11(λ|β j, aj−1, bj, x).
Step 4. Generate aj from p13(aj|λj, β j, bj, x) using Normal transition distribution under the

following steps of the M-H algorithm.

(i) Generate a proposal point a∗ from a normal distribution with mean aj−1 and
variance Va. Here, the variance Va can be chosen appropriately.

(ii) Calculate the acceptance probability ρa as

ρa = min
[
1, p13(a∗|λj, β j, bj, x)/p13(aj−1|λj, β j, bj, x)

]
.

(iii) Draw a random uniform number u1 from Uniform(0,1) distribution.
(iv) If u1 ≤ ρa , accept a∗ and record aj = a∗, otherwise, sustain aj = aj−1.

Step 5. Set j = j + 1.
Step 6. Rerun the steps 3-5, a large number of times say, M times and achieve λj, β j, aj,

and bj, j = 1, 2, . . . , M.

Thus, to ensure convergence and to avoid the effect of the initial guess, we have
omitted the initial N draws. Then, the generated values, λj, β j, aj, and bj, j = N + 1, N +
2, . . . , M, represent the required posterior samples, which can be utilized to draw the
Bayesian conclusions about the unknown parameters. Hence, the BEs of ψ = λ, β, a, and b
under SEL and GEL functions are respectively, given by

ψ̂SEL =
1

M− N

M

∑
j=N+1

ψj and ϕ̂GEL =

[
1

M− N

M

∑
s=N+1

ϕ−κ
(s)

](−1/κ)

.

Here, it is notable that by putting the values of κ in the above expression of BEs under GEL
function, we can obtain the BEs under PL and EL functions. Furthermore, to compute the
posterior SE associated with a BE of a parameter, we can simply calculate the SE of the
generated posterior sample corresponding to that parameter.

For Type I HLOWEx distribution, the likelihood function can be presented as

L(x|λ, β, a) ∝ λnβnan exp
(

aβ
n
∑

i=1
xi − λ

n
∑

i=1
(exp(axi)− 1)β

)
×

n
∏
i=1

{(
1 + exp

(
−λ(exp(axi)− 1)β

))−2
(1− exp(−axi))

(β−1)
}

.

Further, to perform Bayesian analysis for Type I HLOWEx distribution, Gamma(c3, c4),
Gamma(d3, d4), and Gamma(δ3, δ4) are used as the independent prior densities for the
unknown parameters λ, β, and a, respectively. Thus, by celebrating Bayes theorem, the
joint posterior distribution of (λ, β, a) given x is

P2(λ, β, a|x) ∝ λn+c3−1 exp
(
−λ

(
c4 +

n
∑

i=1
(exp(axi)− 1)β

))
×βn+d3−1 exp

(
−β

(
d4 − a

n
∑

i=1
xi −

n
∑

i=1
log(1− exp(−axi))

))
×an+δ3−1 exp(−δ4a)

n
∏
i=1

{(
1 + exp

(
−λ(exp(axi)− 1)β

))−2
(1− exp(−axi))

−1
}

.

(32)
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Thus, to achieve the BEs of λ, β, and a with SEL and GEL functions, the expectations
of the form (30) and (31) are difficult to obtain under the joint posterior distribution in
Equation (32). Therefore, by using the same hybrid algorithm as we did earlier in the
Bayesian estimation of the Type I HLOWFr model, we can construct the BEs of the unknown
parameters of the Type I HLOWFr distribution. For this purpose, one can obtain the marginal
densities as:
p22(β|a, x) ∼ Gamma(n + d3, d4 − a

n
∑

i=1
xi −

n
∑

i=1
log(1− exp(−axi))),

p21(λ|β, a, x) ∼ Gamma(n + c3, c4 +
n
∑

i=1
(exp(axi)− 1)β), and

p23(a|λ, β, x) ∼ an+δ3−1 exp(−δ4a)
n
∏
i=1

((1 + exp
(
−λ(exp(axi)− 1)β

)
)−2(1− exp(−axi))

−1).

6. The Monte Carlo Simulation Study

Here, we have conducted a Monte Carlo simulation study to compare the behaviour
of the different estimation techniques (MLEs, LSEs, WLSEs, CVMEs, and BEs) with respect
to sample size n. In this numerical analysis, the estimation of the unknown parameters of
the Type I HLOWFr and Type I HLOWEx distributions are considered. We have used R
software to generate the samples and to compute the various estimates. For this purpose,
we have proceeded through the following steps:

1. We have drawn 1000 samples of size n = 20, 25, 30, . . . , 150 from Type I HLOWFr
(λ, β, a, b) = (1.3, 1.8, 1.5, 1.9) and Type I HLOWEx(λ, β, a) = (1.3, 2.3, 1.5), respec-
tively, through the R software.

2. We have calculated the MLEs, LSEs, WLSEs, CVMEs, and BEs for each of the 1000
samples, say λ̂j, β̂ j, âj and b̂j for j = 1, 2, . . . , 1000.
It is worth noting that in the case of Bayesian estimation, we have obtained parameter
estimates of Type I HLOWFr and Type I HLOWEx distributions under two types of
priors viz, informative prior (IP) and non-informative prior (NIP) with SEL, PL and
EL functions. For Gamma IPs, we have determined the values of hyperparameters in
such a way that the expectation of the corresponding prior density of each unknown
parameter is equal to the true parameter value with variance 0.4. Whereas, for NIP,
with a variance as large as 2.5, we have fixed hyperparameters similar to the case
of IPs. In this estimation paradigm, we have generated 55,000 MCMC draws for
the parameters of Type I HLOWFr and Type I HLOWEx distribution and to ensure
convergence of the chains, we have excluded first 5000 samples as burn-in period.
Furthermore, to avoid the auto-correlation between the successive draws, we have
stored every 10th observation. We have observed the convergence of the chains
through the various MCMC diagnostic plots in Figures 5 and 6. The convergence
diagnostics is also performed through Geweke’s [38] criterion with a 95% credibility
level. Finally, using these posterior samples, we have calculated the BEs for the
unknown parameters of the Type I HLOWFr and Type I HLOWEx distributions.

3. We have calculated the average biases (ABs) and mean-squared errors (MSEs) for
ψ = λ, β, a, and b, through the following formulas

AB =
1

1000

1000

∑
j=1

(
ψ̂j − ψ

)
and MSE =

1
1000

1000

∑
j=1

(
ψ̂j − ψ

)2.

4. The empirical results are given in Figures 7–14, respectively. In classical scenario, the
simulation study is performed only for both MLE and LSE methods because the LSE,
WLSE and CVME methods gave almost the same results.
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Figure 5. MCMC diagnostic plots for the parameters of Type I HLOWFr(λ, β, a, b) = (1.3, 1.8, 1.5, 1.9) distribution.
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Figure 7. The AB and MSE of the Type I HLOWFr(λ, β, a, b) = (1.3, 1.8, 1.5, 1.9) based on MLE method.
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Figure 8. The AB and MSE of the Type I HLOWEx(λ, β, a) = (1.3, 2.3, 1.5) based on MLE method.
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Figure 9. The AB and MSE of the Type I HLOWFr(λ, β, a, b) = (1.3, 1.8, 1.5, 1.9) based on LSE method.
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Figure 10. The AB and MSE of the Type I HLOWEx(λ, β, a) = (1.3, 2.3, 1.5) based on LSE method.



Entropy 2021, 23, 446 20 of 30

20 60 100 140

−
0
.0

5
0
.0

0
0
.0

5

n

b
ia

s
(λ

)

20 60 100 140

−
0
.0

6
−

0
.0

2
0
.0

2
0
.0

6

n

b
ia

s
(β

)

20 60 100 140

−
0
.0

2
0

−
0
.0

1
0

0
.0

0
0

n

b
ia

s
(a

)

20 60 100 140

−
0
.0

4
0
.0

0
0
.0

4

n

b
ia

s
(b

)

20 60 100 140

0
.0

0
2

0
.0

0
6

n

M
S

E
(λ

)

20 60 100 140

0
.0

1
2

0
.0

1
6

0
.0

2
0

n

M
S

E
(β

)

20 60 100 140

0
.0

0
1

0
.0

0
3

0
.0

0
5

n

M
S

E
(a

)

20 60 100 140

0
.0

1
0

0
.0

1
5

0
.0

2
0

n

M
S

E
(b

)

BEs under EL function BEs under PL function BEs under SEL function

Figure 11. The AB and MSE of the Type I HLOWFr(λ, β, a, b) = (1.3, 1.8, 1.5, 1.9) based on BE with IP method.
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Figure 12. The AB and MSE of the Type I HLOWEx(λ, β, a) = (1.3, 2.3, 1.5) based on BE with IP method.
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Figure 13. The AB and MSE of the Type I HLOWFr(λ, β, a, b) = (1.3, 1.8, 1.5, 1.9) based on BE with NIP method.
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Figure 14. The AB and MSE of the Type I HLOWEx(λ, β, a) = (1.3, 2.3, 1.5) based on BE with NIP method.

From Figures 7–14, We come to the following important conclusions:
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1. As the value of n increases, the magnitude of the bias decreases towards zero.
2. The MSEs of all estimators decrease when we increase the value of the sample size.

This finding supports the first-order asymptotic theory.
3. In classical estimation of Type I HLOWFr model with small and moderate sample

size, λ and b are negatively biased whereas the parameters β and a are positively
biased. On the contrary, in Bayesian framework (with IPs or NIPs) under SEL and PL
functions only the parameter a is underestimated and rest of the parameters are over
estimated. Also, all the unknown parameters are underestimated when EL function
is considered in the Bayesian analysis with IPs or NIPs.

4. For the Type I HLOWEx distribution, in the classical and Bayesian estimation with
SEL and PL functions, all parameters are positively biased, whereas the BEs under EL
function are negatively biased except for the BEs of the parameter a.

5. From the above simulation, we have observed that with respect to the sample size
n, estimation of Type I HLOWEx parameters is more sensitive than Type I HLOWFr
parameters for all estimation techniques.

6. In view of MSEs, clearly, MLE, LSE, WLSE, CVME, and BE (under IPs and NIPs)
techniques perform satisfactorily in the estimation of Type I HLOWFr and Type I
HLOWEx parameters. However, with respect to MSE, BEs (along with IPs and NIPs)
dominates all other rival estimation procedures.

7. Particularly, in the Bayesian estimation of Type I HLOWFr and Type I HLOWEx
distributions, the BEs (with NIPs and IPs) under the SEL function have outperformed
the BEs (with NIPs and IPs) under PL and EL functions.

7. Applications

In this segment, we have demonstrated the empirical significance of the Type I HLOWFr
and Type I HLOWEx models using two applications of real data. We have compared the
fitted models through various measures of goodness of fit (GOF) such as the negative maxi-
mized log-likelihood (-logL), Akaike information criterion (AkIC), correct Akaike information
criterion (CAkIC), Bayesian information criterion (BsIC), Hannan-Quinn information crite-
rion (HQIC), Cramér-von Mises (CvM), Anderson-Darling (AD) statistics and Kolmogorov
Smirnov (KS) statistic with the associated p-value.

7.1. Data Set I: Aluminum Coupons (AmCs)

The first data set consists the fatigue time of 101 6061-T6 AmCs cut parallel to the direc-
tion of rolling and oscillated at 18 cycles per second (cps), see Birnbaum and Saunders [39].
We have used this data to show the fitting capability of the Type I HLOWFr model relative
to some other competing models such as Topp-Leone Fr (ToLFr), transmuted Fr (TrFr),
exponentiated TrFr (ETrFr), Gumble Fr (GuFr), type I generalized Fr (TIGFr), exponentiated
Fr (EFr) and Fr distributions. Table 2 reports the MLEs with their corresponding SEs, KS
and p-value for AmCs data, whereas the GOF statistics are listed in Table 3.

From Tables 2 and 3, we can clearly see that the Type I HLOWFr model has the lowest
values among -logL, AkIC, CAkIC, BsIC, HQIC, AD, CvM and KS. Further, the Type I
HLOWFr distribution has the largest p-value compared to other rival distributions. Hence,
the Type I HLOWFr model yields a superior fit to the AmCs data set than other fitted
models. Figure 15a shows the Kernel density, box, TTT, and Normal quantile-quantile (Q-Q)
plots, whereas the Figure 15b depicts the fitted PDF, probability-probability (PP), estimated
HRF, and estimated survival function (SF) plots of the Type I HLOWFr model for the AmCs
data. These figures support our finding obtained from Tables 2 and 3. Also, the TTT plot
in Figure 15a reveals that the data set I has an increasing failure rate, and consequently,
the Type I HLOWFr model can be used to analyze this data (see, the estimated HRF in
Figure 15b).
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Table 2. The MLEs with their (SEs) and KS with its p-value for AmCs data.

Model λ̂ β̂ â b̂ KS p-Value

Type I HLOWFr 0.0804 3.1059 65.4987 1.4272 0.0891 0.3987
(0.0014) (0.0145) (0.1753) (0.4523) − −

ToLFr 35.0775 0.7832 59.6911 4.0886 0.1214 0.1017
(2.0369) (0.5881) (2.0365) (0.4291) − −

TrFr 0.9991 − 136.9523 3.9802 0.1208 0.1049
(0.1074) − (5.7146) (0.8631) − −

ETrFr −0.9979 0.2594 136.9564 5.5829 0.1235 0.0918
(0.0034) (0.1286) (12.3828) (0.3745) − −

GuFr 1.9688 0.02939 3.4574 0.1072 0.1351 0.0500
(0.0041) (0.0032) (0.0147) (0.0079) − −

TIGFr 16648.9937 74.4737 7.5315 5.0567 0.1328 0.0567
(7108.4949) (275.7257) (5.6109) (0.3249) − −

EFr − 73.2216 51.6791 5.0575 0.1329 0.0563
− (0.1473) (0.1421) (0.3252) − −

Fr − − 120.7822 5.0575 0.1329 0.0563
− − (2.5251) (0.3252) − −

Table 3. The GOF Statistics for the AmCs data.

Model −logL AkIC CAkIC BsIC HQIC AD CvM DF

Type I HLOWFr 461.1651 930.3302 930.7469 940.7907 934.5649 0.8685 0.1369 4
ToLFr 466.3545 940.7090 941.1256 951.1695 944.9437 1.5426 0.2704 4
TrFr 466.4059 938.8118 939.0592 946.6571 941.9878 1.5649 0.2750 3

ETrFr 468.9391 945.8782 946.2949 956.3387 950.1129 1.9234 0.3470 4
GuFr 475.7321 959.4625 959.8792 969.9230 963.6972 2.5578 0.4431 4
TIGFr 475.1911 958.3821 958.7988 968.8426 962.6168 2.4967 0.4329 4

EFr 475.1857 956.3714 956.6188 964.2168 959.5474 2.4971 0.4330 3
Fr 475.1857 954.3714 954.4939 959.6017 956.4888 2.4971 0.4330 2
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Figure 15. Plots for AmCs data based on the Type I HLOWFr model.

Herein, the various approaches of estimation proposed in Section 5 have utilized to es-
timate the unknown parameters of the Type I HLOWFr distribution. Here, it is notable that
in the case of BEs, since we have no prior knowledge about the parameters of mentioned
distribution, so we have used NIPs to estimate them. Table 4 lists the KS statistic and its
p-value for these methods to get the best estimator for the AmCs data.

Table 4. Different estimation techniques for the Type I HLOWFr parameters with KS, (SE) and p-values for the AmCs data.

Method ↓Estimator→ λ̂ β̂ â b̂ KS p-Value

LSE 0.4772 (0.1265) 17.3435 (0.0597) 27.8989 (0.0867) 0.2557 (0.2540) 0.0608 0.8487
WLSE 0.5212 (0.1169) 16.0827 (0.0308) 26.8382 (0.0871) 0.2491 (0.9537) 0.0705 0.6966
CVME 0.4723 (0.1025) 17.5159 (0.0471) 28.1555 (0.0497) 0.2572 (0.5674) 0.0633 0.8132

BE with SEL function 0.4696 (0.0489) 17.1055 (0.0226) 27.7908 (0.0392) 0.2562 (0.0392) 0.0602 0.8574
BE with PL function 0.4656 (0.0743) 17.0156 (0.0281) 27.3808 (0.0441) 0.2544 (0.0429) 0.0605 0.8523
BE with EL function 0.4659 (0.0763) 17.0198 (0.0293) 27.3818 (0.0469) 0.2544 (0.0431) 0.0608 0.8492

From Table 4, it is noted that the LSE, WLSE, CVME, and BE methods give the best
estimator for this data as compared to the MLE method. Thus, we recommend using
these methods for the analysis of this data. In addition, for modelling AmCs data through
Type I HLOWFr distribution, according to the p-value, the hierarchy of the best estimation
method out of these methods is:

Highly Preferable→ Less Preferable.

BE with SEL→ BE with PL→ BE with EL→ LSE→ CVME→WLSE→MLE .

Figure 16 shows the fitted plots based on the estimates in Table 4 which support our results.



Entropy 2021, 23, 446 25 of 30

PDF Plot

x

f(
x

)

100 150 200

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

MLE

LSE

WLSE

CVME

BE with SEL

BE with PL

BE with EL

80 100 120 140 160 180 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CDF Plot

x

F
(x

)

MLE

LSE

WLSE

CVME

BE with SEL

BE with PL

BE with EL

80 100 120 140 160 180 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

SF Plot

x

S
(x

)

MLE

LSE

WLSE

CVME

BE with SEL

BE with PL

BE with EL

Figure 16. The fitted plots of the Type I HLOWFr parameters under the various method of estimation based on AmCs data.

7.2. Data Set II: Glass Fiber (GsFr)

This data set is reported in Smith and Naylor [40], which includes 63 observations of
the strengths of 1.5 cm glass fiber, originally achieved by workers at the National Physical
Laboratory, England. We have utilized this data to present the fitting capability of the Type
I HLOWEx model relative to some other competing models namely, Gamma Weibull Ex
(GWEx), the Extended odd Weibull Ex (ExOWEx), the modified odd Weibull Ex (MoOWEx),
the odd flexible Weibull Ex (OFWEx), Topp-Leone Ex (ToLEx), odd Weibull Ex (OWEx), odd
Burr-X Ex (OBuXEx), Kumaraswamy Ex (KuEx), odd log-logistic Ex (OlogLEx), odd Chen
Ex (OChEx), Gumbel Ex (GuEx), exponentiated Ex (EEx), and Ex distributions. Table 5
reports the MLEs with their corresponding SEs, KS and p-value for GsFr data, whereas the
GOF statistics can be viewed in Table 6.

Tables 5 and 6 reveal that the Type I HLOWEx model performs best among all fitted
models. Figure 17a portrays the Kernel density, box, TTT, and Normal Q-Q plots, whereas
the Figure 17b contains the fitted PDF, PP, estimated HRF, and estimated SF plots of
the Type I HLOWEx distribution for the GsFr data. From these figures, we arrive at the
same conclusions as we are observed from Tables 5 and 6. Furthermore, the TTT plot
in Figure 17a shows that the data set II has an increasing failure rate, and consequently,
the Type I HLOWEx model can be used to analyze this data (see, the estimated HRF in
Figure 17b).

Table 7 reports the KS statistic and the associated p-value for various estimation
methods under GsFr data. It is worth noting here that to extract the BEs for data set II, we
have used NIPs for the unknown parameters of the Type I HLOWEx distribution.

From Table 7, it is observed that the LSE, WLSE, CVME, and BE methods give the best
estimator for this data as compared to the MLE method. Thus, we recommend using these
methods for the analysis of the GsFr data. In addition, for modelling GsFr data through
Type I HLOWEx distribution, according to the p-value, the hierarchy of the best estimation
method out of these methods is:

Highly Preferable→ Less Preferable.

BE with SEL→ BE with PL→ BE with EL→ CVME→ LSE→WLSE→MLE.

Figure 18 shows the fitted plots based on the estimates in Table 7 which support our results.
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Table 5. The MLEs with their (SEs) and KS with its p-value for the GsFr data.

Model λ̂ β̂ â b̂ KS p-Value

Type I HLOWEx 0.4016 3.3597 0.5530 − 0.1317 0.2240
(2.4146) (1.6865) (0.7175) − − −

GWEx 0.0292 0.6772 3.8165 1.9018 0.1318 0.2236
(0.0656) (0.6310) (3.2469) (1.2361) − −

ExOWEx 4.4343 0.0667 0.4272 − 0.1443 0.1452
(0.6423) (0.1572) (0.0121) − − −

MoOWEx 0.0495 3.2822 0.9107 − 0.1357 0.1966
(0.1499) (1.5824) (0.6762) − − −

OFWEx 3.2814 1.4226 0.3114 − 0.1659 0.0625
(8.5346) (2.5169) (0.5322) − − −

ToLEx 55.0916 0.4353 2.1965 − 0.2253 0.0033
(48.9007) (0.3207) (0.2828) − − −

OWEx 0.0148 2.8843 1.0155 − 0.1362 0.1928
(0.0185) (0.7872) (0.3879) − − −

OBuXEx 3.0166 − 0.5428 − 0.1894 0.0218
(0.5366) − (0.02004) − − −

KuEx 6.08× 107 7.64× 105 0.0701 − 0.1549 0.0973
(0.7092) (1.98× 104) (1.89× 10−2) − − −

OLogLEx 5.9148 − 0.4533 − 0.1480 0.1264
(0.6555) − (0.0118) − − −

OChEx 45.5507 4.7936 0.2273 − 0.1469 0.1314
(189.9452) (0.9314) (0.1366) − − −

GuEx 34.5036 4.3097 11.4467 − 0.2223 0.0039
(9.9112) (0.4542) (0.6979) − − −

EEx − 31.3380 2.6110 − 0.2289 0.0027
− (9.5154) (0.2379) − − −

Ex − − 0.6636 − 0.4179 0.0000
− − (0.0836) − − −

Table 6. The GOF Statistics for the GsFr data.

Model −logL AkIC CAkIC BsIC HQIC AD CvM DF

Type I HLOWEx 13.5276 33.0552 33.4620 39.4846 35.5839 0.8581 0.1529 3
GWEx 14.1821 36.3643 37.0539 44.9368 39.7359 0.8938 0.1586 4

ExOWEx 14.4938 34.9875 35.3943 41.4169 37.5162 1.1438 0.2079 3
MoOWEx 14.3855 34.7709 35.1777 41.2004 37.2997 0.9762 0.1736 3

OFWEx 16.0906 38.1812 38.5879 44.6106 40.7099 1.5051 0.2749 3
ToLEx 26.0928 58.1856 58.5924 64.6149 60.7143 3.4699 0.6342 3
OWEx 14.3900 34.7800 35.1868 41.2094 37.3087 0.9848 0.1754 3

OBuXEx 17.8984 39.7969 39.9969 44.0832 41.4827 1.9488 0.3559 2
KuEx 15.3599 36.7199 37.1267 43.1493 39.2486 1.3578 0.2477 3

OLogLEx 20.4244 44.8487 45.0487 49.1349 46.5345 2.3459 0.4251 2
OChEx 14.8415 35.6830 36.0898 42.1124 38.2117 1.1938 0.2163 3
GuEx 30.5286 67.0573 67.4640 73.4867 69.5859 4.1291 0.7554 3
EEx 31.3937 66.7874 66.9874 71.0737 68.4732 4.2977 0.7886 2
Ex 88.8369 179.6739 179.7395 181.8170 180.5168 3.1379 0.5727 1
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Figure 17. Plots for GsFr data based on the Type I HLOWEx model.
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Table 7. Different estimation techniques for the Type I HLOWEx parameters with KS, (SE) and p-values for the GsFr data.

Method ↓ Estimator→ λ̂ β̂ â KS p-Value

LSE 0.0028 (0.0147) 0.7843 (0.1397) 4.8391 (0.0917) 0.0835 0.7714
WLSE 0.1689 (0.1294) 3.7036 (0.0199) 0.6280 (0.0199) 0.1036 0.5080
CVME 0.0021 (0.0437) 0.9555 (0.0497) 4.1670 (0.1257) 0.0768 0.8516

BE with SEL function 0.0019 (0.0013) 0.9711 (0.0121) 4.1595 (0.0129) 0.0719 0.8998
BE with PL function 0.0019 (0.0067) 0.9706 (0.0149) 4.1575 (0.0157) 0.0749 0.8708
BE with EL function 0.0019 (0.0093) 0.9708 (0.0176) 4.1681 (0.0183) 0.0753 0.8663
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Figure 18. The fitted plots of the Type I HLOWEx parameters under the various method of estimation based on GsFr data.

7.3. Some Descriptive Statistics for Data Sets I and II

Table 8 lists some descriptive statistics for data sets I and II based on BEs under SEL
function. Here, it is notable that with the help of Maple software we have obtained various
measures of central tendency and dispersion for real data sets.

Table 8. Empirical and theoretical descriptive statistics for data sets I and II.

Data Set Measure Mean Variance Skewness Kurtosis Index of Dispersion

I Empirical 131.277 499.965 −0.5725 3.3745 3.8084 (over-dispersed)
Theoretical 133.732 499.777 −0.3354 4.2608 3.7372 (over-dispersed)

II Empirical 1.5123 0.1038 −0.9456 3.9867 0.0697 (under-dispersed)
Theoretical 1.5069 0.1051 −0.9235 4.2559 0.0697 (under-dispersed)

It is clear that empirical and theoretical measures are approximately equal. This
implies that the proposed models are appropriate to analyze data sets I and II.

8. Conclusions

In the above study, we have proposed a new generator of univariate continuous
distributions, called Type I HLOW-G family. Its various statistical features have been
derived. The special sub-models of the Type I HLOW-G family are capable of modelling
positively skewed, negatively skewed, and symmetric data sets. Moreover, these sub
models provide a wide variation in the shape of the HRF, including decreasing, increasing,
unimodal, and bathtub shapes, and consequently the generated distributions can be used
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in modelling several types of data. Two particular models of the proposed family have been
extensively studied, in the so-called Type I HLOWFr and Type I HLOWEx distributions.
The model parameters have been estimated using five different estimation methods, namely,
MLE, LSE, WLSE, CVME, and BE. In the Bayesian paradigm, we have obtained the Bayes
estimates under informative and non-informative priors with squared error, precautionary
and entropy loss functions. The two special cases of the Type I HLOW-G class have been
applied to two real-life data sets to illuminate the fitting superiority of the Type I HLOW-G
family over other existing rival models. From these numerical examples, we can also
say that the last four methods of estimation provide good estimators compared to MLE,
especially in this family. Finally, we can conclude that the Type I HLOW-G family would
be a better alternative to other existing continuous distributions for modelling real data
generated from different areas.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Data Availability Statement: The data that we have used is openly available and can be viewed
from the studies of Birnbaum and Saunders [39] and Smith and Naylor [40].

Acknowledgments: This Research was supported by Taif University Researchers Supporting Project
Number (TURSP-2020/155), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications. Commun. Stat. Theory Methods 2002, 31, 497–512.

[CrossRef]
2. Zografos, K.; Balakrishnan, N. On families of beta-and generalized gamma-generated distributions and associated inference.

Stat. Methodol. 2009, 6, 344–362. [CrossRef]
3. Cordeiro, G.M.; de Castro, M. A new family of generalized distributions. J. Stat. Comput. Simul. 2011, 81, 883–898. [CrossRef]
4. Tahir, M.; Cordeiro, G.M.; Alzaatreh, A.; Mansoor, M.; Zubair, M. The logistic-X family of distributions and its applications.

Commun. Stat. Theory Methods 2016, 45, 7326–7349. [CrossRef]
5. Tahir, M.; Zubair, M.; Mansoor, M.; Cordeiro, G.M.; Alizadehk, M.; Hamedani, G. A new Weibull-G family of distributions.

Hacettepe J. Math. Stat. 2016, 45, 629–647. [CrossRef]
6. Cordeiro, G.M.; Alizadeh, M.; Ozel, G.; Hosseini, B.; Ortega, E.M.M.; Altun, E. The generalized odd log-logistic family of

distributions: Properties, regression models and applications. J. Stat. Comput. Simul. 2017, 87, 908–932. [CrossRef]
7. Afify, A.Z.; Altun, E.; Alizadeh, M.; Ozel, G.; Hamedani, G. The Odd Exponentiated Half-Logistic-G Family: Properties,

Characterizations and Applications. Chil. J. Stat. 2017, 87, 908–932.
8. Haghbin, H.; Ozel, G.; Alizadeh, M.; Hamedani, G. A new generalized odd log-logistic family of distributions. Commun. Stat.

Theory Methods 2017, 46, 9897–9920. [CrossRef]
9. El-Sherpieny, E.-S.A.; Elsehetry, M.M. Kumaraswamy Type I Half Logistic Family of Distributions with Applications. Gazi Univ.

J. Sci. 2019, 32, 333–349.
10. El-Morshedy, M.; Eliwa, M. The odd flexible Weibull-H family of distributions: Properties and estimation with applications to

complete and upper record data. Filomat 2019, 33, 2635–2652. [CrossRef]
11. El-Morshedy, M.; Eliwa, M.; Afify, A. The odd Chen generator of distributions: Properties and estimation methods with

applications in medicine and engineering. J. Natl. Sci. Found. Sri Lanka 2020, 48, 113–130.
12. Eliwa, M.; El-Morshedy, M.; Ali, S. Exponentiated odd Chen-G family of distributions: Statistical properties, Bayesian and

non-Bayesian estimation with applications. J. Appl. Stat. 2020. [CrossRef]
13. Alizadeh, M.; Afify, A.Z.; Eliwa, M.; Ali, S. The odd log-logistic Lindley-G family of distributions: properties, Bayesian and

non-Bayesian estimation with applications. Comput. Stat. 2020, 35, 281–308. [CrossRef]
14. Badr, M.M.; Elbatal, I.; Jamal, F.; Chesneau, C.; Elgarhy, M. The transmuted odd Fréchet-G family of distributions: Theory and

applications. Mathematics 2020, 8, 958. [CrossRef]
15. Tahir, M.H.; Hussain, M.A.; Cordeiro, G.M.; El-Morshedy, M.; Eliwa, M.S. A New Kumaraswamy Generalized Family of

Distributions with Properties, Applications, and Bivariate Extension. Mathematics 2020, 8, 1989. [CrossRef]
16. Eliwa, M.; Alhussain, Z.A.; El-Morshedy, M. Discrete Gompertz-G family of distributions for over-and under-dispersed data

with properties, estimation, and applications. Mathematics 2020, 8, 358. [CrossRef]
17. Zaidi, S.M.; Sobhi, M.M.A.; El-Morshedy, M.; Afify, A.Z. A new generalized family of distributions: Properties and applications.

AIMS Math. 2021, 6, 456–476. [CrossRef]
18. Bourguignon, M.; Silva, R.B.; Cordeiro, G.M. The Weibull-G family of probability distributions. J. Data Sci. 2014, 12, 53–68.

[CrossRef]

http://doi.org/10.1081/STA-120003130
http://dx.doi.org/10.1016/j.stamet.2008.12.003
http://dx.doi.org/10.1080/00949650903530745
http://dx.doi.org/10.1080/03610926.2014.980516
http://dx.doi.org/10.15672/HJMS.2015579686
http://dx.doi.org/10.1080/00949655.2016.1238088
http://dx.doi.org/10.1080/03610926.2016.1222428
http://dx.doi.org/10.2298/FIL1909635E
http://dx.doi.org/10.1080/02664763.2020.1783520
http://dx.doi.org/10.1007/s00180-019-00932-9
http://dx.doi.org/10.3390/math8060958
http://dx.doi.org/10.3390/math8111989
http://dx.doi.org/10.3390/math8030358
http://dx.doi.org/10.3934/math.2021028
http://dx.doi.org/10.6339/JDS.201401_12(1).0004


Entropy 2021, 23, 446 30 of 30

19. Cordeiro, G.M.; Alizadeh, M.; Diniz Marinho, P.R. The type I half-logistic family of distributions. J. Stat. Comput. Simul. 2016,
86, 707–728. [CrossRef]

20. Cooray, K. Generalization of the Weibull distribution: The odd Weibull family. Stat. Model. 2006, 6, 265–277. [CrossRef]
21. Kenney, J.; Keeping, E. The standard deviation and calculation of the standard deviation. Math. Stat. 1962, 1.
22. Moors, J. A quantile alternative for kurtosis. J. R. Stat. Soc. Ser. D (The Statistician) 1988, 37, 25–32. [CrossRef]
23. Bonferroni, C.E. Elementi di Statistica Generale, (Ristampa con Aggiunte): Anno Accademico 1932/33; Bari, R. Istit. super. di scienze

economiche: Gili, Indonesia, 1933.
24. Lorenz, M.O. Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc. 1905, 9, 209–219. [CrossRef]
25. Gupta, P.L.; Gupta, R.C. On the moments of residual life in reliability and some characterization results. Commun. Stat. Theory

Methods 1983, 12, 449–461. [CrossRef]
26. Kundu, C.; Nanda, A.K. Some reliability properties of the inactivity time. Commun. Stat. Theory Methods 2010, 39, 899–911.

[CrossRef]
27. Nanda, A.K.; Singh, H.; Misra, N.; Paul, P. Reliability properties of reversed residual lifetime. Commun. Stat. Theory Methods 2003,

32, 2031–2042. [CrossRef]
28. Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and

Probability; The Regents of the University of California: Oakland, CA, USA, 1961; Volume 1: Contributions to the Theory of Statistics.
29. Di Crescenzo, A.; Longobardi, M. Entropy-based measure of uncertainty in past lifetime distributions. J.Appl. Probab. 2002, 39,

434–440. [CrossRef]
30. Baratpour, S.; Ahmadi, J.; Arghami, N.R. Entropy properties of record statistics. Stat. Pap. 2007, 48, 197–213. [CrossRef]
31. Sunoj, S.; Sankaran, P.; Maya, S. Characterizations of life distributions using conditional expectations of doubly (interval)

truncated random variables. Commun. Stat. Theory Methods 2009, 38, 1441–1452. [CrossRef]
32. Havrda, J.; Charvát, F. Quantification method of classification processes. Concept of structural a-entropy. Kybernetika 1967, 3, 30–35.
33. Arimoto, S. Information-theoretical considerations on estimation problems. Inf. Control 1971, 19, 181–194. [CrossRef]
34. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
35. Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal.

Mach. Intell. 1984, PAMI-6, 721–741. [CrossRef]
36. Metropolis, N.; Ulam, S. The monte carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [CrossRef]
37. Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109.

[CrossRef]
38. Geweke, J. Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments; Federal Reserve Bank of

Minneapolis: Minneapolis, MN, USA, 1991; Volume 196.
39. Birnbaum, Z.W.; Saunders, S.C. Estimation for a family of life distributions with applications to fatigue. J. Appl. Prob. 1969, 6,

328–347. [CrossRef]
40. Smith, R.L.; Naylor, J. A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution.

J. R. Stati. Soc. Ser. C (Appl. Stat.) 1987, 36, 358–369. [CrossRef]

http://dx.doi.org/10.1080/00949655.2015.1031233
http://dx.doi.org/10.1191/1471082X06st116oa
http://dx.doi.org/10.2307/2348376
http://dx.doi.org/10.2307/2276207
http://dx.doi.org/10.1080/03610928308828471
http://dx.doi.org/10.1080/03610920902807895
http://dx.doi.org/10.1081/STA-120023264
http://dx.doi.org/10.1017/S002190020002266X
http://dx.doi.org/10.1007/s00362-006-0326-7
http://dx.doi.org/10.1080/03610920802455001
http://dx.doi.org/10.1016/S0019-9958(71)90065-9
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1080/01621459.1949.10483310
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.2307/3212004
http://dx.doi.org/10.2307/2347795

	Introduction
	Linear Representation for the Type I HLOW-G Density
	Statistical Properties
	Quantile Function (QF)
	Moments and Moment Generating Function (MGF)
	Incomplete Moments and Mean Deviation
	Probability Weighted Moments
	Moments of Residual and Reversed Residual Lifetimes
	Rényi Entropy (RiEy)
	Order Statistics (OrSt)

	Special Type I HLOW-G Models
	The Type I HLOW-Fréchet (Type I HLOWFr) Distribution
	The Type I HLOW-Exponential (Type I HLOWEx) Distribution

	Different Estimation Techniques
	Maximum Likelihood Estimation (MLE)
	Simple and Weighted Least-Squares Estimators
	Cramer-Von Mises Minimum Distance Estimators
	Estimation through Bayesian Viewpoint

	The Monte Carlo Simulation Study
	Applications
	Data Set I: Aluminum Coupons (AmCs)
	Data Set II: Glass Fiber (GsFr)
	Some Descriptive Statistics for Data Sets I and II

	Conclusions
	References

