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Abstract: In this study, we measured the in situ international roughness index (IRI) for first-degree
roads spanning more than 1300 km in East Azerbaijan Province, Iran, using a quarter car (QC).
Since road quality mapping with in situ measurements is a costly and time-consuming task, we also
developed new equations for constructing a road quality proxy map (RQPM) using discriminant
analysis and multispectral information from high-resolution Sentinel-2 images, which we calibrated
using the in situ data on the basis of geographic information system (GIS) data. The developed
equations using optimum index factor (OIF) and norm R provide a valuable tool for creating proxy
maps and mitigating hazards at the network scale, not only for primary roads but also for secondary
roads, and for reducing the costs of road quality monitoring. The overall accuracy and kappa
coefficient of the norm R equation for road classification in East Azerbaijan province are 65.0% and
0.59, respectively.

Keywords: international roughness index; road quality; remote sensing; Sentinel-2

1. Introduction

Since ancient times, roads have played an important role in connecting different
geographic locations to each other. Currently, in the face of rapid urbanization and in-
dustrialization, the role of roads is even more important because they not only allow
people to travel from one location to another but also contribute to the economic growth of
nations [1]. If the surface evenness, rideability, quality, skid resistance, or other influential
factors are below the defined standards, a road can be fixed or require maintenance [2].
Poorly maintained roads can seriously affect economy, fuel consumption, and mobility,
while further increasing driving costs, air pollution, and maintenance/operating costs
for both roads and vehicles. From this economic perspective, road quality mapping is an
important task for enabling safe, smooth, and efficient travel. Roads with better quality also
enable farmers to work in more distant fields and distribute their products more efficiently.

For the general population, “road quality” denotes the level of roughness of the
road, along with other parameters, such as number of lanes, potholes, signage and layout.
Several roughness indices have been developed to date. The international roughness
index (IRI), introduced in the early 1980s, is one such index that is basically obtained from
the measured longitudinal road profile [3–5]. The IRI is a measure of the displacement
in the vertical direction per horizontal distance traveled on the road. In other words,
the IRI, which is expressed in units of meters/kilometer or inches/mile, represents a
roughness quality that affects vehicle performance on the road. Although ground-based
methods for measuring the IRI are of most interest, remote sensing methods are emerging
as an alternative for acquiring in situ IRI measurements. Remote sensing techniques are
capable of measuring various types of information without physical contact (only through
electromagnetic waves). Therefore, remote sensing measurements can be recorded using
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various platforms, such as unmanned aerial vehicles (UAVs), airplanes, and satellites, from
which many infrastructure changes can be detected and monitored. A few examples of such
remote sensing applications to infrastructure monitoring include observing infrastructure
damage after natural and man-made disasters, planning long-term road consolidation, and
detecting dam instabilities [6–15].

Figure 1a shows the total length (approximately 214,000 km) of the road network in
Iran, including primary (freeway and highway), secondary (major and local), and rural
roads. East Azerbaijan Province, one of the 31 provinces in Iran with a road network
extending up to approximately 14,000 km, plays an important role in national road net-
working because it connects Iran to Armenia and the Republic of Azerbaijan. In this work,
we measured the IRI on major roads throughout East Azerbaijan Province of Iran using a
smartphone equipped with a motion-sensitive “BumpRecorder” and “Physics Toolbox”
applications and a quarter car (QC). The BumpRecorder application did not require any
specific calibration, since its accuracy was tested several times before the commercial oper-
ation [16]. These measurements were acquired by driving back and forth only between
the capital of the province, Tabriz, and the counties shown in yellow in Figure 1b. The
road map of East Azerbaijan Province (Figure 1b) is produced from the OpenStreetMap
(OSM) database. Using in situ data as training samples, combined with remote sensing
data (featuring a broader coverage of the desired region), incomplete information about
different objects or features can be completed. Accordingly, we regressed independent
variables obtained from a Sentinel-2 dataset on the dependent variables (field data) to
analyze the road network of the whole country.
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Figure 1. (a) Road network map of Iran. The black box denotes the study area. (b) Road network of East Azerbaijan
Province, Iran, the study area.

2. Data and Methodology
2.1. In Situ Measurements

Engineers working in the transportation sector typically use a “one-wheel” vehicle
to acquire traditional field measurements of road quality. These vehicles are suitable for
precise IRI measurements because the roughness measurements are not affected by the
suspension system [16,17]. In contrast, the QC method was not originally popular among
engineers because the QC has a suspension system. Therefore, due to this suspension
system, the recorded acceleration might be affected by the car type and driving speed.
The roughness measurements recorded with a QC are also not typically stable, and it is
necessary to perform a driving calibration before taking measurements. However, the
extensive use of smartphones has marked a paradigm shift for road quality mapping.
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In this study, we used the BumpRecorder application developed by BumpRecorder Co.,
Ltd., to measure the acceleration and longitudinal profile of the road and refine the results
using vibration frequency analysis. The use of this application therefore eliminates the
need for a driving calibration step. Although the type of car does not seriously affect the
measurements, we used only one car for the entire project. As shown in Figure 2a, we
mounted a smartphone (Huawei Y7) equipped with an accelerometer and a global posi-
tioning system (GPS) sensor on the dashboard tray of a long chassis car (CHANGAN-CS35)
to acquire IRI measurements on the roads (e.g., highways and major roads) throughout
East Azerbaijan Province.
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Figure 2. (a) Setup for conducting international roughness index (IRI) measurements in East Azerbaijan Province using a
quarter car (QC) and a smartphone. (b) The resulting back-and-forth in situ IRI measurements in East Azerbaijan Province
of Iran from Tabriz along the primary roads leading to the other counties. Black boxes show the areas covered by Sentinel-2
images of the province. Dashed boxes indicate the images acquired from Sentinel-2A, and solid black boxes indicate the
images acquired from Sentinel-2B.

Unfortunately, even with a QC, the measurement of major roads is time-consuming
because there are often several lanes and driving on the same road several times to record
the quality of each lane requires additional labor and time. To reduce the time required
to perform these ground-based in situ measurements, we drove on only one lane on
each road, with priority given to the lane with the worst road quality. Due to the cold
winters and the mountainous topography of the study area, the measurements were
gathered from 13 October 2020 to 30 October 2020 to avoid dangerous driving conditions.
We took measurements on major roads spanning more than 1300 km throughout East
Azerbaijan Province, Iran, with an average speed of 80 km/h and a sampling frequency of
200 Hz. According to Karimzadeh and Matsuoka (2020), the accuracy of the QC method is
acceptable for major roads, but on urban streets, tall buildings and traffic jams may reduce
the quality of simultaneous location and acceleration measurements [4]. Figure 2b shows
the IRI field measurements every 200 m, in which green, yellow-orange, and red colors
represent smooth roads, intermediately rough roads, and the roughest roads, respectively.
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According to Sayers and Gillespie (1986), roads with IRI values between 1 and 4 m/km
denote new pavement [5]. Figure 3a,b show that the IRI was recorded at 7618 points. The
minimum and maximum in situ IRI values are 0.9 m/km and 18.4 m/km, respectively. The
mean and median of the measurements are 3.13 m/km and 2.8 m/km, respectively, which
implies that the major roads across the province have good overall quality. The roads
studied are well maintained except for several routes. Figure 3c illustrates the distribution
of IRI measurements in nonsymmetrical regions, and the first and third quartiles are
2.3 m/km and 3/6 m/km, respectively. The probability–probability plot (P-P) shown in
Figure 3d can be used to test the fitness of theoretical and empirical distributions and to
depict the skewness of the IRI distribution, which is not quite normal here (positive skew).
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2.2. Remote Sensing Data

Remote sensing optical data obtained from UAVs or airborne/spaceborne platforms
are mainly used for the extraction of roads, as described in several previous studies [18–22].
Meanwhile, synthetic aperture radar (SAR) data, especially high-resolution X-band SAR
datasets, focus on the quality of the road. In previous studies, such high-resolution X-band
SAR datasets were compared with IRI data in the U.S. and Iran, where bad-quality roads
appear brighter in the SAR images than good-quality roads because rough surfaces have
stronger backscattering properties [3,4]. However, despite the rapid growth of remote
sensing, many transportation engineers have insufficient experience to practically apply
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remotely sensed data for their demands. On the other hand, remote sensing experts
are not familiar with the engineering demands within the transportation sector. The
interpretation of SAR data is more complex than that of optical data due to the side-
looking nature of the former and its inherent limitations, such as foreshortening. Here,
we focus on high-resolution optical data from Sentinel-2A and B within the study area
and conduct novel research to develop equations that explain the roughness of primary
and secondary roads. As mentioned above, we measured over 1300 km of roads in East
Azerbaijan Province of Iran. To cover all the measured areas, we obtained 6 Sentinel-2
images (100 km × 100 km) with the closest available timestamps to each day on which the
in situ measurements were obtained, from 10 October 2020 to 25 October 2020. The Sentinel-
2 imagery has 12-bit radiometric resolution, 10 m spatial resolution, and 13-band spectral
resolution. The bottom-of-atmosphere (BOA) reflectance values in the images from the
MultiSpectral Instrument (MSI) were extracted from the 1C products of Sentinel-2, which
are not atmospherically corrected. The Sentinel-2 mission has two polar-orbiting satellites—
namely, Sentinel-2A and Sentinel-2B. As shown in Figure 2b and Table 1, two Sentinel-2
images (acquired on 10 and 23 October 2020) were obtained from Sentinel-2A, while the
remaining images (25 October 2020) were obtained from Sentinel-2B. The mosaicked image
covers approximately 90,000 km2 of the study area. Except for a gap between images #1 and
#3, the regions containing the IRI measurements are well covered in the mosaicked image.
Once the radiometric calibration of the mosaicked image is performed, the optimum bands
that contain the highest variance (i.e., information) can be selected using the optimum
index factor (OIF).

Table 1. Detailed information about the Sentinel-2 images used for this study. The MSI2A instrument
provides bottom-of-atmosphere (BOA) reflectance values for the Sentinel-2 images.

ID (#) Sensor Product Type Date (yyyy/mm/dd) Area (km2)

1 Sentinel-2A MSI2A 2020/10/10 10,000
2 Sentinel-2A MSI2A 2020/10/23 10,000
3 Sentinel-2B MSI2A 2020/10/25 10,000
4 Sentinel-2B MSI2A 2020/10/25 10,000
5 Sentinel-2B MSI2A 2020/10/25 10,000
6 Sentinel-2B MSI2A 2020/10/25 10,000

2.3. Framework

The framework shown in Figure 4 shows the details of each step—namely, data
calibration, discriminant analysis, and accuracy assessment.

2.3.1. Optimum Index Factor

The OIF is a measurement that is calculated for selecting the most ideal bands to be
used for color composites or for preserving the maximum amount of information (highest
standard deviation) in an image with minimal duplication [23–25]. The OIF calculation
method starts with the creation of a map list that contains 13 Sentinel-2 bands. Once this
list of multispectral bands is available, the variance–covariance matrix (correlation matrix)
of the bands can be calculated according to the map list. To create any OIF, the map list
should contain at least 3 raster images that are all georeferenced in the same domain. A
simple OIF calculation method is as follows:

OIF =
∑3

k=1 sk

∑3
j=1 Abs

(
rj
) (1)

where sk is the standard deviation for the corresponding band (k) and j is the absolute
value of the correlation coefficient between two of the three bands in the calculation.
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2.3.2. Discriminant Analysis

In this study, the discriminant analysis was structured based on independent variables
(i.e., spectral bands such as b2, b3, b4, and b8) and a binary map (the dependent variable).
Note that for the binary map of the study area, “0” was assigned to good roads and “1”
was assigned to bad roads. The binary map was produced from in situ IRI measurements
conducted using a QC. Although these IRI measurements varied in the range between
0.9 m/km and 18.4 m/km, a simple assumption (e.g., good and bad roads) helped us
to categorize the values into two qualitative groups: 0 for good roads and 1 for bad
roads. Thus, a qualitative rather than a quantitative discriminant analysis was chosen to
predict new scores based on the independent variables and the description of the binary
map [26–29]. Here, discriminant analysis is a type of linear regression that seeks to find the
relationship among several classes of objects. We regressed the independent variables for
both the OIF and norm R results on the dependent variables and assigned a specific value
for each sample point in the ground truth database. Table 2 shows the details of the linear
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regression for the independent and dependent variables. The discriminant score (Z) for the
OIF and norm R can be defined as follows:

ZOIF_i = a1 + (a2 × bi2) + (a3 × bi3) + (a4 × bi4) + (a5 × bi8) (2)

ZR_i = a1 + a2 × Ni (3)

Table 2. Statistics for the linear regression analysis of the optimum index factor (OIF) and norm R
dependent and independent variables.

OIF (41 × 41) Norm R (21 × 21)

Number of points 7313 Number of points 7313
R-squared 0.026 R-squared 0.0007
Multiple R 0.163 Multiple R 0.0275

Standard error 0.4 Standard error 0.405
a1 (intercept) 0.317 a1 (intercept) 0.342

a2 0.00138 a2 −0.425
a3 −0.00149 a3 -
a4 0.0002 a4 -
a5 0.000087 a5 -

Cutoff score 0.211 Cutoff score 0.207

Here, i represents the number of points on the IRI map. Because of the image gap
(Figure 2b), the total number of points is reduced from 7618 to 7313. a1 is the intercept
value, and a2, a3, a4, and a5 are coefficients of the regression analysis for the blue, green,
red, and near-infrared bands, respectively. ZOIF_i and ZR_i are the probability values for
the OIF and norm R, respectively, which can be interpreted as the probabilities of being a
“good” or a “bad” road. To define whether the calculated values are in the good or bad
groups, we defined a cutoff value for the calculated discriminant scores as follows:

C =
(n0 × z0) + (n1 × z1)

(n0 + n1)
(4)

where C is the cutoff value, n0 and n1 are the numbers of good and bad roads, respectively,
and z0 and z1 are the average values of the discriminant scores for good and bad roads,
respectively. As shown in Table 2, the cutoff values of the OIF and norm R classifications
are 0.211 and 0.207, respectively. This means that the roads with a lower value than the
cutoff were sorted into group “0” and the roads with a higher value than the cutoff were
sorted into group “1”. In other words, if a point from the database has a Z value smaller
than the calculated C, the algorithm will categorize it as a “good” point (road), whereas if
one point from the database has a Z value larger than the calculated C, the algorithm will
categorize it as a “bad” point.

3. Results

Generally, we found an acceptable fit between the spectral information within the
Sentinel-2 images and the in situ measurements, but the road quality map generated from
the latter (graded colors in Figure 2b) was not helpful for discriminant analysis. To produce
meaningful results for facile interpretation, the IRI measurements should be presented in
a simpler format than the format traditionally used for these road quality maps. Due to
the level of noise and the standard deviation of the measurements, as shown in Figure 5,
all of the IRI measurements were categorized into two main classes: “good” and “bad”
roads. Since road maintenance guides do not clearly define the metrics for classifying good
and bad roads, we used the Jenks natural break optimization thresholding approach. This
method is a data clustering technique for determining the most ideal arrangement of the
IRI values into good and bad classes. Notably, Jenks optimization operates on a univariate
classification, which maximizes the differences between the good and bad classes. Simply
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put, this method attempts to reduce the intraclass variance while maximizing the interclass
variance. This goal is logical for our work because the IRI measurements can be divided
into two categories where the difference in the IRI is relatively large. We adopted the
following threshold for the classification of every measurement point:

IRIthreshold =

{
Good road : IRI < 3.8 m/km
Bad road : IRI ≥ 3.8 m/km

(5)
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As we divided the IRI measurements into two groups (Figure 5), we also created a
binary map using discriminant analysis which is an essential step for the analysis. Sentinel-
2 images are composed of 13 bands at resolutions of 10 m, 20 m and 60 m. Based on the
OIF, we selected useful bands that maintained the highest variance and ignored redundant
information. These OIF results showed that the combination of bands 2, 3, 4 and 8 could
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provide the most information. Thus, discriminant analysis in different window sizes
from 3 × 3 to 57 × 57 was carried out for these bands. The results show that among the
7618 IRI points, 5919 points denote good roads, and 1699 points signify bad roads (Figure 5).
To apply the discriminant machine learning approach to the binary classification map,
we employed a statistical measure—namely, the OIF—which combines only the useful
multispectral bands in terms of the explained variance and standard deviation [23,24].
The OIF was utilized to reduce the complexity of the multispectral Sentinel-2 dataset and
improve the discrimination accuracy for good and bad roads. The combination of the three
bands with the largest OIF values as a red, green, blue (RGB) color composite yielded the
most useful information while minimizing the amount of duplicated information. Here,
we found that bands 2, 3, 4 and 8 had the most information; among them, the combination
of bands 3, 4 and 8 yielded the largest OIF equal to 43.656. The second-largest OIF was
produced by the combination of bands 2, 4 and 8 (OIF = 39.970). The discriminant analysis
was conducted in different window sizes. Since the bidirectional reflectance distribution
function and mix of pixels (MIXEL) for neighboring features (e.g., road and vegetation) can
increase the amount of false spectral information during discriminant analysis, we applied
different window sizes to maintain the real reflectance of the road surface [30,31]. The
first model was based on the original data (1 × 1), and the other window sizes were 3 × 3,
5 × 5, 7 × 7, 9 × 9, 13 × 13, 17 × 17, 21 × 21, 25 × 25, 29 × 29, 33 × 33, 37 × 37, 41 × 41,
47 × 47, and 57 × 57. As shown in Figure 6, for bands 2, 3, 4 and 8, the most ideal window
size for road classification was 41 × 41, and the corresponding discriminant equation is
as follows:

Zi = 0.317 + 0.00138b2 − 0.00149b3 + 0.0002b4 + 0.000087b8 (6)

where b2, b3, b4, and b8 are Sentinel-2 bands 2, 3, 4 and 8, respectively. The overall accuracy
(OA) of the abovementioned technique for a 41 × 41 window is 61.0% (kappa ~0.51), but
the classification of bad roads is still poor (accuracy of ~19%). Figure 7a indicates that
the roads were classified according to a normal distribution. Since the total number of
points (7313) was less than the number of in situ points (due to the gap in the mosaicked
Sentinel-2 image), 7162 points were identified as good roads (green), while 151 points were
identified as bad roads (red). The cutoff point was 0.211: values beyond this threshold
were grouped into the bad road category. Details of the categorization based on this cutoff
value and the corresponding accuracies are given in Table 3.
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Table 3. Road classification accuracy based on the discriminant scores (Zi and ZR ), optimum index
factor (OIF) and norm R.

Sentinel-2 Classification (OIF) Sentinel-2 Classification (Norm R)

Zi > 0.211 7162 ZR > 0.207 4641
Zi ≤ 0.211 151 ZR ≤ 0.207 2672

Misclassified roads 2852 Misclassified roads 2560
Total correct roads 4461 Total correct roads 4753

Total accuracy 61% Total accuracy 65%

As an alternative, we applied another index (norm R) introduced by https://www.
indexdatabase.de (access date 15 December 2020). Here, the norm R index was selected
based on empirical tests of replacement of the bands. This index was suitable for our
purposes since it is simpler than the combination of OIF bands and, like the OIF, it contains
the maximum amount of information because the red, green, and NIR (near-infrared) bands
all contribute to this index. The norm R is defined as follows:

N =
b3

b8 + b4 + b3
(7)

where N is the norm R and b3, b4 and b8 are the green, red and near-infrared bands of
Sentinel-2, respectively. Figure 6 shows the OA for different window sizes. Equation (8)
is the discriminant equation for the optimum window size (21 × 21) produced from the
norm R index:

ZR = 0.342 − 0.425 × N (8)

https://www.indexdatabase.de
https://www.indexdatabase.de
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Figure 7b indicates that, using this index, the roads are classified with a skewed
distribution. Based on the estimated cutoff point (0.207), among the 7313 points, 4641 points
were identified as good roads, while 2672 points were identified as bad roads. The OA
for linear discriminant analysis on a window size of 21 × 21 was approximately 65%
(kappa ~0.59), and the classification accuracy of bad roads was improved to 40%. The
details of this categorization based on the corresponding cutoff value and its accuracies
are given in Table 3. Equations (6) and (8) permit the calculation of road quality proxy
maps (RQPMs) for large-scale regions on the basis of the existing raster pixel values and
regressed dataset. Figure 8 shows the nationwide RQPM of the territory of Iran produced
from Equation (8) and the mosaic of 23 Sentinel-2 images in the Google Earth Engine (GEE)
for bands 2, 3, 4 and 8 during October 2020.
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4. Discussion

Discovering local damages or local road unevenness using Sentinel-2 dataset (10 m
spatial resolution) is challenging. Additionally, in dense urban areas surrounded by tall
buildings and trees, IRI measurements could be biased (due to weak GPS signals, traffic
jams, etc.). Thus, the field data gathered from highways and first-degree roads (every
200 m) together with Sentinel-2 spectral information can be used for road quality mapping
over large-scale areas. Further investigations using very high resolution (VHR) images
from commercial satellite images (e.g., WorldView-2, Spot, etc.) might help to discover
different aspects of road quality mapping from space. The developed discriminant models
(for OIF and norm R) in Equations (6) and (8) permit the calculation of RQPMs over
large-scale areas based on the existing correlation between road roughness and raster pixel
values, thereby reducing the hazard mitigation costs and time-consuming task of in situ
road quality mapping. Despite its advantages, such as its compatibility with multiple
dependent variables, reduced error rate, and simpler interpretation between grouped
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values, there are still some disadvantages to discriminant analysis. One such disadvantage
is that discriminant analysis assumes the relationship between variables is linear although
the relationship is not exclusively linear, especially for the backscattering coefficient values
extracted from X-band SAR images. In particular, the relationship between the IRI and
backscattering coefficient is not linear for whole roads (e.g., interstate and secondary roads)
because the IRI is measured indirectly, and the relationship between the IRI and pavement
roughness is somewhat complicated [3,32]. As mentioned before, the classification accuracy
for bad roads is low, which is probably related to the inherent disadvantage of discriminant
analysis being sensitive to outliers. Hence, an unbalanced number of points in the good
and bad categories could have caused the poor segregation results. In the future, it will be
important to create more robust models, increase the number of samples in difficult areas
(e.g., with bad roads), and apply post-processing techniques such as generative learning or
new machine learning algorithms compatible with any type of dataset.

It must be noted that tall or dense vegetation can negatively affect the results of road
quality mapping. Since the study area has semi-arid climate, the vegetation was not a
challenging problem. But to reduce the effects of vegetation, the mosaicked Sentinel-2
map was also masked using 10 m buffering and OSM. Other techniques such as principal
component analysis (PCA) might be helpful to discover different aspects of road mapping,
but the in situ IRI is a physical parameter that cannot fully be explained by pixel values.
In addition, for a nationwide road quality analysis using GEE, calculation of PCA will be
more difficult due to limited cloud storage.

5. Conclusions

We conclude that while the transportation sector is growing due to many reasons,
such as socioeconomic demands, remote sensing application techniques should not only
be focused on routine change detection issues but also on monitoring the quality of the
features in detail. This study proposed a qualitative remote sensing approach for the
segregation of good and bad roads based on IRI measurements and spectral information.
We analyzed 4 bands of 6 multispectral Sentinel-2 images over East Azerbaijan Province in
Iran and developed linear models to describe the correlation between the spectral band
information and IRI data. These models can be used for other case studies on a nationwide
scale; however, it must be noted that the IRI measurements were gathered under clear
weather conditions between 10 ◦C and 30 ◦C with a long chassis car (CHANGAN-CS35).
The altitude of the study area is approximately 1500 m above mean sea level (MSL),
and the average speed of the QC was approximately 80 km/h. Accordingly, the limited
transferability of the developed functions to other areas may reduce the road quality
mapping capability elsewhere. In other words, for different areas or states, the development
of domestic functions compatible with geographical specifications and road construction
regulations is highly recommended.
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