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Abstract

COVID-19 vaccines have been approved for children of age five and older in many coun-

tries. However, there is an ongoing debate as to whether children should be vaccinated and

at what priority. In this work, we use mathematical modeling and optimization to study how

vaccine allocations to different age groups effect epidemic outcomes. In particular, we con-

sider the effect of extending vaccination campaigns to include the vaccination of children.

When vaccine availability is limited, we consider Pareto-optimal allocations with respect to

competing measures of the number of infections and mortality and systematically study the

trade-offs among them. In the scenarios considered, when some weight is given to the num-

ber of infections, we find that it is optimal to allocate vaccines to adolescents in the age

group 10-19, even when they are assumed to be less susceptible than adults. We further

find that age group 0-9 is included in the optimal allocation for sufficiently high values of the

basic reproduction number.

Author summary

The management of a vaccination campaign requires constant evaluation, and, as condi-

tions change, redesign of the campaign for the future. One example of a change that leads

to a decision point is the extension of vaccine eligibility to broader segments of the popu-

lation. Indeed, one of the questions public health experts and policymakers confront is

whether children of age 5 and older should be vaccinated against COVID-19 and at what

priority. In this work, we use mathematical and computational methods to study this

question in a systematic, quantitative way, by considering optimal outcomes, under differ-

ent criteria for optimality, that can be achieved with and without vaccination of children,

under conditions of limited vaccine availability. To explore tradeoffs among different

goals, such as reducing the number of infections and reducing mortality, we use the the

idea of Pareto optimization. Our results show that, under a broad range of conditions,

optimal vaccine allocations include vaccination of age group 10–19, while the population-

level benefits of vaccination of age group 0–9 depend on the reproductive number and

vaccine availability.
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1 Introduction

Vaccination campaigns have been rolling out in many countries since the approval of the first

vaccine for the prevention of coronavirus disease 2019 (COVID-19) in December 2020. These

ongoing vaccination campaigns are subject to changing conditions, e.g., the emergence of new

variants, the gradual extension of age eligibility, varying levels of hesitancy, supply issues, wan-

ing of vaccine induced immunity and accumulation of convalescent immunity. Furthermore,

improved pharmaceutical treatment for those infected [1, 2] and accumulation of evidence of

post-COVID conditions [3] may gradually shift the goals of vaccination campaigns from the

direct and indirect protection of those at risk of developing severe outcomes (mortality mini-

mizing strategies) to the reduction of overall infections. Accordingly, the management of a

vaccination campaign requires constant evaluation and, as conditions change, redesign, while

considering up-to-date goals and the optimal ways to achieve them.

One example of a change that leads to a decision point regarding the management of a vac-

cination campaign is the extension of vaccine eligibility to broader segments of the population.

Recently vaccines have been approved for children of age five and older following evidence

that the known and potential benefits of the vaccine in individuals down to 5 years of age out-

weigh the known and potential risks [4]. Nevertheless, many countries debate whether they

should extend their vaccination campaigns to include the vaccination of children [5] given

that vaccination efforts around the world are being restrained by a shortage of doses [6, 7].

Under limitations on vaccine availability, the vaccination of one age group involves an oppor-

tunity cost in vaccinating fewer individuals of another. In other cases, mass vaccination of chil-

dren may involve opportunity costs related to logistic efforts or public awareness campaigns

that could have been focused on different age groups. At the time of submission, the US has

decided to vaccinate all eligible children, and some European countries recently decided to

administer coronavirus vaccinations to children of age 5–11 [8, 9]. This debate is likely to

reemerge in countries that have already decided to vaccinate children when considering

booster or lineage-adapted vaccines.

A key question under consideration in this debate is whether and to what extent vaccina-

tion of children will enhance the effectiveness of a vaccination campaign at the population

level [5, 10–12]. When attempting to assess the relative merits of allocating vaccines to the

younger age groups, one must take into account the epidemiological characteristics of

COVID-19 concerning these groups, and these seem to point in opposing directions. On the

one hand, children infected with COVID-19 rarely develop severe disease [13, 14]. In addition,

it has been estimated that children’s susceptibility to infection by SARS-CoV-19 is lower than

that of adults [15–17]. On the other hand, children are a relatively large age group that tends to

interact more intensively than other age groups. A large epidemic outbreak among children is

likely to spread to older age groups, and risk vaccinated and non-vaccinated adults, so that vac-

cination of children indirectly protects individuals of other age groups [18], who are at greater

risk of severe outcomes. These considerations suggest that, in the case of COVID-19, quantify-

ing the indirect effect of vaccinating the younger age groups in protecting the older, more vul-

nerable age groups is essential for evaluating the benefits of allocating vaccines to children and

adolescents. Ethicists have been debating whether vaccinating children is justified, under the

appropriate circumstances, even if the primary aim of doing so is to protect the older age

groups [19, 20]. However, under conditions of limited availibility, this debate is only relevant

if indeed allocating vaccines to children enables achieving better outcomes than allocating

them to older age groups.

The goal of this work is to contribute to the discussion on childrens’ vaccination by system-

atically exploring age-dependent allocation of vaccines with the aim maximizing the
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population-level impact of a vaccination campaign. We present a mathematical model to study

the effect of demography, age-based social interaction structure, and vaccine efficacy on the

optimal post-vaccination outcomes that can be achieved by suitable allocation of vaccines in

the context of the COVID-19 pandemic. The model can be applied at any stage of the vaccina-

tion campaign, taking into account existing convalescent and vaccine-induced immunity. Our

study is motivated by two questions:

1. How essential is the vaccination of children and youths to achieving herd immunity? Spe-

cifically, what are the prospects for achieving herd immunity with the aid of vaccination,

assuming vaccine allocation is performed optimally, and what are the age-dependent vac-

cine allocations which will achieve herd immunity with minimal vaccination coverage?

2. What is the population-level impact of vaccination of children in case herd immunity by

vaccination cannot be attained? What are the optimal outcomes—according to different

possible measures—that can be achieved, and what are the age-dependent vaccine alloca-

tions that will achieve them?

To address these questions, we compare scenarios in which all age groups are eligible, by

policy, for vaccination, to scenarios in which vaccination is restricted only to those over 10, or

only to those over 20. When children can be vaccinated, we wish to determine whether it is

optimal to do so, under conditions of limited vaccine availability. When children cannot be

vaccinated, we seek to evaluate whether and to what extent the optimal achievable outcomes

are degraded relative to the case in which children can be vaccinated. Several model-based

studies address the question of optimal vaccine allocations for SARS-Cov-19. Moore et al. [21]

studied vaccination strategies for COVID to minimize future deaths or quality-adjusted life

year losses. This study was conducted at an early stage of the pandemic when uncertainty

regarding the vaccines was high. Bubar et al. [22] and Isalem et al. [23] focus on the design of a

vaccination campaign as it competes with the spread of infection. Matrajt et al. [24] as well as

Meehan et al. [25], used an age-stratified model to study the consequences of vaccine effective-

ness and population coverage on the optimal vaccine allocation. These works show that when

available vaccine coverage is relatively low, mortality-minimizing vaccine allocations prioritize

the elderly, while for sufficiently high coverage, the mortality-minimizing vaccine allocations

are those that prioritize younger populations who are the drivers of the epidemic. Vaccine allo-

cations that are optimized according to other criteria which are correlated with mortality, e.g.,

ICU peak, give rise to qualitatively similar patterns, but the point of transition between vacci-

nation of the young and vaccination of the elderly varies.

In this work, we investigate outcomes of a vaccination campaign in the medium-term

range after the vaccination effort has ended. Our work is complementary to the above-men-

tioned studies [21, 22, 24, 25] in both its focus and methods used. We specifically address the

issue of restrictions on the eligibility of children and adolescents and quantify the conse-

quences of choosing not to vaccinate them.

An additional feature of this work is the simultaneous consideration of several objectives of

a vaccination campaign by employing the concept of Pareto-optimality. Vaccination policies

are commonly optimized for a single measure such as mortality, the number of infections,

quality-adjusted life year losses, or hospitalizations [21, 22, 24–26]. Consequently, vaccination

studies present multiple optimal strategies, each optimized for a different measure. However,

from a policymaker’s point of view, it is not clear 1) which criterion for the optimality of an

allocation should be chosen, 2) what are the trade-offs among different measures when deter-

mining an allocation, 3) how robust is the choice of allocation to changes in assumptions, 4)

how robust is the choice of allocation to a change in goals or the measures of choice, e.g., due
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to accumulating information on long-COVID conditions. Here, we address these issues by

taking a different approach and considering the problem as one of multi-objective optimiza-

tion, giving rise to a set of Pareto-optimal vaccine allocations. The Pareto-optimality approach

allows to systematically evaluate the trade-offs among competing measures such as mortality

and number of infections. In [23], this approach was used to evaluate, in retrospect, the perfor-

mance of vaccine allocations. Here, we consider Pareto-optimality as a tool to design new vac-

cine allocations and to study the impact of policy decisions. Specifically, by comparing the

possible outcomes of Pareto-optimal allocations (the Pareto front) for the scenarios in which

all age-groups can be vaccinated with those obtained when young age groups are not vacci-

nated, we obtain a global view of the extent to which limiting eligibility for vaccination effects

outcomes. More generally, such comparisons among Pareto fronts provide a way to visualize

the impact of various changes in assumptions.

2 Methods

This section presents the mathematical model used as a basis for this study and the analytical

and numerical methods used to explore questions related to optimal vaccination using the

model.

2.1 Age-structured SIR model with vaccination

The computations in this work rely on an age-stratified SIR model [22, 27, 28]. We note that

since our results concern only the herd-immunity threshold and final sizes, and since these

quantities do not depend on the generation-time distribution [28], the results derived are iden-

tical to those that would be obtained from a more elaborate SEIR or a more general age-of-

infection model.

The population is divided into n age groups. The dynamic variables are Sj,Ij,Rj and Vj,
the numbers of susceptible, infected, recovered, and vaccinated individuals in age-group

j (1� j� n).

Parameters of the model are:

• Nj (1� j� n) is the size of age group j.

• Cjk denotes the mean number of contacts of a single member of age group j with members of

group k per unit time. We denote by C the n × n matrix with elements C ¼ fCjkg
n
j;k¼1

.

• βj is the probability of infection upon contact for members of the group j, allowing for vary-

ing susceptibility to infection in different age groups.

• γ denotes the recovery rate so that 1

g
is the mean duration of infectivity.

• pj 2 [0, 1] is the fraction of group j which is vaccinated.

• ν is the fraction of those vaccinated for which protective immunity is generated.

• 1 − ε is the vaccine efficacy against infection, so that ε is the factor by which the probability

of infection upon contact is reduced for those vaccinated.

The case ε> 0, ν = 1 is known as ‘leaky vaccine’, and the case ε = 0, ν< 1 is known as an

‘all-or-none’ vaccine.
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The dynamics is then described by the differential equations

S0jðtÞ ¼ � bjSjðtÞ
Xn

k¼1

Cjk �
IkðtÞ
Nk

; ð1Þ

V 0j ðtÞ ¼ � εbjVjðtÞ
Xn

k¼1

Cjk �
IkðtÞ
Nk

; ð2Þ

I0jðtÞ ¼ bjðSjðtÞ þ εVjðtÞÞ
Xn

k¼1

Cjk �
IkðtÞ
Nk
� gIj; ð3Þ

R0jðtÞ ¼ gIjðtÞ: ð4Þ

We assume that the initial numbers of infected Ij(0) and of recovered Rj(0) are given. Since a

proportion pj of age group j is vaccinated, and a fraction ν of these will generate immunity, we

have

Vjð0Þ ¼ npjNj; Sjð0Þ ¼ Nj � Ijð0Þ � Rjð0Þ þ ð1 � nÞpjNj: ð5Þ

To calculate the basic reproductive number, R0, we use the next-generation matrix

M ¼
1

g
DbC

T; ð6Þ

where Dβ is the diagonal matrix with diagonal entries βi and C is the country-specific contact

matrix. The basic reproductive number R0 is equal to ρ(M), the spectral radius of M [27, 28].

2.2 Parameter values

Here we describe the parameter values used in the computations which were carried out.

• Age Demographics in all simulations were taken from the UN World Population Prospects

2019 for each country [29], using n = 9 age groups, of sizes Nj (1� j� 9) corresponding to

10-year increments, with the last group comprising those of age 80 and older.

• Contact matrices C ¼ fCjkg
n
j;k¼1

. We used contact matrices from [30]. Age bins in each case

were originally provided in a 5-year increment, where the last age bin corresponds to ages 75

and older. We follow the procedure as in [22] to adapt the matrices into 10-year increments.

• Susceptibility parameters βi: The examples presented in this study assume the age depen-

dent susceptibility profile for SARS-CoV-19 from [15]:

ðb1; � � � ; b9Þ ¼ b � ð0:4; 0:38; 0:79; 0:86; 0:8; 0:82; 0:88; 0:74; 0:74Þ

in which the relative susceptibility of age group 0–19 is roughly half of older age groups. The

parameter β is adjusted to obtain different values of R0.

• Vaccine efficacy Unless otherwise specified, in what follows, we assume that the susceptibil-

ity of vaccinated individuals to infection is reduced by 90% (so ε = 0.1), and the risk of a vac-

cinated infectee to develop severe disease or to die is 50% that of a non-vaccinated infectee.

By construction, this combination of parameters gives rise to an overall reduction of 95% in

the risk of a vaccinated individual to develop a severe disease as estimated in controlled stud-

ies [31] and analysis of real-world data [32].
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The fraction ν of those vaccinated for which protective immunity is generated, is taken to be

ν = 1.

• Age- dependent infection fatality ratio (IFR) We assume the age dependent IFR profile

[22, 33],

ðZ1; � � � ; Z9Þ ¼ ð0:00095; 0:0031; 0:011; 0:036; 0:12; 0:40; 1:35; 4:5; 15:2Þ;

where, for example, η9 implies an IFR of 15.2% at ages 80 and older.

• Initial values: The initial values for the differential equations, which are used in the final-

size formulas, are Ri(0) = 0 for 1� i� n, unless otherwise stated, that is we assume no recov-

ered individuals. We also take Ii(0) = 0 in the final size formula—corresponding to a negligi-

ble fraction of the population initially infected.

We note that, as far as the computations performed here are concerned, the value of param-

eter γ (recovery rate) in the model has no effect, since in the expressions for the reproductive

number, as well as in the final size equations, 1

g
is multiplied by the parameter β, which is

adjusted to achieve the desired value of R0. Therefore we do not need to fix a value for the

parameter γ.

2.3 Computation of vaccine supply threshold

The post-vaccination effective reproduction number Rv is the spectral radius ρ(Mv) of the

next-generation matrix following vaccination

Mv ¼
1

g
DbDsC

T; ð7Þ

where Dσ is a diagonal matrix with diagonal entries

sj ¼
Sjð0Þ
Nj
þ
Vjð0Þ

Nj
� ε ¼

Sjð0Þ
Nj
þ n � εpj

The matrix Mv depends on the vaccinated fractions pj in each age group, and to stress this we

will denote it by Mv(p1, � � �, pn).
The vaccine supply threshold is the minimal vaccine coverage required for achieving herd

immunity, that is attaining Rv = 1 [34, 35]. To compute this quantity we define, for each level 0

� p� 1 of total vaccine coverage, the minimal reproductive number attainable using alloca-

tions with total coverage p, that is

RvðpÞ ¼ min
p1;p2;���;pn

rðMvðp1; p2; � � � ; pnÞÞ

subject to the constraints

0 � pj � 1 �
Rjð0Þ

Nj
; 1 � j � n:

Xm

j¼1

pjNj ¼ p
Xm

j¼1

Nj:

The minimal vaccination coverage required to achieve herd immunity is obtained by solving

the equation Rv(p) = 1, and the corresponding minimizer (p1, p2, � � �, pn) gives the optimal vac-

cine allocation for achieving herd immunity.
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We conduct these computations using Matlabs’ fmincon nonlinear programming solver,

where the vaccine coverage p is gradually increased, and the initial guess used for coverage p +

δp is adapted from the solution of the optimization problem for vaccine coverage p. We should

note that in general, the optimization problem that we solve here is a non-convex one [34, 35],

so we do not have theoretical guarantees that there will not exist local minima, at which the

optimization algorithm could get stuck without finding the global minimum. To reduce the

probability of convergence to a local minimum, we have randomized the initial point provided

to the algorithm and verified that it converges to the same minimum so that we are reasonably

confident that we have found the global minima.

2.4 Final size formula

The final-size formula [27, 28] yields the overall number of infections in each age group in

terms of the model parameters, allowing us to compute the epidemic’s outcome without the

need to solve the differential equations numerically.

It is convenient to reformulate the system (1)–(4) in terms of proportions

sj ¼
Sj
Nj
; vj ¼

Vj

Nj
; ij ¼

Ij
Nj
; rj ¼

Rj

Nj
:

Obtaining

s0jðtÞ ¼ � bjsjðtÞ
Xn

k¼1

Cjk � ikðtÞ; ð8Þ

v0jðtÞ ¼ � εbjvjðtÞ
Xn

j¼1

Cjk � ikðtÞ; ð9Þ

i0jðtÞ ¼ bjðsjðtÞ þ εvjðtÞÞ
Xn

k¼1

Cjk � ikðtÞ � gijðtÞ; ð10Þ

r0jðtÞ ¼ gijðtÞ: ð11Þ

Assuming that the initial fractions of infected ij(0) and of recovered rj(0) are given, (5) trans-

lates into

vjð0Þ ¼ npj; sjð0Þ ¼ 1 � ijð0Þ � rjð0Þ þ ð1 � nÞpj:

From (8) and (9) we have

s0jðtÞ
sjðtÞ
¼ � bj

Xn

k¼1

Cjk � ikðtÞ;
v0jðtÞ
vjðtÞ

¼ � εbj
Xn

k¼1

Cjk � ikðtÞ;

which upon integration yields

log
sjð1Þ
sjð0Þ

¼ � bj

Xn

k¼1

Cjk

Z 1

0

ikðsÞds; log
vjð1Þ
vjð0Þ

¼ � εbj
Xn

k¼1

Cjk

Z 1

0

ikðsÞds;
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or

sjð1Þ ¼ sjð0Þ exp � bj

Xn

k¼1

Cjk

Z 1

0

ikðsÞds

" #

;

vjð1Þ ¼ vjð0Þ exp � εbj
Xn

k¼1

Cjk

Z 1

0

ikðsÞds

" #

:

ð12Þ

Note that, assuming si(0) 6¼ 0, (12) implies the relation

við1Þ ¼ við0Þ
sið1Þ
sið0Þ

� �ε

:

Summing (8)–(10), we have

i0jðtÞ ¼ � s
0
jðtÞ � v0jðtÞ � gijðtÞ;

which, upon integration, gives

ijð1Þ � ijð0Þ ¼ sjð0Þ � sjð1Þ þ vjð0Þ � vjð1Þ � g
Z 1

0

ijðtÞ;

or

Z 1

0

ijðtÞ ¼
1

g
sjð0Þ � sjð1Þ þ vjð0Þ � vjð1Þ þ ijð0Þ
h i

: ð13Þ

Since sj(t) + vj(t) + ij(t) + rj(t) = 1 for all t, we have

sjð0Þ þ vjð0Þ þ ijð0Þ ¼ 1 � rjð0Þ; sjð1Þ þ vjð1Þ ¼ 1 � rjð1Þ; ð14Þ

and can write (13) as

Z 1

0

ijðtÞ ¼
1

g
rjð1Þ � rjð0Þ
h i

;

so that (12) yields

sjð1Þ ¼ sjð0Þ exp �
bj

g

Xn

k¼1

Cjk rkð1Þ � rkð0Þ½ �

" #

; ð15aÞ

vjð1Þ ¼ vjð0Þ exp � ε
bj

g

Xn

k¼1

Cjk rkð1Þ � rkð0Þ½ �

" #

: ð15bÞ

Combining (14) and (15) yields

1 � rjð1Þ ¼ sjð0Þ exp �
bj

g

Xn

k¼1

Cjk rkð1Þ � rkð0Þ½ �

" #

þ

vjð0Þ exp � ε
bj

g

Xn

k¼1

Cjk rkð1Þ � rkð0Þ½ �

" #

;

or, defining zj = rj(1) − rj(0) to be fraction of group j infected throughout the post-vaccination
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period:

1 � rjð0Þ � zj ¼ sjð0Þ exp �
bj

g

Xn

k¼1

Cjkzk

" #

þ vjð0Þ exp � ε
bj

g

Xn

k¼1

Cjkzk

" #

; 1 � j � n:

Numerically solving this system of equations yields the fractions zj.
For example, we compute the final size of an epidemic spreading after 55% of the popula-

tion of the USA is vaccinated with no age prioritization, i.e., 55% of each age group is vacci-

nated. Considering a post-COVID basic reproduction number of R0 = 6, we observe that by

the end of the epidemic, 40.6% of the population above the age of 80 will be infected without

the protection of a vaccine, see Fig 1A. When vaccines are homogeneously allocated only to

adults (ages 20 and over), the portion of the population above the age of 80 that is infected

without the vaccine’s protection drops to 24.3%. In this case, however, the portion of children

in the age group of 10–19 that are infected increases to 98.1%, see Fig 1B. The above examples

assume that the entire population is either susceptible or vaccinated at the end of the vaccina-

tion campaign. To model in a more realistic manner, we allow for preexisting immunity due

to recovery, as well as for the prevalence of active cases, see Fig 1C.

2.5 Computation of optimal vaccine allocations

For a given vaccine allocation fpig
n
i¼1

where pi is the fraction of age group i which is vaccinated,

we use the final size formula to compute the outcomes in terms of the fraction of each age

group infected zj (1� j� n). The function f(p1, p2, � � �, pn) to be minimized in the case that the

aim is to minimize the number of infections is

fIðp1; p2; � � � ; pnÞ ¼
Xn

j¼1

zj � Nj;

while if the aim is minimizing mortality we take

fMðp1; p2; � � � ; pnÞ ¼
Xn

j¼1

Zj � zj � Nj;

where ηj (1� j� n) are the infection fatality rates (IFR) in each age group.

Given the total fraction p of the population to be vaccinated, we consider the following opti-

mization problem (with f = fI, f = fM or a convex combination of these functions):

min f ðp1; p2; � � � ; pnÞ

subject to

Xn

i¼1

piNi ¼ p
Xn

i¼1

Ni ðTotal vaccine allocation is equal to vaccine supplyÞ;

0 � pj � 1 � rjð0Þ ðVaccine allocation only to susceptible individualsÞ:

This optimization problem is solved using Matlabs’ fmincon nonlinear programming solver.

The inequality constraints can readily be modified so that vaccine allocation also does not

exceed a given portion αj of age group j,

0 � pj � minðaj; 1 � rjð0ÞÞ:

This modification enables to account for age groups for which vaccination is not approved (by
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setting αj = 0), as well as for vaccine hesitancy, logistical difficulties in reaching the entire pop-

ulation of an age group, or a portion of the population who cannot be vaccinated due to medi-

cal conditions or allergies.

2.6 The Pareto front and its computation

The Pareto front is a tool that allows us to examine the trade-offs among competing measures

for the effectiveness of a vaccination campaign—in our case, the trade-off between minimizing

the number of infections (attack rate) and mortality. For a given vaccination coverage, an out-

come (Z, M) (attack rate and mortality) is called feasible if it can be achieved by a suitable

Fig 1. Final size of the epidemic. Final size of an epidemic spreading with basic reproduction number of R0 = 6 after 55% of the population of the USA is vaccinated with

no age prioritization. Removed population refers to those recovered or dead. The computation considers a vaccination campaign in which A: Vaccines are allocated to all

ages. B: Vaccine allocation is limited to ages 20 and above. C: Vaccine allocation is limited to ages 20 and above, 20% of the population has preexisting immunity

recovered from COVID-19, and the prevalence of active cases is 0.5% of the population. The text in all graphs corresponds to the percent of non-vaccinated removed

individuals in each age group.

https://doi.org/10.1371/journal.pcbi.1009872.g001
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allocation of vaccines satisfying the coverage constraint. An outcome is called Pareto optimal if

it is feasible, and if there do not exist feasible outcomes (Z0, M0) which improve upon it both in

terms of attack rate and in terms of mortality (Z0 < Z, M0 <M). The set of Pareto-optimal out-

comes is called the Pareto front. We aim to compute the Pareto front and display it graphically

in the plane of outcomes (Z, M).

Each point on the Pareto front corresponds to the mortality minimizing vaccine allocation

with a given number of infections. To compute the Pareto front, we first compute its end-

points—namely, we compute the vaccine allocation minimizing attack rate and the vaccine

allocation minimizing mortality, with corresponding outcomes (Z0, M0) and (ZL, ML), respec-

tively. We conduct these computations using Matlabs’ fmincon nonlinear programming

solver. To avoid convergence of the optimization algorithm to a local minimum, we run the

solver with a set of random initial guesses.

The computation of the endpoints of the Pareto front determines the range for the attack

rate along the Pareto front and allows to determine a grid of L points

Zl ¼ Z0 þ
ZL � Z0

L
� l; l ¼ 1; � � � ; L;

along which the Pareto front is sampled. The optimal allocations along the Pareto front are

computed sequentially from one end of the Pareto front to the other by solving the constrained

optimization problem of finding the mortality minimizing vaccine allocation with a given

number Zl of infections for l = 1, 2, � � �, L − 1:

min fMðp1; � � � ; pnÞ;

subject to

fIðp1; � � � ; pnÞ ¼ Zl

Xn

i¼1

piNi ¼ p
Xn

i¼1

Ni;

0 � pj � 1 � rjð0Þ:

The initial guesses used for each optimization problem at stage l is a set of random alloca-

tions around the optimal allocation found for the point l − 1.

In some cases, we have observed that the direction of sweep from one end to the other

affects the results obtained. To eliminate this factor, we sweep in the opposite direction and, if

needed, update the optimal allocation computed. Namely, we recompute the Pareto front at

points Zl for l = L − 1, L − 2, � � �, 1 where the initial guess for each optimization problem is the

optimal allocation found for the point l + 1.

3 Results

In what follows, we consider scenarios of a partial return to normality, to a basic reproduction

number of R0, after vaccination efforts are completed. We illustrate our results using parame-

ters corresponding to the USA demography and contact structure and later consider how the

different demographic structures of other countries affect the results. We note that R0 is the

reproductive number in the absence of vaccination and preexisting immunity due to recovery.

The goal of the first examples is to illustrate the methodology. Accordingly, these examples

do not necessarily reflect up-to-date vaccine coverage and are simplistic in the sense that they

do not account for preexisting immunity, hesitance, and other factors of relevance. These
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illustrative examples are followed by a real-would example of the reevaluation of the vaccina-

tion campaign in Israel in October 2021. This example includes various factors of relevance

such as preexisting immunity. Furthermore, a systematic study of the effect of changes in vari-

ous parameters such as hesitancy or vaccine coverage is provided in the supplementary mate-

rial, see S1 Text.

3.1 Vaccination coverage required for herd immunity

Achieving herd immunity requires the vaccination of a sufficiently large sub-population. The

required coverage can be minimized by allocating the vaccines to different age groups in an

optimal manner. Here, for each value of R0, we compute the minimal vaccine coverage Vthres-

hold necessary to reach herd immunity and the corresponding vaccine allocation among the eli-

gible age groups that achieves this goal. See Section 2.3 for details on these computations.

We first examine the case in which the entire population is eligible for vaccination. The

results vary with the reproductive number R0. For example, when R0 is less than� 1.1, the

required vaccine supply is relatively small and is allocated solely to age group 30–39, see

Fig 2B. Then, as R0 increases, the required vaccine supply Vthreshold gradually increases, and its

allocation is extended to other age groups. The optimal vaccine allocations are not necessarily

allocations to those who do the most transmitting. Indeed, as R0 increases, new age groups are

typically added to the allocation before the coverage of the age groups already present in the

allocation has reached 100%. For R0 = 3, herd immunity can be achieved by vaccinating

roughly 56% of the population in an optimal way, see Fig 2A. In comparison, if vaccines are

allocated pro rata (in proportion to the size of age groups), achieving herd immunity requires

vaccination of 75% of the population, taking into account 90% vaccine efficacy against

infection.

To assess the population-level impact of the vaccination of children younger than the age of

ten on the prospects for achieving herd immunity, we repeat the analysis while restricting the

allocation of vaccines to ages ten and older, and compute the corresponding threshold curve

V10þ
threshold as a function of R0. We observe that for low values of R0 the threshold curve V10þ

threshold

coincides with the threshold curve Vthreshold corresponding to the case in which all ages are

vaccine eligible, see Fig 2B in comparison with Fig 2C. The implication is that for values of R0

< 3.1, any allocation achieving herd immunity and including age group 0 − 9 would be subop-
timal in the sense that its vaccine coverage is larger than the minimum required. For R0 > 3.1,

the two curves diverge. The divergence stems from the fact that, for these values of R0, all age

groups (including children 0 − 9) partake in the optimal allocation (see Fig 2B). Hence, for

these values of R0, any allocation achieving herd immunity and not including age group 0 − 9

would be suboptimal in that it would require a higher level of vaccination overall than the min-

imal achievable coverage. As R0 increases further, the threshold curve V10þ
threshold rapidly increases

up to its maximal value, which corresponds to 100% of the eligible population at

R0 ¼ R10þ
critical � 4:25. When R0 > R10þ

critical, reaching herd immunity becomes impossible if chil-

dren under the age of 10 are not vaccinated.

In case vaccines are not allocated to age group 0–19, we find that herd immunity is achiev-

able only for rather low reproductive numbers, R0 < R20þ
critical � 1:85. For higher values of R0,

the spread of the infection is sustained solely by the population under the age of 20. Therefore,

for typical values of R0 of SARS-CoV-19 and its variants, vaccination of age group 10–19 is

essential for achieving herd immunity.

The above example, presented in Fig 2, relies on the demographic structure and the contact

matrix of the USA [30]. We have also examined the critical reproduction numbers R10þ
critical and

R20þ
critical for eight additional countries using the contact matrices estimated in [30], and found
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Fig 2. Vaccination coverage required for herd immunity. A: Vaccine coverage Vthreshold required to achieve herd immunity threshold

as a function of the reproduction number R0 for the USA demography and contact structure where R20þ
critical and R10þ

critical correspond to

beproduction numbers at which herd immunity cannot be achieved without vaccination of age groups 0 − 19 and 0 − 9, respectively. B:

Vaccine allocations at which herd immunity is achieved at minimal vaccine coverage and when all the population is eligible for

vaccination. C: Same as B, but when ages ten and older are eligible for vaccination.

https://doi.org/10.1371/journal.pcbi.1009872.g002
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the results to be similar, see Fig 3A. Namely, we found that despite the diversity of the coun-

tries examined, 1:6 < R20þ
critical < 2:3, and 3:3 < R10þ

critical < 4:6. In particular, we observe that

whether vaccinating children is necessary for reaching herd immunity is not determined by

looking at the percentage of children in the population, as a naive calculation based on a

homogeneous-population model would imply. For example, in the case of Zimbabwe, with

53% of its population in age group 0–19, we computed R20þ
critical � 2:15, which is higher than

R20þ
critical � 1:8 computed for Poland for which the size of age group 0–19 is 20% of the total

Fig 3. Critical reproduction numbers. Reproduction numbers R20þ
critical and R10þ

critical at which herd immunity cannot be achieved without vaccination of age groups 0 − 19

and 0 − 9, respectively. Computed using A: age-dependent susceptibility profile of SARS-CoV-19: Ages 0–19 are roughly half as susceptible as adults [15]. B: Same

susceptibility profile as in A, but with increased susceptibility in the age group 10–19: Ages 10–19 are as susceptible as adults. C: Same susceptibility profile as in A, where

ages 10–19 are as susceptible as adults.

https://doi.org/10.1371/journal.pcbi.1009872.g003
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population. Instead, the critical factor is the level of assortativity of mixing within the children

sub-population, as reflected in the contact matrix.

An important consideration in undertaking a policy, such as aiming to achieve herd immu-

nity through vaccination, is its robustness to uncertainties or possible changes in conditions.

For example, if R0 varies as a result of a new viral variant, herd immunity may be lost, leading

to an epidemic surge. Since the allocations aiming to achieve herd immunity focus on younger

population that do the most transmitting, they leave the high-risk population exposed in case

of an epidemic spread. For example, if herd immunity is achieved for R0 < 2.9 by vaccinating

55% of the population, and R0 increases to R0 = 4 or R0 = 6, the resulting epidemic surge would

result in 2.26M or 3.3M fatalities, respectively. In comparison, as will be shown subsequently,

other allocations with the same coverage can achieve 0.26M or 0.45M fatalities, respectively.

We thus conclude that aiming for herd immunity is not a robust strategy.

3.2 Optimal allocations for minimizing mortality

We now examine cases in which the vaccination campaign is followed by an epidemic out-

break since herd immunity is not achieved with given coverage at the range of R0 which the

policy is designed for.

In what follows, we assess the outcomes of post-vaccination epidemic spread by considering

two widely employed measures: attack rate (overall number of infections) and mortality, see

Section 2.4 for details. The example below considers a vaccine coverage of 55% of the popula-

tion, when either all ages, only ages 10 and older or only ages 20 and older are eligible for vacci-

nation. In each case, we assume R0 is above the threshold at which herd immunity is

achievable with the given vaccine coverage.

Let us first consider the case of vaccine allocations aimed at minimizing mortality, see Sec-

tion 2.5 for details on the computation of such optimal allocations. In this case, as expected, as

herd immunity is lost at R0 > Rthreshold, we observe that optimal allocations for minimizing

mortality include the older age groups—see the bottom right panels of Fig 4. These allocations

are associated with a significant number of infections—see the top right panel. The optimal

allocation varies only slightly with R0. At high R0, we observe children are prioritized. This

phenomenon will be discussed subsequently.

3.3 Minimizing infections

We now consider allocations minimizing the number of infections, see the left panels of Fig 4.

For the lower range of values of R0 (R0 < 7), the structure of the allocations optimized to mini-

mize infections, displayed in the bottom left panels, varies only slightly with R0. Particularly, in

this range of the basic reproduction number, as R0 increases, the allocation prioritizes younger

age groups, so that when of R0 > 4 a small fraction of age group 0–9 is included in the alloca-

tion. However, at higher values of R0 (R0 > 7), we observe sudden and counter-intuitive shifts

in the optimal allocation. The first such transition occurs at R0� 7.3, at which the optimal allo-

cation to age group 0–9 abruptly increases, at the expense of the 20–29 age group. A second

transition occurs at R0� 8.8, at which the allocation of vaccines to those of age 70 and older is

increased at the expense of vaccine allocations to well-connected age groups such as 20–39—

this transition also incidentally leads to a drop in mortality due to the larger protection which

the older age groups receive. This shifting of vaccine resources to the less connected groups

seems quite surprising. Intuitively, an explanation is that at sufficiently high values of R0, in

view of the fact that the vaccine provides imperfect protection, vaccines breakthroughs in

those groups who have more contacts become so common that it becomes inefficient to
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allocate vaccines to those groups when the aim is to minimize infections. Instead, the optimal

vaccine allocation is to withdraw to the second line of defense and vaccinate age groups that

are the least likely to be infected, either due to being less connected (older age groups) or to

being less susceptible to infection (children under 10). A comprehensive study of this phenom-

enon is presented in [36].

Fig 4. Impact of change in reproduction number. Overall infections of non-vaccinated individuals (top graphs) and overall mortality (centered graphs) as function of the

basic reproduction number R0 after completion of a vaccination campaign for allocations minimizing infections (left panels) and allocations minimizing mortality (right

panels). The outcomes are presented for the following cases: All ages are eligible for vaccination (solid), only ages 10 and older are eligible (dashes), and only ages 20 and

older are eligible (dash � dots). Bottom panels present the corresponding allocations.

https://doi.org/10.1371/journal.pcbi.1009872.g004
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3.4 Pareto-optimal allocation of vaccines

Sections 3.2–3.3 considered vaccine allocations that minimize one of two basic measures:

attack rate (overall number of infections), and mortality. Due to the age-dependent infection

fatality ratio there is a trade-off between infections and mortality. The results presented in

Fig 4 show that the trade-offs between infections and mortality are considerable. For example,

when R0 = 4 and vaccines can be allocated to all ages, mortality ranges from 0.25M to 2.35M,

while overall infections range from 100M to 162M, for vaccine allocations aimed at minimiz-

ing number of infections, or mortality, respectively. In what follows, we utilize a multi-criteria

Pareto optimality approach to systematically evaluate the trade-offs involved among the two

measures.

It is instructive to first consider a wide set of randomly chosen vaccine allocations, not nec-

essarily designed to be optimal in any sense. For each allocation, we plot the possible outcomes

in a plane so that the coordinates of a point correspond to the outcome of a given vaccine allo-

cation in terms of infections and mortality. The yellow points presented in Fig 5A present the

outcomes corresponding to allocations with a coverage of 55% of the US population, but

restricted to adults of age 20 and over (providing coverage of 73.2% of this group), assuming

R0 = 4 in the post-vaccination period. The point highlighted with a diamond marker corre-

sponds to a pro rata allocation with no prioritization among those aged 20 and over, giving

rise to mortality of roughly 750,000 individuals and an overall number of *150 million

infected individuals. Inspection of the random allocations shows that many alternative alloca-

tions achieve better outcomes in both senses, namely reduce both infections and mortality

compared to the pro rata allocation. Therefore, we consider the curve in the plane of possible

outcomes (infections, mortality) which represents the Pareto front, the set of outcomes that

cannot be improved upon in both senses by changing the allocation, see, e.g., the black solid

curve in Fig 5. The choice among outcomes on the Pareto front (and the corresponding vac-

cine allocations) depends on one’s weighing of the importance of the two measures. The vac-

cine allocations corresponding to outcomes along the Pareto front are presented in the bottom

panel of Fig 5. The right endpoint of the Pareto front represents the outcome corresponding to

an allocation chosen so that mortality is minimized, while the left endpoint represents the out-

come of the allocation minimizing infections. As expected, the allocation minimizing infec-

tions can be seen to prioritize younger age groups, while the allocation minimizing mortality

includes older age groups. Moving along the Pareto front, we observe a rather complicated

structure of variation in the allocations. For example, we see that the 40–49 age group is

included in both the allocation minimizing infections and the allocation minimizing mortality,

but it is not included in an intermediate range along the Pareto front. Analogous results for

higher reproductive numbers R0 = 6, 8 are given in Figs 6 and 7, respectively.

Examining the role of children’s vaccination, we observe that age group 10–19 is included

in the optimal allocation along the entire Pareto front. This implies that restricting vaccination

to adults over 20 will worsen outcomes. The extent to which outcomes are degraded by

restricting eligibility to those over 20 can be gauged by comparing the two Pareto fronts in the

top part of Fig 4. Thus, for example, when R0 = 4, if vaccines are restricted to the 20+ age

group, then the minimal number of infections that can be achieved is 129 million, and the allo-

cation achieving this outcome would given rise to a mortality of 2.5 million. If those of age 10–

19 become eligible, and an allocation generating the same number of infections is chosen,

mortality is reduced by 70% to 0.72 million. Similarly, for higher values of R0, the outcomes on

the Pareto front corresponding to vaccination of all age groups show significant improvement

over the outcomes on the Pareto front when restricting vaccination to ages 20+.
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On the other hand, the significance of the effect of restricting vaccination to adolescents

over the age of 10 depends on the basic reproductive number R0. When R0 = 4, the allocations

along the entire Pareto front either include only a very small fraction of the 0–9 age group or

do not include it at all, so that the Pareto fronts corresponding to the two cases are nearly

indistinguishable. When R0 = 6 (Fig 6), the allocations along the Pareto front do include a

large fraction of the 0–9 age group, but the differences between the outcomes on the Pareto

front when all ages are eligible, compared to those in which only ages 10 and older are eligible,

are quite small. However, when R0 = 8 (Fig 7), we observe a significant difference between the

Pareto fronts in these two cases, especially in the part of the Pareto front giving more emphasis

to preventing infections.

Fig 5. Pareto front. R0 = 4. Top graph presented outcomes of random allocations when all ages are eligible for vaccination (square blue markers) and only ages 20 and

older are eligible (round yellow markers). Super-imposed are the Pareto fronts in the case ages 20 and older are eligible for vaccination (black solid), ages 10 and older

are eligible (yellow dash-dotted) and when all ages are eligible (purple dashed). The latter two curves are indistinguishable. Bottom graphs present vaccine allocation

along the Pareto fronts in the case of ages 20 and older are eligible for vaccination, and when all ages or ages 10 and older are eligible for vaccination.

https://doi.org/10.1371/journal.pcbi.1009872.g005
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3.5 Sensitivity to changes in assumptions

Our baseline examples, presented in Figs 2, 3A and 4–7 consider a specific set of assumptions

concerning, e.g,. vaccine efficacy and vaccine hesitancy. Of particular significance in examin-

ing the role of childrens’ vaccinations, these computations all adopt the age dependent suscep-

tibility profile estimated in [15], in which the relative susceptibility of age group 0–19 is

roughly half that of older age groups. We now briefly consider the impact of changes in these

assumptions on the optimal allocation. See S1 Text for additional details.

We first study the impact of changes in the age-dependent susceptibility by considering a

modified age-dependent susceptibility profile in which adolescents (age group 10–19) are

equally susceptible as adults, and an additional modified profile in which members of age

group 0–19 are equally susceptible as adults. Fig 8 presents the vaccination coverage required

for herd immunity and the vaccine allocations that lead to herd immunity at minimal

Fig 6. Pareto front. Same as Fig 5 with R0 = 6.

https://doi.org/10.1371/journal.pcbi.1009872.g006
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vaccination coverage under the two alternative assumptions on children’s susceptibility to

infection. As expected, when the susceptibility of adolescents is higher than the susceptibility

of younger children, the allocations designed to achieve herd immunity at minimal coverage

dedicate larger portions of vaccines to age group 10–19 at the expense of vaccine allocation to

age group 0–9. Herd immunity can be achieved without vaccinating children of ages 0–9 for

R0 up to 4.2.

If we assume that all members of age group 0–19 are equally susceptible as adults, vaccina-

tion of age group 10–19, and to a lesser extent, vaccination of age group 0–9 becomes of higher

priority—indeed in this case herd immunity cannot be reached without vaccinating children

in age group 0–9 for R0 > 2.6. Fig 3B and 3C show similar behavior when the demographic

structure and contact matrices for other countries are used.

Examining the outcomes associated with optimal vaccination when herd immunity cannot

be achieved, we find that, as expected, when the susceptibility of children is higher, and at

Fig 7. Pareto front. Same as Fig 5 with R0 = 8.

https://doi.org/10.1371/journal.pcbi.1009872.g007
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moderate values of R0, the allocations minimizing infections dedicate larger portions of vac-

cines to the age group 0–19, see Figs 9 and 10. Nevertheless, the allocations minimizing mor-

tality do not change. However, for sufficiently large values of R0, the increased susceptibility of

children has an opposite effect and leads to reduced priority given to their vaccination.

To test the impact of changes in the contact matrix on optimal allocations we modify the

USA contact matrix by randomly perturbing its elements by 0–10%. The main effects of

such noise are shifting of the ends of the Pareto fronts, and shifting of transitions point where

vaccine allocations shifts from one group to another. These changes are comparable to the

level of noise, e.g., in the example provided, 10% perturbation leads to as much as 7% shift in

the end of the Pareto front. This demonstrates the utility of considering the entire Pareto front

as a measure for the robustness of the allocations. See Section S1.1 in S1 Text for additional

details.

Finally, we consider the effect of changes in other assumptions concerning, e.g,. vaccine

efficacy or vaccine hesitancy, see S1 Text for additional details. In particular, as expected,

increase of vaccine coverage allows allocation of vaccines to age groups that are otherwise at

lower priority for vaccination. Similarly, preexisting immunity in age groups prioritized for

vaccination allows diverting the allocation of vaccines to other age groups that are otherwise at

lower priority for vaccination. Vaccine hesitancy, modelled as a constraint on the maximal

fraction of each age-group that can be vaccinated, also leads to reallocation of vaccines from

age groups prioritized for vaccination to those of lower priority.

Fig 8. Effect of change in childrens’ susceptibility on vaccination coverage required for herd immunity. A,C: Vaccine coverage Vthreshold required to achieve herd

immunity threshold as a function of the reproduction number R0 for the USA demography and contact structure. The gray curves correspond to the case in which the

relative susceptibility of age group 0–19 is half that of adults. B,D: Vaccine allocations at which herd immunity is achieved at minimal vaccine coverage and when there is

no age restriction on vaccine allocation.

https://doi.org/10.1371/journal.pcbi.1009872.g008
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4 Application: Israel as a case study

In the above, we focused on the case in which limited availability of vaccines implies a need to

consider optimized allocations. In what follows, we consider a real-world example from Israel

which demonstrates how the methodology presented in this work applies more broadly, also

to cases in which a large fraction of the population has already been vaccinated, and in which

vaccine shortage is not a key limiting factor. Particularly, we account for the large portion of

the Israeli population already vaccinated or recovered, and ask: if it is possible to vaccinate an

Fig 9. Impact of change in reproduction number when adolescents (age group 10–19) are equally susceptible as adults. Same as Fig 5 except the susceptibility of age

group 10–19 is increased by factor of 2 to that of older age groups. Susceptibility of age group 0–9 is not modified.

https://doi.org/10.1371/journal.pcbi.1009872.g009
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additional small portion of the population—how should the vaccines be distributed among the

different age groups to achieve optimal epidemic outcomes going forward? Understanding

whom it is most beneficial to vaccinate reveals the weak spots of vaccination coverage in Israel

and can help direct efforts in raising public awareness, as well as contribute to the discussions

on extending vaccine eligibility to younger age groups.

Relevant data, updated to October 2021, is acquired from the Israeli Ministry of Health, and

parameters such as contact matrices and age-dependent mortality rates are customized to

Fig 10. Impact of change in reproduction number when children (age group 0–19) are equally susceptible as adults. Same as Fig 5 except the susceptibility of age

group 0–19 is increases by factor of 2 to that of older age groups.

https://doi.org/10.1371/journal.pcbi.1009872.g010
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Israel. An account of the statistical analysis and calibration procedures used to extract these

parameters will be presented elsewhere.

As of October 2021, 57% of the Israeli population had been fully vaccinated, i.e., had

received a booster dose or a second dose within the preceding 6 months. Vaccine efficacy of

90% against infection is assumed for these individuals. An additional 9.5% had received their

second dose of vaccine over 6 months previously, and are considered as non-vaccinated in the

computation. Additionally, 13.8% of the population is known to be recovered.

We now consider the optimal allocation of additional vaccines, namely: if an additional

supply of 0.3 million vaccines can be administered, we ask how they should be allocated to dif-

ferent age groups. To answer this question, we compute the Pareto front of outcomes following

the administration of the additional supply of vaccines, when R0 = 6. Based on the data con-

cerning second dose uptake in Israel, we assume a maximal vaccine coverage of 93% per age

group. We find that additional mortality changes considerably along the Pareto front, see

Fig 11, with a range of roughly 4,000–8,000 overall mortality. The number of overall infections

Fig 11. Pareto front—Vaccination of an additional 0.3 million people in Israel. Top graph presents outcomes of random allocations when all ages are eligible for

vaccination (square blue markers). Black solid curve is the Pareto front when all ages are eligible for vaccination. Bottom Graphs: Vaccine allocations along the Pareto

front.

https://doi.org/10.1371/journal.pcbi.1009872.g011
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do not change as much along the Pareto front, with an overall difference of only 70, 000 infec-

tions between the two ends of the front. We further find that the mortality minimizing alloca-

tion at right end of the Pareto front yields only a marginal reduction in mortality compared to

an allocation in the middle of the Pareto front. This observation suggests the choice of an allo-

cation in the middle of the Pareto front (marked by dash-dotted gray line) which corresponds

to an allocation of 60% of the vaccines to age group 30–39, roughly 13% to age group 60–69

and to age group 80, and then the rest to age groups 70–79 and 20–29. This result provides a

snapshot of the weak-spots of the Israeli vaccine coverage. For example, it reflects the fact that,

at the time of submission, the vaccine immunity of nearly 18% of age group 30–39 has waned

and expired since they did not take a booster dose.

Under current assumptions, the optimal allocation for the scenario considered here does

not include the vaccination of those under 20. This stems from vaccine immunity weak spots

in other age groups, and from the assumptions that the relative susceptibility of children under

the age of 20 is lower than that of older ages. This does not imply that vaccinating children is

not beneficial, nor does it imply that the vaccination of children in Israel is not recommended.

It does imply that the weakest spots in vaccine coverage in Israel are in age groups older than

20. Hence if one needs to choose between the investment of efforts in the vaccination of chil-

dren aged 5–9 or their parents, then at the time of evaluation, the vaccination of the latter

group yields better epidemic outcomes.

The vast majority of random allocations give rise to outcomes that are significantly worse

than those that arise from allocations along the Pareto front. For example, we observe that a

uniform allocation of vaccines is far from the Pareto front and results in 1.95 million addi-

tional infections and 8,600 overall mortality. This implies that, at this stage, precision in imple-

menting the optimal allocation is important, and that it is necessary to re-evaluate the optimal

allocations as the vaccination effort continues.

The above computation illustrates the broad applicability of the tools developed in this

work. We note, however, that the computation above does not take into account estimates of

those who recovered from SARS-CoV-19 but were never detected. It also does not account for

further waning of immunity. Finally, already during the time of submission conditions have

started to change with the emergence of a new variant (which later became known as the omi-

cron variant). Therefore, applying such a computation to guide decision making in Israel will

require refinement and update.

5 Discussion

This study uses modelling and optimization to explore the outcomes of vaccination campaigns

for SARS-CoV-19, with emphasis on the effects of vaccinating children. We demonstrate the

use of Pareto front computations to systematically evaluate the trade-offs involved among con-

flicting measures for optimizing vaccine allocations such as mortality and attack rate. In partic-

ular, we utilize this approach to compare optimal achievable outcomes when all age-groups

can be vaccinated to those that can be attained when younger age groups are not eligible for

vaccination.

Our study focused on two questions:

1. How essential is the vaccination of children and youths to achieving herd immunity?

2. What is the population level impact of vaccination of children in case herd immunity by

vaccination cannot be attained?

Regarding the question of herd immunity, we estimated that when ages 10 and older are eli-

gible for vaccination, optimal allocations can lead to herd immunity for basic reproduction
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numbers up to R10þ
critical � 3:5. Though this threshold varies (±20%), e.g., across countries and in

dependence on vaccine efficacy and prior immunity, we can conclude that at R0 values esti-

mated for the currently circulating variants [37], herd immunity can most probably not be

achieved without vaccination of children under 10, even if performed in an optimal way. More

fundamentally, our results show that designing vaccine allocation with the aim of achieving

herd immunity is not a robust strategy. Indeed, we show that allocations optimized to achieve

herd immunity give preference to the young and leave the older age groups exposed. Conse-

quently, if, due to a mis-estimation or to changed circumstances, herd-immunity is not

achieved, mortality would rise steeply.

The second question concerns the cases in which the ‘herd immunity’ strategy is not feasi-

ble. We find that in most cases considered, age groups 0–9 and 10–19 are included in the opti-

mal allocations, yet the degree to which their inclusion affects epidemic outcomes varies by

case. The exclusion of age groups 0–9 or 0–19, i.e., allocation of the same number of vaccine to

other ages, only marginally affects outcomes in terms of mortality. The exclusion of age group

10–19 results in significantly worse outcomes in terms of the minimal number of infections

achievable. Finally, the inclusion of age group 0–9 leads to a reduction in the minimal number

of infections possible at high R0.

We should stress here that the above results, which demonstrate in some cases a limited

improvement in outcomes with the inclusion of children, should not be taken to imply that

vaccination of children is not in itself beneficial and important. The comparisons here are per-

formed under the assumption of a fixed supply of vaccines, in which case vaccination of one

age group entails an opportunity cost in not vaccinating another. Obviously if one can extend

the coverage so as to include children, without reducing vaccination levels in other age groups,

then doing so will only improve outcomes. Indeed our results emphasize the importance of

increasing total vaccination coverage to the highest extent possible, in that they demonstrate

the limitations of what can be achieved with a limited amount of vaccine, even if it is optimally

allocated.

Most examples provided in the paper consider the design of a new vaccination campaign,

while focusing on the case in which there is a shortage of vaccines, hence a need to optimize

their allocation. However, the methodology presented in this work applies more broadly at

later stages of a vaccination campaign, taking into account those already vaccinated, and in

cases where vaccine shortage is not the key limiting factor. Indeed, we provide an example

which demonstrates the use of the tools to reveal the weak spots of the current vaccination cov-

erage in Israel, e.g., with the aim of better focusing a public awareness campaign to the appro-

priate age groups. This example also demonstrates the importance of considering the trade-

offs between mortality and infections, and shows the Pareto front allows one to evaluate those

trade-offs and make an informed choice of the allocation policy. Finally, the Pareto front

allows to assess the cost of sub-optimal allocations and to determine the degree to which preci-

sion in implementing the chosen allocation is important.

This study is subject to several limitations. We focus on the outcomes in the medium-term

range after the vaccination campaign has ended. Over longer timescales, the possibility of

virus mutation will influence these predictions. Similarly, if immunity is not maintained by

booster vaccination, long term predictions will be influenced by waning immunity. Our study

optimizes outcomes for the post-vaccination phase, and is, therefore, most relevant when dis-

ease spread is contained during the vaccination campaign, e.g., by non-pharmaceutical inter-

ventions. In this case, once a vaccine allocation that is optimized for post-vaccination

outcomes is determined, transient features of a vaccination campaign that results in the

desired allocation can be designed, for example, to allow gradually relaxing non-
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pharmaceutical interventions during the campaign [21]. In case the vaccination campaign

occurs in parallel to an ongoing outbreak, short-term goals are likely to dominate the design of

the vaccination campaign [22]. We have also used pre-pandemic contact matrices in accor-

dance with the aim of returning to pre-pandemic routine after the vaccination campaign. Nev-

ertheless, we present results for a range of basic reproduction numbers R0, and therefore

implicitly account for a new routine which might include a degree of non-pharmaceutical

interventions. However, age-dependent non-pharmaceutical interventions such as long-term

changes in school operation are not well captured by this approach. Accounting for such inter-

ventions will require the estimation and application of post-pandemic contact matrices.

The debate over childrens’ vaccination is on-going in many countries, and will reemerge as

booster vaccinations or lineage-adapted vaccines will be considered. More generally, the man-

agement of vaccination campaigns will continue to require making decision based on the pop-

ulation-level impact of various alternatives. We believe that the approach presented in this

work can provide valuable model-informed tools to assist such decision making.
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37. Liu Y, Rocklöv J. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared

to the ancestral SARS-CoV-2 virus. Journal of travel medicine. 2021.

PLOS COMPUTATIONAL BIOLOGY The role of childrens’ vaccination for COVID-19—Pareto-optimal allocations of vaccines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009872 February 25, 2022 30 / 30

https://doi.org/10.1007/s10654-020-00698-1
https://doi.org/10.1007/s10654-020-00698-1
http://www.ncbi.nlm.nih.gov/pubmed/33289900
https://doi.org/10.1016/S0025-5564(02)00129-3
http://www.ncbi.nlm.nih.gov/pubmed/12421553
https://doi.org/10.1016/j.mbs.2016.09.017
https://doi.org/10.1016/j.mbs.2016.09.017
http://www.ncbi.nlm.nih.gov/pubmed/27729237
https://doi.org/10.1371/journal.pcbi.1009872

