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A nanodomain is a collection of proteins localized within a specialized, nanoscale
structural environment, which can serve as the functional unit of macroscopic
physiologic processes. We are beginning to recognize the key roles of cardiomyocyte
nanodomains in essential processes of cardiac physiology such as electrical impulse
propagation and excitation–contraction coupling (ECC). There is growing appreciation
of nanodomain dysfunction, i.e., nanopathy, as a mechanistic driver of life-threatening
arrhythmias in a variety of pathologies. Here, we offer an overview of current research on
the role of nanodomains in cardiac physiology with particular emphasis on: (1) sodium
channel-rich nanodomains within the intercalated disk that participate in cell-to-cell
electrical coupling and (2) dyadic nanodomains located along transverse tubules that
participate in ECC. The beat to beat function of cardiomyocytes involves three phases:
the action potential, the calcium transient, and mechanical contraction/relaxation. In all
these phases, cell-wide function results from the aggregation of the stochastic function
of individual proteins. While it has long been known that proteins that exist in close
proximity influence each other’s function, it is increasingly appreciated that there exist
nanoscale structures that act as functional units of cardiac biophysical phenomena.
Termed nanodomains, these structures are collections of proteins, localized within
specialized nanoscale structural environments. The nano-environments enable the
generation of localized electrical and/or chemical gradients, thereby conferring unique
functional properties to these units. Thus, the function of a nanodomain is determined by
its protein constituents as well as their local structural environment, adding an additional
layer of complexity to cardiac biology and biophysics. However, with the emergence
of experimental techniques that allow direct investigation of structure and function at
the nanoscale, our understanding of cardiac physiology and pathophysiology at these
scales is rapidly advancing. Here, we will discuss the structure and functions of multiple
cardiomyocyte nanodomains, and novel strategies that target them for the treatment of
cardiac arrhythmias.
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THE NANO-MACHINERY OF CARDIAC
ELECTRICAL EXCITATION

For over a century, it has been recognized that cardiac myocytes
come into close contact at the intercalated disk (ID), where
adjacent cells are only nanometers apart. By the mid-20th century,
gap junctions (GJs) were identified as specialized structures
within the ID, which afford electrochemical coupling between
cells (Sjostrand and Andersson, 1954; Barr et al., 1965). The
closest apposition between neighboring myocytes occurs within
these GJs, with as little as 2 nm separating the cells. Despite
this, GJs themselves do not constitute a functional nanodomain –
they afford direct cytosolic continuity between coupled cells, and
since neither cytosolic compartment is a restricted environment,
the effects unique to nanoscale compartments do not come
into play. Thus, cardiac conduction, the cell-to-cell spread of
electrical excitation through the heart, was thought a relatively
simple process with cardiac voltage-gated sodium (Na+) channels
(NaV1.5) affording excitability, and GJs providing cell-to-cell
electrical coupling (Kleber and Rudy, 2004).

This electrotonic view of cardiac conduction allowed the
formalism of cable theory to be applied to cardiac conduction,
and adequately explained experimental observations for several
decades (Kleber and Rudy, 2004). However, findings have
accumulated, that are not well-explained by this model.
Transgenic mice with reduced Cx43 expression displayed
significant conduction slowing in some studies (Guerrero et al.,
1997; Eloff et al., 2001; Gutstein et al., 2001), but not in others
(Morley et al., 1999; Vaidya et al., 2001; Thomas et al., 2003;
Beauchamp et al., 2004; Danik et al., 2004; van Rijen et al., 2004;
Stein et al., 2009). Likewise, GJ remodeling and reduced Cx43
expression correlated with arrhythmogenic conduction slowing
in one pacing-induced canine heart failure model (Poelzing
et al., 2004), but preceded it in another (Akar et al., 2007).
Another discrepant finding stemmed from investigations of the
electrophysiological impact of cardiac interstitial edema (fluid
accumulation in the extracellular space): per the electrotonic
model, an increase interstitial volume would lower extracellular
resistance, and consequently, increase conduction velocity (Spach
et al., 2004; Plonsey and Barr, 2007). However, experimental
measurements in guinea pig ventricles revealed conduction
slowing during to interstitial edema (Veeraraghavan et al., 2012,
2015, 2016) and edema was linked to reversible conduction
block in patients undergoing ablation for the treatment of atrial
fibrillation (AF) (Arujuna et al., 2012). These findings prompted
speculation that non-electrotonic mechanisms of intercellular
communication may play a role in the heart.

Theoretical studies had long raised the possibility of an
alternate mode of intercellular coupling (Pertsov and Medvinskii,
1976; Sperelakis and Mann, 1977; Kucera et al., 2002; Sperelakis
and McConnell, 2002; Copene and Keener, 2008; Mori et al.,
2008). Dubbed ephaptic coupling, this mechanism envisions cells
communicating via local extracellular electrochemical transients
(ion accumulation/depletion). The aforementioned models
suggest that a cardiac ephapse (a functional nanodomain capable
of supporting ephaptic coupling) would require NaV1.5-rich
membranes from neighboring cells, separated by a very narrow

extracellular cleft (≤30 nm) (Veeraraghavan et al., 2014a,b).
Whereas channels located at the lateral sarcolemma would face
a large bulk of extracellular fluid with a practically inexhaustible
supply of ions, channels facing narrow extracellular clefts
would have a limited supply of ions. In the latter case, ion
channel activity could mount local extracellular electrochemical
transients, in turn altering the local transmembrane potential. In
this context, early results demonstrating that NaV1.5 channels
are enriched at the ID (Maier et al., 2004; Petitprez et al., 2011)
prompted speculation that functional nanodomains capable of
supporting ephaptic coupling, i.e., ephapses, may exist within
the ID. Until recently, the 250–350 nm resolution limit imposed
on confocal microscopy by diffraction had precluded precise
localization of NaV1.5 within the ID. However, this restriction
was removed by the advent of super-resolution microscopy
techniques with resolutions extending down to 20 nm. Work
conducted by the Gourdie (Rhett et al., 2012; Veeraraghavan
et al., 2013, 2015; Veeraraghavan and Gourdie, 2016) and
Delmar (Agullo-Pascual et al., 2013, 2014; Leo-Macias et al.,
2016) labs using super-resolution techniques identified NaV1.5
enrichment within specific regions of the ID (Figure 1). One sub-
population of ID-localized NaV1.5 was located at the perinexus,
a specialized nanodomain located at the periphery of Cx43
GJs (Rhett et al., 2011; Rhett and Gourdie, 2012). A second
localized to N-cadherin-rich plicate regions of the ID, where
mechanical junctions are concentrated. Electron microscopy
studies revealed disparate ultrastructural properties at these sites:
within the perinexus, adjacent cell membranes were no more
than 10–15 nm apart (Veeraraghavan et al., 2015), whereas at
N-cadherin-rich mechanical junctions, intermembrane spacing
was as high as 60–75 nm (Leo-Macias et al., 2015, 2016). The
latter significantly exceeds the theoretically derived ≤ 30 nm
intermembrane spacing limit for ephaptic coupling; however,
the properties of the perinexus may enable it to function as an
ephapse.

Providing functional support for the ephaptic coupling
hypothesis, the Poelzing and Gourdie groups demonstrated
that acute interstitial edema selectively disrupted perinexal
ultrastructure without altering other ID sites, and precipitated
arrhythmogenic conduction slowing (Veeraraghavan et al.,
2012, 2015, 2016). Additionally, perinexal disruption increased
the dependence of conduction on GJ coupling and vice versa,
suggesting that both modes of intercellular coupling operate in
tandem (Veeraraghavan et al., 2012). Notably, in a setting of
perinexal disruption, inhibition of channels enriched at perinexal
sites – NaV1.5, and inward-rectifier potassium channels
(Kir2.1) – resulted in anisotropic changes in conduction velocity,
preferentially affecting transverse conduction (Veeraraghavan
et al., 2015, 2016). In contrast, modulating ionic currents
under normal conditions does not produce direction-specific
impact. Keener and colleagues demonstrated that these
experimental results could be predicted by a computational
model incorporating both ephaptic and electrotonic coupling,
but not by a purely electrotonic model (Lin and Keener, 2010,
2014; Veeraraghavan et al., 2015, 2016). Recently, Hichri and
colleagues provided experimental and in silico evidence that the
behavior of ID-localized NaV1.5 is modulated by their clustering,
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FIGURE 1 | Schematic cartoon depicting the organization of Na+ channels in different parts of the cardiac myocyte, highlighting Na+ channel-rich nanodomains
within the intercalated disk (green dashed box) and t-tubules (blue dashed box). Zoomed in views of these nanodomains are provided in the green and blue boxed
panels.

location within the ID (relative to the bulk interstitium), and
the trans-alignment of these clusters (Hichri et al., 2017). In
sum, these results illustrate macroscopic physiologic phenomena
driven by the behavior of functional nanodomains, which can
only be understood through knowledge of structure–function
relationships at the nanodomain level.

In the larger context, the results highlighting the perinexus
as a functional nanodomain involved in cardiac cell-to-cell
communication pose the question: is the ID home to other
functional nanodomains? The likelihood is high, given that the
ID contains other sites enriched with NaV1.5 (Milstein et al.,
2012; Veeraraghavan et al., 2015; Leo-Macias et al., 2016) and
Kir2.1 (Milstein et al., 2012; Veeraraghavan et al., 2016; Ponce-
Balbuena et al., 2018) as well as other ion channel species such as
ATP-sensitive K+ channels (Kir6.2) (Hong et al., 2012). Notably,
extracellular sodium has been shown to strongly modulate
Kir2.1 function (Ishihara, 2018), hinting at the potential for
complex interrelationships between ion channel species within
ID nanodomains. Thus, ID-localized ion channels clearly merit
further investigation, with particular emphasis on their protein
neighbors and local structural environment, both within the
cell and without. In this regard, available observations on
the composition and subcellular location of NaV1.5-containing
macromolecular complexes hint at significant complexity.
NaV1.5 has been demonstrated to associate with ankyrin-G
(Makara et al., 2014), SAP97 (Petitprez et al., 2011; Gillet et al.,
2015), Kir2.1 and Kir2.2 (Milstein et al., 2012; Matamoros et al.,
2016; Ponce-Balbuena et al., 2018), syntrophin and dystrophin
(Petitprez et al., 2011), and CASK (Eichel et al., 2016). Both

ankyrin-G and SAP97 preferentially associate with ID-localized
NaV1.5. However, loss of ankyrin-G reduced functional NaV1.5
expression (Makara et al., 2014) whereas loss of SAP97 did not
(Gillet et al., 2015). Similarly, NaV1.5 at the lateral sarcolemma
associates with syntrophin, dystrophin, and CASK. Loss of
dystrophin reduced NaV1.5 functional expression at this location
(Petitprez et al., 2011). Conversely, loss of CASK increased
NaV1.5 surface expression at the lateral sarcolemma (Eichel
et al., 2016). These intriguing findings suggest that we have
much to learn about the organization and regulation of sodium
channel-rich nanodomains, and the functional implications
thereof.

Pathophysiology
Pathological alterations in NaV1.5 function are a well-established
cause of cardiac arrhythmias (Veerman et al., 2015; Sottas and
Abriel, 2016). Likewise, GJ remodeling is widely recognized
as a feature of multiple cardiac pathologies (Jongsma and
Wilders, 2000; Stroemlund et al., 2015), and implicated as
a contributor to arrhythmogenesis (De Vuyst et al., 2011;
Ongstad et al., 2013). While the arrhythmogenic impacts of
functional loss of INa and GJ coupling have long been subjects
of intense inquiry, we are only beginning to recognize the
effects of nanoscale organization of NaV1.5 and Cx43, various
scaffolding proteins associated with them, and changes in their
ultrastructural environment. An interesting development in
this context is the growing appreciation of the non-channel
functions of Cx43 and their role in pathophysiology (Agullo-
Pascual and Delmar, 2012). Knockdown of Cx43 in mice was
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associated with concomitant reductions in NaV1.5 expression,
and INa density (Jansen et al., 2012) but not with alterations
in adherens junctions or desmosomes (Gutstein et al., 2003).
Proximity ligation assays indicate that the association between
Cx43, and NaV1.5 is concentrated within the perinexus (Rhett
et al., 2012). This raises the possibility that the aforementioned
loss of INa function may result from the loss of Cx43 to
scaffold NaV1.5 within perinexal nanodomains, and thereby,
preferentially impact these sites. Thus, nanopathy may underlie
arrhythmias in the wide array of cardiac pathologies where
Cx43 is remodeled (Akar et al., 2007; Desplantez et al., 2007;
Dhein et al., 2011; Chkourko et al., 2012). Along similar lines,
missense mutations in the desmosomal protein plakophilin-
2 were demonstrated to reduce N-cadherin-associated NaV1.5
density at the ID, reduce INa, and result in a Brugada syndrome
phenotype (Cerrone et al., 2014). Taken together, these results
underscore the clinical relevance of understanding the molecular
organization of functional nanodomains, and the specific role of
nanopathy in disease.

In addition to direct alterations of NaV1.5 and/or its molecular
partners, nanopathy could also result from pathological
changes in nanodomain ultrastructure. In this context, the
previously discussed effects of interstitial edema on the perinexal
nanodomain take on interesting implications given the wide
array of pathologies that are associated with both cardiac edema
and arrhythmias (Mehlhorn et al., 1996, 2001; Boyle et al.,
2007; Fernandez-Jimenez et al., 2015; Migliore et al., 2015).
Additionally, in long QT syndrome type 3 (LQT3; a disorder
stemming from pathological gain of NaV1.5 function), the
Poelzing group recently demonstrated that transient depletion of
extracellular Na+ within perinexal nanodomains may mitigate
risk of premature beats, and that perinexal widening may unmask
the latent arrhythmia risk (Greer-Short et al., 2017). More
recently, they have demonstrated that wider perinexi associated
with the occurrence of AF in human patients (Raisch et al., 2018).
While these are early days yet, these results collectively support
the view that ultrastructural alterations within NaV1.5-rich
nanodomains may be a key determinant of arrhythmia risk, and
therefore, a potential target for antiarrhythmic therapy.

THE NANO-MACHINERY OF CARDIAC
EXCITATION-CONTRACTION COUPLING

Our understanding of excitation–contraction coupling (ECC)
has followed a similar trajectory to the one outlined for the
electrical excitation. Early studies first identified invaginations
in the membrane called transverse (T)-tubules (Lindner, 1957)
and demonstrated that an activating current localized to
those domains prompts contraction (Huxley and Taylor, 1955,
1958). Subsequent work demonstrated that Ca2+ entry through
the sarcolemma, via L-type Ca2+ channels (LTCC), results
in calcium-induced calcium release from the sarcoplasmic
reticulum (SR) via ryanodine receptor channels (RyR2) to couple
electrical excitation with mechanical contraction (Fabiato and
Fabiato, 1977). Examination of the structural underpinnings
of cardiac ECC led to the identification of a restricted space

dubbed the “fuzzy” dyadic space (Lederer et al., 1990) where the
sarcolemma and the terminal cisternae of the SR are separated
by only ∼12 nm (Forbes and Sperelakis, 1983) (Figure 1). These
results led to the realization that local protein function and
electrochemical fluxes within nanodomains govern ECC rather
than bulk effects across larger scales. Indeed, both systolic and
diastolic Ca2+ concentrations in the dyadic cleft have been found
to exceed that of the bulk cytosol (Despa et al., 2014; Popescu
et al., 2016), and differences in Na+ concentrations have been
reported as well (Despa and Bers, 2003).

An early clue to the complexity of the dyadic nanodomain
function came with the demonstration by Leblanc and Hume that
Na+ influx may regulate Ca2+ release (Leblanc and Hume, 1990).
Specifically, they provided evidence that Na+ influx during the
action potential upstroke was linked with Ca2+ cycling through
the action of the Na+–Ca2+ exchanger (NCX). Interestingly, a
component of INa persists during the plateau phases, dubbed late
INa, and is tetrodotoxin (TTX) – sensitive (Conforti et al., 1993).
Further investigation along these intriguing lines by the Bridge
and Goldhaber groups suggested the involvement of neuronal
Na+ channel (nNaV) isoforms (Torres et al., 2010). This findings
are consistent with aforementioned structural results: (1) NaV1.5
localizes to the ID and the lateral sarcolemma and (2) nNaVs
localize to t-tubules (Dhar Malhotra et al., 2001; Maier et al.,
2002, 2004; Westenbroek et al., 2013; Radwański et al., 2015)
(Figure 1). Indeed, up to 50% of the late INa in canine cardiac
myocytes has been reported to be TTX-sensitive (Biet et al.,
2012). These results raised the possibility that nNaVs, and NCX
may constitute essential components of dyadic nanodomains
along with LTCCs and RYR2. Since then, multiple groups have
provided evidence for co-compartmentation of Na+ and Ca2+

handling proteins within dyadic nanodomains (Scriven et al.,
2000; Jayasinghe et al., 2009). In recent years, evidence has
mounted that the high gain system of cardiac Ca2+ cycling
is tightly regulated by nNaVs, and NCX localized within the
cleft (Radwański and Poelzing, 2011; Radwański et al., 2013,
2015, 2016; Veeraraghavan et al., 2017). However, the molecular
stoichiometry of Na+/Ca2+ handling machinery (NCX, RyR,
NaVs) and inter-species differences remain to be elucidated.

An additional layer of complexity in dyadic nanodomain
function derives from its structure. It encompasses three spatial
compartments – the extracellular space within the t-tubule,
the cytosolic subspace, and the terminal cisternae of the
junctional SR. In contrast, Na+ channel-rich nanodomains at
the ID only consist of two compartments, extracellular and
intracellular. While much of the inquiry into dyadic nanodomain
function has focused on dynamics within the cytosolic subspace,
emerging evidence is drawing attention to the complexity
of the t-tubular network. Electron microscopy has revealed
microfolds along t-tubules (Lavorato et al., 2015), thought to
be generated by the action of the protein Bridging integrator 1
(BIN1) (Hong et al., 2014; Fu and Hong, 2016). Experimental
observations also suggest that diffusion within t-tubules is
significantly slowed in comparison to bulk interstitial space
(Blatter and Niggli, 1998; Shepherd and McDonough, 1998;
Pasek et al., 2006; Swift et al., 2006). The Lopatin group
recently demonstrated that the presence of expansions and
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constrictions along t-tubules, the result of microfolds, likely
accounts for this slow diffusion (Uchida and Lopatin, 2018). This
slowed diffusion within t-tubules enables the development of
local electrochemical transients within t-tubular nanodomains,
paralleling ID nanodomains. This phenomenon has important
consequences for cardiac electrophysiology as well as ECC.
Likewise local dynamics in luminal Ca2+ within the junctional
SR would strongly modulate dyadic nanodomain behavior
(particularly RYR2 gating) and merit further investigation
(Gyorke et al., 2017). While there has been much progress
in understanding dyadic nanodomains as the structural and
functional units of cardiac ECC, further investigation is needed
to understand how structure–function relationships at the
nanoscale determine physiology at cellular, tissue, and organ
levels.

Pathophysiology
Dysregulated Ca2+ cycling is widely recognized as the cause
of arrhythmias in multiple pathological states. Aberrant Ca2+

release from the SR can be prompted by SR Ca2+ overload, RyR2
dysfunction, or mistimed Ca2+ entry across the sarcolemma.
This in turn can activate NCX, depolarizing the membrane, and
prompting premature beats that can trigger arrhythmias (Berlin
et al., 1989; Venetucci et al., 2008). Intriguingly, a recent report
suggests that aberrant cytosolic Ca2+ levels may also produce
arrhythmogenic conditions by facilitating untimely NaV re-
opening (Johnson et al., 2018). Overall, the behavior of individual
Na+ and Ca2+ -cycling proteins is fairly well-characterized, yet
the interplay between Na+ and Ca2+ within dyadic nanodomains
is very much the subject of active inquiry.

Modeling studies suggest that enhanced late Na+ entry into
dyadic nanodomains can prompt reversal of NCX, resulting
in Ca2+ entry into the subspace, and thereby, contribute to
arrhythmogenic aberrance Ca2+ release (Armoundas et al., 2003;
Radwański and Poelzing, 2011). Late INa carried by nNaVs
has been implicated in inherited arrhythmia disorders such as
catecholaminergic polymorphic ventricular tachycardia (CPVT)
(Radwański et al., 2015, 2016). Specifically, Ca2+/calmodulin –
dependent kinase II (CaMKII) -dependent enhancement of
nNaV activity during β-adrenergic stimulation contributes to
diastolic Ca2+ release and consequent arrhythmias in vivo via
an NCX-mediated mechanism. Additionally, this pro-arrhythmic
mechanism was consistent regardless of whether the CPVT
resulted from “leaky” RyRs or from SR Ca2+ overload. In the
broader context, these results point to pathological overload of
cytosolic Na+ and Ca2+ being inextricably linked, particularly
within the dyadic subspace.

Consistent with this hypothesis, aberrant Ca2+ release is
the principal mechanism of arrhythmogenesis in disorders
characterized by pathological gain of Na+ channel function.
Multiple studies have linked pathological enhancement of nNaV
function with arrhythmogenic diastolic Ca2+ release. These
include mice lacking the Na+ channel auxiliary subunit β1
(SCN1B) which exhibit enhanced NaV1.3 expression (Lin et al.,
2014), a rat pilocarpine-induced status epilepticus model where
NaV1.1 expression is elevated (Biet et al., 2015), and a murine
model of epileptic encephalopathy resulting from a gain of

function mutation in NaV1.6 (Frasier et al., 2016). While these
cases involve direct enhancement of Na+ entry into the dyadic
nanodomain via nNaVs, LQT3 is characterized by gain of
NaV1.5 function, resulting in global Na+ overload throughout
the myocyte. Nonetheless, recent evidence indicates that Na+
entry into the dyadic subspace via nNaVs is still a key element
of arrhythmogenesis in LQT3 (Koleske et al., 2018). Paralleling
the aforementioned results in inherited arrhythmic syndromes,
are studies implicating pathological enhancement of late INa in
arrhythmias in acquired forms of ECC dysfunction such as heart
failure (Valdivia et al., 2005; Undrovinas and Maltsev, 2008;
Undrovinas et al., 2010; Sossalla and Maier, 2012; Antzelevitch
et al., 2014; Makielski, 2016). Specifically, augmentation of Na+
influx via NaV1.1 (Mishra et al., 2014) as well as of NCX function
(Pogwizd and Bers, 2002) in failing hearts have been shown to
contribute to arrhythmias.

Given that late INa is central to aberrant Ca2+ cycling
and arrhythmogenesis in multiple pathologies, it should come
as no surprise that late INa inhibition by drugs such as
ranolazine has demonstrated efficacy as an antiarrhythmic
therapy (Burashnikov, 2017). However, emerging research
suggests that selective targeting of nNaV-mediated Na+ entry into
dyadic nanodomains may hold even greater promise (Radwański
et al., 2015, 2016; Koleske et al., 2018). Additional impetus for
pursuing this strategy comes from the dire negative consequences
resulting from the off-target effects of non-isoform-selective
Na+ channel inhibition: although non-selective INa inhibition
suppressed triggered activity following myocardial infarction
(The Cardiac Arrhythmia Pilot Study, 1986), the concomitant
reduction in excitability precipitated reentrant arrhythmias,
thereby increasing mortality (Echt et al., 1991; Starmer et al.,
1991). Selective inhibition of nNaV would reduce Na+ entry into
dyadic nanodomains, thereby ameliorating triggered arrhythmia
incidence, without any attendant adverse impact on excitability.
Indeed, selective inhibition of nNaVs, and of NaV1.6 in particular,
whether using TTX analogs or a clinically relevant drug, riluzole,
has been demonstrated to effectively suppress arrhythmias in
murine models of CPVT (Radwański et al., 2015, 2016) and LQT3
(Radwański et al., 2013; Koleske et al., 2018).

Based on this logic, and available evidence, we posit the
following requirements for arrhythmogenesis in pathologies
directly driven by Ca2+ cycling defects (i.e., CPVT), and
those arising from QT prolongation: (1) abnormal RyR2
function, whether genetic or acquired, (2) increased dyadic
subspace Ca2+ levels, and (3) augmentation of nanodomain
Na+ entry via nNaVs (Radwański et al., 2010, 2016; Cheng
et al., 2011; Radwański and Poelzing, 2011; Terentyev et al.,
2014). Any individual factor in the absence of the other two
is unlikely to cause arrhythmia. For instance, genetic defects
in the RyR2 complex alone are insufficient to induce triggered
activity (Rios and Györke, 2009; Radwański et al., 2016);
augmentation of Na+ entry via nNaV, and SR Ca2+ load,
secondary to β-adrenergic receptor stimulation, is necessary for
arrhythmogenesis (Radwański et al., 2016). On the other hand,
LQT may promote CaMKII activity, which in turn modifies the
components of the dyadic nanodomain (Terentyev et al., 2014;
Viatchenko-Karpinski et al., 2014; Radwański et al., 2016). Given
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that augmentation of nNaV-mediated Na+ influx into dyadic
nanodomains is a common element of both arrhythmogenic
processes, it follows that late INa inhibition should prove
antiarrhythmic in a broad range of pathologies including CPVT
(Radwański et al., 2015, 2016), LQT3 (Koleske et al., 2018),
LQT type 7 (Andersen-Tawil Syndrome; resulting from loss of
repolarization reserve) (Radwański et al., 2013; Janson et al.,
2014), and LQT type 8 (Timothy syndrome; resulting from
pathological gain of LTCC function) (Gao et al., 2013).

While NaV isoform-selectivity is one focus in developing
novel antiarrhythmic drugs, we note that the pharmacological
mode of action (i.e., use-dependence vs. tonic block) will also
determine therapeutic success. Use-dependent NaV inhibitors
can effectively ameliorate triggered arrhythmias (The Cardiac
Arrhythmia Pilot Study, 1986). However, under conditions such
as elevated heart rates, they can suppress excitability and thereby,
exacerbate conduction slowing. This, in turn, precipitates
reentrant arrhythmias and increases mortality (Echt et al., 1991;
Starmer et al., 1991). In contrast, tonic NaV inhibitors function
independently of heart rate, thereby avoiding this adverse effect.
Therefore, we postulate that tonic blockade may hold greater
potential for delivering efficacy with safety. Intriguingly, a recent
report by Buyan et al. (2018) provides clues to fundamental
properties (inhibitor protonation state determines binding site)
that may lead to development of novel NaV blockers with tailored
modes of action. This highlights the need for mechanistically-
driven drug development research grounded in understanding of
atomic level NaV structure.

As with ID nanodomains, the behavior of dyadic
nanodomains is determined not only by the function of
their Na+/Ca2+ cycling protein constituents but also by
their local ultrastructure. An example of this is found in
failing hearts where β-adrenergic stimulation fails to effectively
enhance ECC, despite augmented nNaV and NCX function
(Viatchenko-Karpinski et al., 2005). This is likely a result of
t-tubules being severely disrupted in failing hearts (Li et al.,
2015), compromising cell-wide coordination of individual
nanodomains. In addition, the remaining t-tubules in these
hearts contain abnormal dyadic nanodomains consisting of
nNaVs, NCX, and hypersensitized RyRs which are prone to
arrhythmogenic aberrant Ca2+ release (Belevych et al., 2012).
Additionally, loss of BIN1 has been linked to compromised
LTCC trafficking as well as loss of t-tubule microfolds in heart
failure (Caldwell et al., 2014; Hong et al., 2014; Laury-Kleintop
et al., 2015). Both experimental and modeling studies suggest
that the latter effect could compromise the previously discussed
slowing of diffusion within t-tubules, thereby dysregulating

electrophysiology and ECC. Indeed, the Sachse and Bridge
groups have demonstrated that the arrhythmia burden in failing
hearts is reduced secondary to restoration of the t-tubule
network following cardiac resynchronization therapy (Sachse
et al., 2012; Lichter et al., 2014; Li et al., 2015). Thus, available
evidence points to dyadic nanodomains as promising targets
for the prevention of arrhythmias resulting from aberrant Ca2+

cycling.

CONCLUSION

Current research, propelled by emerging technologies capable
of assessing structure/function at the nanoscale, suggests
that nanodomains located at the ID and the t-tubule may
respectively constitute the functional units of cardiac electrical
excitation and ECC. Thus, we are beginning to appreciate
nanodomain dysfunction, i.e., nanopathy, as a key mechanistic
driver of cardiac disease and arrhythmogenesis. It follows
therefore that antiarrhythmic treatments should be designed
to correct underlying nanopathies, and indeed, such therapies
currently under investigation show a great deal of promise.
In the broader context, the emerging understanding of how
nanoscale biophysics and biochemistry determine cardiovascular
physiology and pathophysiology across protein, cell, tissue,
and organ scales may represent a paradigm shift on par with
the advent of molecular biology. It should drive multiple
avenues of scientific and medical research including (1)
new diagnostic approaches that can non-invasively interrogate
functional nanodomains within patients, (2) new methods
to assess nanodomain alterations during autopsies, and (3)
new therapeutic approaches designed to restore nanodomain
structure/function.
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Radwański et al. Cardiac Arrhythmias as Nanopathies

for a connexin43 null mutation. J. Clin. Invest. 99, 1991–1998. doi: 10.1172/
JCI119367

Gutstein, D. E., Liu, F. Y., Meyers, M. B., Choo, A., and Fishman, G. I. (2003). The
organization of adherens junctions and desmosomes at the cardiac intercalated
disc is independent of gap junctions. J. Cell Sci. 116(Pt 5), 875–885. doi: 10.1242/
jcs.00258

Gutstein, D. E., Morley, G. E., Tamaddon, H., Vaidya, D., Schneider, M. D.,
Chen, J., et al. (2001). Conduction slowing and sudden arrhythmic death in
mice with cardiac-restricted inactivation of connexin43. Circ. Res. 88, 333–339.
doi: 10.1161/01.RES.88.3.333

Gyorke, S., Belevych, A. E., Liu, B., Kubasov, I. V., Carnes, C. A., and Radwański,
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