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Model-Based ROC Curve: Examining the

Effect of Case Mix and Model Calibration
on the ROC Plot

Mohsen Sadatsafavi , Paramita Saha-Chaudhuri , and John Petkau

Background. The performance of risk prediction models is often characterized in terms of discrimination and calibra-
tion. The receiver-operating characteristic (ROC) curve is widely used for evaluating model discrimination. However,
when comparing ROC curves across different samples, the effect of case mix makes the interpretation of discrepan-
cies difficult. Further, compared with model discrimination, evaluating model calibration has not received the same
level of attention. Current methods for examining model calibration require specification of smoothing or grouping
factors. Methods. We introduce the ‘‘model-based’’ ROC curve (mROC) to assess model calibration and the effect of
case mix during external validation. The mROC curve is the ROC curve that should be observed if the prediction
model is calibrated in the external population. We show that calibration-in-the-large and the equivalence of mROC
and ROC curves are together sufficient conditions for the model to be calibrated. Based on this, we propose a novel
statistical test for calibration that, unlike current methods, does not require any subjective specification of smoothing
or grouping factors. Results. Through a stylized example, we demonstrate how mROC separates the effect of case
mix and model miscalibration when externally validating a risk prediction model. We present the results of simula-
tion studies that confirm the properties of the new calibration test. A case study on predicting the risk of acute
exacerbations of chronic obstructive pulmonary disease puts the developments in a practical context. R code for the
implementation of this method is provided. Conclusion. mROC can easily be constructed and used to interpret the
effect of case mix and calibration on the ROC plot. Given the popularity of ROC curves among applied investiga-
tors, this framework can further promote assessment of model calibration.

Highlights

� Compared with examining model discrimination, examining model calibration has not received the same
level of attention among investigators who develop or examine risk prediction models.

� This article introduces the model-based ROC (mROC) curve as the basis for graphical and statistical
examination of model calibration on the ROC plot.

� This article introduces a formal statistical test based on mROC for examining model calibration that does
not require arbitrary smoothing or grouping factors.

� Investigators who develop or validate risk prediction models can now also use the popular ROC plot for
examining model calibration, as a critical but often neglected component in predictive analytics.
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Background

Risk prediction models that objectively quantify the
probability of clinically important events based on obser-
vable characteristics are critical tools for efficient patient
care. A risk prediction model is typically constructed using
a development (or training) sample, but before it is
adopted for use in a target population, its performance
needs to be assessed in an independent (external) valida-
tion sample drawn from that population. In examining the
appropriateness of a risk model, 2 fundamental aspects
are discrimination and calibration. The former refers to
the capacity of the model to properly stratify individuals
with different risk profiles, and the latter refers to the
degree to which predicted risks are close to the true risks.1

The receiver-operating characteristic (ROC) curve and
the area under the ROC curve (AUC, or the c-statistic)
are classical examples of tools for assessing model dis-
crimination.2 When evaluating a risk prediction model in
a sample, the discriminatory performance of the model
can be affected by both the distribution of predictor vari-
ables (case mix) and the validity of the model in that sam-
ple.3 Consequently, when comparing the performance of
a model between development and validation samples,
differences in the case mix between the 2 samples can
make comparisons difficult. One area of interest in the
present work is to untangle these 2 sources of discre-
pancy. Early progress in this area was made by Vergouwe
et al.3 who proposed benchmarks based on simulating
responses from predicted risks and fitting the model in
the validation sample. More recent work has largely
focused on the AUC, an overall summary measure of the
ROC curve.4–6

Compared with model discrimination, examining
model calibration has not received the same level of
attention.7,8 Model calibration is often neglected in the
evaluation of the overall performance of risk prediction
models, so much so that it is referred to as ‘‘the Achilles’
heel of predictive analytics.’’9 In the context of a logistic
model for binary responses, Van Calster et al.10 pro-
posed a hierarchy of definitions for model calibration. In
particular, a model is ‘‘moderately calibrated’’ if the
average observed risk across all subjects with a given pre-
dicted risk is equal to the predicted risk. Moderate cali-
bration is contrasted with mean calibration when the
expected values of predicted and true risks are equal, with
‘‘weak’’ calibration when a linear calibration plot has an
intercept of 0 and slope of 1, and with ‘‘strong’’ calibra-
tion when the predicted and observed risks are equal for
all covariate patterns (an unrealistic condition in practical
situations).10 Moderate calibration is typically assessed
using the calibration plot, which shows the average value
of the observed risk as a function of the predicted risk
after grouping or smoothing response values.

In this work, we propose a model-based ROC (mROC)
analysis. We show that the mROC connects ROC analysis,
a classical means of evaluating model discrimination, to
model calibration. With the help of a stylized example, we
demonstrate how the mROC enables investigators to disen-
tangle the effect of case mix and model validity on the shape
of the ROC curve. We propose a novel statistical test for
the assessment of model calibration that does not require
specification of smoothing or grouping factors and evaluate
its performance through simulation studies. Through a case
study, we put the developments in a practical context.

Notation and Context

Our main interest is in the ‘‘external validation’’ context,
in which a previously developed risk prediction model
for a binary outcome is applied to a new independent
(external) sample to examine its performance in that
sample’s target population. The risk prediction model is
given by the deterministic function p�(X), mapping an
individual’s covariate vector X to p�, the probability of
observing the binary outcome (response) of interest (e.g.,
whether a patient with asthma will experience a flare up
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in the next 6 mo). Let Y be the binary outcome of inter-
est, with Y = 1 indicating the presence of the disease or
the occurrence of the event and 0 otherwise. In what fol-
lows, unless otherwise specified, by ‘‘calibration’’ we refer
to moderate calibration (i.e., P Y = 1jp�(X)= pð Þ= p).
Applying this model to the external sample consisting of
a random sample of n individuals, we obtain
p�= p�1, . . . ,p�n

� �
, the vector of predicted risks. In the

external sample, we also observe the corresponding vec-
tor Y= Y1, . . . , Ynð Þ of response values.

Empirical ROC Curve

Two fundamental probability distributions underlie the
ROC curve: the distribution of predicted risks among
individuals who experience the event (positive individu-
als, or cases) and among individuals who do not experi-
ence the event (negative individuals, or controls). Let F1

and F0 represent the corresponding cumulative distribu-
tion functions (CDFs) of the predicted risk:

F1(t)=P(p� � tjY = 1),

F0(t)=P(p� � tjY = 0):

The true-positive and false-positive probabilities
are closely linked with the distribution of risk among
the positive and negative individuals, respectively:
TP tð Þ[P p�.tjY = 1ð Þ= 1� F1 tð Þ, and FP tð Þ[P p�.tjð
Y = 0Þ= 1� F0 tð Þ. The population ROC curve induced
by the risk prediction model p� can be expressed as

ROC tð Þ= 1� F1(F
�1
0 (1� t)),

where 0� t� 1 is the false-positive probability.11

With the external data set, consistent estimators for
F1 and F0 can be obtained by averaging the indicators
I p�i � t
� �

for each of the positive and negative groups:

F1n tð Þ=
Pn

i= 1fI p�i � t
� �

YigPn
i= 1 Yi

,

and

F0n tð Þ=
Pn

i= 1fI p�i � t
� �

(1� Yi)g
n�

Pn
i= 1 Yi

:

F1n tð Þ and F0n tð Þ are used to generate ROCn tð Þ, the
empirical ROC, as a consistent estimator of the popula-
tion ROC curve.12,13

mROC Curve

The ith subject in the external sample is a random draw
from the set of all individuals in the target population
whose predicted risk is p�i . Hence, under the assumption
that the model is calibrated, we have P(Yi = 1)=
P(Y = 1jp�(X)=p�i )=p�i ; that is, the vector of
observed response values is a random draw of indepen-
dent Bernoulli trials from the vector of predicted risks.
Hence, in addition to the ROC curve based on the
observed responses, one can construct an ROC curve
based on the potential random responses generated from
the Bernoulli distribution with probabilities equal to the
predicted risk.

Let Y � be a random realization of this potential
response from the predicted risk of a randomly selected
individual. The ROC-related CDFs based on Y � are

�F1 tð Þ=P p� � tjY �= 1ð Þ,

and

�F0 tð Þ=P p� � tjY �= 0ð Þ:

The application of Bayes’s rule leads to the following
estimators in the external sample:

�F1n tð Þ=
Pn

i= 1 I p�i � t
� �

p�iPn
i= 1 p�i

,

and

�F0n tð Þ=
Pn

i= 1 I p�i � t
� �

(1� p�i )

n�
Pn

i= 1 p�i
:

Hence, one can generate a ‘‘model-based’’ ROC or
mROCn tð Þ, independently of the observed outcomes in
the external sample, based on the CDFs �F1n and �F0n

obtained by averaging the indicator functions I p�i � t
� �

with weights of p�i =
P

p�i and (1� p�i )=
P

(1� p�i ) for
the ith individual in the sample. This is an extension of the
definition of the model-based c-statistic proposed by van
Klaveren et al.5 to the entire ROC curve. As demonstrated
in Supplementary Material section 1, the area under the
mROC curve is equal to the model-based c-statistic.5

Connection Between the mROC Curve,

Case Mix, and Model Calibration

The limiting forms (population equations) of the esti-
mated CDFs F1n, F0n, �F1n, and �F0n are derived in
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Supplementary Material section 2. An important conse-
quence is that, provided that the model is calibrated in
the external sample, ROCn tð Þ and mROCn tð Þ converge to
the same value at each point t, as n, the sample size in the
external sample, approaches infinity. That is, moderate
calibration is a sufficient condition for the convergence of
empirical ROC and mROC curves. A stylized example
demonstrating how mROC is affected by model miscali-
bration is provided in Supplementary Material section 3.

Unlike in the expression of F1n and F0n, the observed
outcomes in the sample do not appear in the expression
of �F1n and �F0n: The behavior of these CDFs depends on
the predicted risks, rather than the observed outcomes in
the sample. Therefore, the mROC curve depicts the case-
mix–adjusted ROC curve—the ROC curve that would
be expected to be observed in the sample, if the model is
calibrated in this sample. This motivates our proposal
for using mROC to gain insight into the effect of case
mix and model calibration when examining the external
validity of a model.

Consider the mROC and empirical ROC curves in the
validation sample when examining the external validity
of a model. The former carries the association between
the predictors and outcome from the development sam-
ple through the prediction model, whereas the latter cap-
tures such association in the validation sample. However,
both are based on the case mix in the validation sample.
Because of the shared case mix, discrepancies between
these curves point toward model miscalibration in the
validation sample. This can be demonstrated using a sty-
lized example: Consider a single predictor X , which has a
standard normal distribution in the development popula-
tion. Using a sample from the development population,
we construct a risk prediction model as P(Y = 1)= 1=
(1+ exp(� X )), which happens to be the correctly speci-
fied model (and thus is calibrated) in this population.
This model has an AUC of 0.740 in the development
population. Now consider 4 hypothetical external valida-
tion scenarios. In the first scenario (Figure 1A), the distri-
bution of X and its association with the outcome are the
same in the validation population as in the development
population. As such, the empirical ROC and mROC
curves agree (and will also resemble the empirical ROC
curve in the development sample). In the second scenario
(Figure 1B), the predictor is underdispersed in the valida-
tion population (SD = 0.5), while the association is still
the same; thus, the model is calibrated. Given the lower
variance of the risks, the model has lower discriminatory
power in this population (AUC = 0.641). Both the
empirical ROC and mROC curves move closer to
the diagonal line, but they closely match each other.

Next, consider a validation population that has the
same distribution of X as the development population,
but with a weaker predictor-outcome association
(P(Y = 1)= 1=(1+ exp(� X=2)); thus, the model is
‘‘optimistic’’ and not calibrated. This again causes the
empirical ROC curve to be closer to the diagonal line
(Figure 1C, AUC = 0.641). However, the mROC curve
remains unchanged from the first scenario. This pattern
indicates that the change in the discriminatory performance
of the model between the development and validation sam-
ples is due to model miscalibration in the validation sample.
Finally, consider a validation population in which the pre-
dictor is underdispersed and the association is weaker (Fig-
ure 1D). Both factors contribute to the empirical ROC
curve being closer to the diagonal line (AUC = 0.584).
Here, because of the difference in the case mix, the mROC
curve also gets closer to the diagonal line, but because of
the miscalibrated model in the validation sample, it is not
aligned with the empirical ROC curve. This demonstration
implies that difference in case mix between the development
and validation samples does not lead to the discrepancy
between the mROC curve and the empirical ROC curve;
however, miscalibration of the prediction model in the
external sample can lead to discrepancy.

mROC as the Basis of a Novel Statistical

Test for Model Calibration

Although moderate calibration is a sufficient condition for
the convergence at all points of the empirical ROC and
mROC curves, moderate calibration on its own might not
be a necessary condition for such convergence. To progress,
in Supplementary Material section 4 we show that at the
population level, the equivalence of ROC and mROC
curves guarantees moderate calibration if an additional con-
dition is imposed. This condition is mean calibration, i.e.,
E(p�)=E(Y ), a condition whose assessment is an integral
part of external validation of a risk prediction model.14

Based on this finding, we propose a statistical infer-
ence procedure. We define the null hypothesis (H0) as the
model being calibrated: P(Y = 1jp�= p)= p. Given the
results presented in the Supplementary Material section
4, H0 can be seen as a combination of 2 null hypotheses,
one on the equivalence of the expected values of pre-
dicted and observed risks (H0A) and the other on the
equivalence of the mROC and ROC curves (H0B):

H0 :

H0A E p�ð Þ=E(Y ) mean calibration

H0B 8t mROC tð Þ=ROC tð Þ mROC=ROCequality

(
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These hypotheses jointly provide the necessary and suffi-
cient conditions for the risk prediction model to be
calibrated.

For H0A, consider A= jE Yð Þ � E p�ð Þj. This popula-
tion quantity achieves its minimum value of 0 if H0A is
true. Our proposed test statistic is the sample estimator
of this quantity, the absolute average distance between
the observed and predicted risks in the sample:

An =
1

n
j
Xn

i= 1

(Yi � p�i )j mean calibration statisticð Þ:

For H0B, consider the population quantity B=Ð1
0

ROC tð Þ � mROC tð Þj jdt, which achieves its minimum

value of 0 when the ROC and mROC curves are equal at
all points. Our proposed test statistic is a sample estimator
for this quantity, the integrated absolute difference between
the empirical ROC and mROC curves in the sample:

Bn =ð1
0

ROCn tð Þ � mROCn tð Þj jdt mROC=ROC equality statisticð Þ:

Figure 1 Empirical receiver-operating characteristic (ROC; black) and model-based ROC (mROC; red) curves for the stylized
example. *Distribution of the single predictor in the validation population: X;Normal(m= 0, s = 0.5). yAssociation model in
the validation population: P(Y = 1) = 1/(1 + exp(2X/2)). zPredictor distribution same as in panel B, and association model
same as in panel C.
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Given that both ROCn and mROCn are step functions, the
above integral is the sum of rectangular areas and can be
evaluated exactly.

The null distributions of both An and Bn can be
approximated numerically through straightforward
Monte Carlo simulations. Through simulating vectors of
response values from the vector of predicted probabil-
ities, one can generate many simulated ROC curves and
use them to construct empirical distribution functions
under H0 for An and Bn. These empirical distributions
can then be used to generate approximate one-tailed P
values for these 2 statistics as

pAn
= 1� eCDFAn

Anð Þ,

where eCDFAn
is the empirical CDF of the mean calibra-

tion statistic under H0, and

pBn
= 1� eCDFBn

Bnð Þ,

where eCDFBn
is the empirical CDF of the mROC/ROC

equality statistic under H0.
Individually, the 2 statistics provide insight about the

performance of the model. However, it is more desirable
to obtain a single overall P value for H0. If these tests
were independent, one could use Fisher’s method15 to
obtain a unified P value, as under H0, pAn

and pBn
have

standard uniform distributions. Thus, the statistic

Un =�2 log pAn
ð Þ+ log pBn

ð Þ½ �

would have a chi-square distribution with 4 degrees of
freedom. However, as the 2 statistics are generated from
the same data, they are dependent. An adaptation of
Fisher’s method for dependent P values (based on match-
ing the moments of the test statistic to that of a chi-
square distribution) can be used.16 The steps for generat-
ing a unified P value are outlined in the algorithm pro-
vided in Supplementary Material section 5.

Simulation Studies

We performed simulation studies to evaluate the finite-
sample properties of the proposed test and compare its
performance against the conventional Hosmer-Leme-
show and likelihood ratio tests of model calibration. We
modeled a single predictor X with a standard normal dis-
tribution and the true risk as p= 1=(1+ exp �Xð Þ). We
evaluated the performance of the tests in a simulated
independent sample of n observations when the predicted
risks suffer from various degrees of miscalibration. Two

sets of simulations were performed. In the first set, we
assumed the risk model generated potentially miscali-
brated predictions in the form of logit p�ð Þ= a+
b:logit pð Þ= a+ b:X : Given the linear association on the
logit scale between the predicted and actual risks, weak
and moderate calibration are equivalent in these scenar-
ios. Therefore, the likelihood ratio test (simultaneously
testing whether a= 0 and b= 1) has the maximum theo-
retical power in detecting miscalibration. As such, this
simple setup provides an opportunity to judge the per-
formance of the unified test against a gold standard.

In the second set, the true risk model remained the
same as above, and we modeled nonlinear miscalibra-
tions as logit p�ð Þ= a+ b:sign Xð Þ: Xj j1=b. Here, a affects
the mean calibration, whereas the term involving b is an
odd function that flexibly changes the calibration slope
but preserves the expected value of the predicted risks.
We simulated response values and predicted risks with
values a= 0, 1

4
, 1

2

� �
and b= 1

3
, 2

3
,1, 4

3
, 5

3

� �
, with 3 differ-

ent sample sizes: n= f100, 250, 1000g, in a fully factor-
ial design (45 scenarios). Figure 2 presents the
population-level calibration plots for each combination
of a and b and the average predicted risks under each
transformation.

We calculated the power of the mean calibration test,
the mROC/ROC equality test, the unified test, the
Hosmer-Lemeshow test (based on decile groups), and
the likelihood ratio test in detecting miscalibration at the
0.05 significance level. Following recommendations on
objectively deciding on the number of simulations,17 we
obtained the results through 2500 Monte Carlo iterations
such that the maximum SE around the probability of
rejecting H0 would be 0.01. Within each iteration, P val-
ues were calculated from eCDFAn

and eCDFBn
that were

in turn based on 105 simulations. We used R for this
analysis,18 with the implementation of the simulation-
based estimation of eCDFAn

and eCDFBn
in C for compu-

tational efficiency.
Results of the first set of simulations are provided in

Supplementary Material section 6. The power of the uni-
fied test was very close to that of the likelihood ratio test
across all scenarios examined. Figure 3 provides the
empirical ROC and mROC curves for the second set of
simulations. As all the mappings from p to p� in these
simulations are monotonic, the ROC curve remains the
same in all panels (with an AUC of 0.740). However, the
mROC is generally affected by miscalibration.

The performances of all tests are summarized in Fig-
ure 4. The middle panel on the top row, where a= 0 and
b= 1, pertains to the only scenario where H0 is true. All
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tests appropriately rejected the null hypothesis around
the nominal type I error rate of 0.05. Focusing on the
first row, given a= 0, E p�ð Þ=E(Y )= 0:5 under these
transformations; thus, An (mean calibration, the white
bars) does not detect the miscalibration (pAn

remains
; 0.05). On the other hand, in the third column, where
b= 1, and thus the predicted odds are proportional to
the true odds, the mROC and ROC curves remain very
close to each other, and Bn does not detect the miscali-
bration under such transformations (pBn

remains ~0.05;
Figure 3). However, in all scenarios where miscalibration
was present, the unified test rejected the null hypothesis
with pUn

.0:05. In general, the power of the unified test
was either equal to or higher than that of the Hosmer-
Lemeshow and likelihood ratio tests. The latter, being a
test of weak calibration, can have low power when the
miscalibration is S-shaped such that the calibration slope
remains unchanged (e.g., in the top left panel when a =
0 and b = 1/3, with 22% power with a sample size of

1000, compared with .99% power for the unified and
Hosmer-Lemeshow tests).

Application

Chronic obstructive pulmonary disease (COPD) is a
common chronic disease of the airways. Periods of inten-
sified disease activity, referred to as exacerbations, are
an important feature of the disease. Individuals vary
widely in their tendency to exacerbate.19 Predicting who
is likely to experience an exacerbation, especially a severe
one that will require hospital admission, will provide
opportunities for preventive interventions.20

We used data from the MACRO21 and STATCOPE,22

two clinical trials in COPD patients with exacerbations as
the primary outcome, to, respectively, develop and vali-
date a risk prediction model for the occurrence of COPD
exacerbations in the first 6 mo of follow-up. Baseline
characteristics of both samples are provided in Table 1.

Figure 2 Relationship between predicted (x axis) and true (y axis) risks for the simulation scenarios.
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Of note, these data have previously been used for a
more sophisticated prediction model.23 Here, we focus on
a simpler approach as the nuances of model development
are beyond the scope of this work. We used a logistic
regression model based on the data from the MACRO
trial that included the predictors as listed in Table 1
based on an a priori list of covariates generated from
prior knowledge of possible association with the out-
come. We considered 2 outcomes: all exacerbations and
severe exacerbations, and we developed 2 distinct models.
The regression coefficients for both models are provided
in Table 2. The study was approved by the University of
British Columbia and Providence Health Research Ethics
Board (H11–00786).

Figure 5 provides the empirical ROC curve from the
development sample (MACRO) as well as the empirical
ROC and mROC curves from the validation sample
(STATCOPE) and the calibration plot for both out-
comes. For all exacerbations, the mROC curve was very
close to the development empirical ROC curve but not
to the external empirical ROC curve. This indicates that
the reduction in the discriminatory performance of the

model in the validation sample is due to miscalibration.
Indeed, both components of the proposed test indicated a
departure from calibration. The mean calibration test pro-
duced pAn

\0:001 (a 2-tailed t test also had a P value
\0.001). This was also the case for the equivalence of the
mROC and empirical ROC curves in the validation sam-
ple (pBn

\0:001). The unified test also rejected the hypoth-
esis that the model is calibrated (pUn

\0:001). As well, the
Hosmer-Lemeshow test produced a P value of \0.001.
The calibration plot in the external sample suggested mis-
calibration, with a general overestimation of risk.

The model for severe exacerbations had higher discri-
minatory power. All 3 ROC curves were generally
aligned with each other. The mean calibration test pro-
duced pAn

= 0:070 (a 2-tailed t test led to p= 0:061),
whereas the mROC/ROC equality test resulted in
pBn

= 0:74. The unified test did not indicate evidence
against moderate calibration (pUn

= 0:20). The Hosmer-
Lemeshow test resulted in a p value of 0.16. The calibra-
tion plot suggested generally good agreement between
the predicted and observed risks for all but the highest
decile of predicted risk (Figure 5).

Figure 3 Receiver-operating characteristic (ROC; black) and model-based ROC (mROC; red) curves for the second simulation
scenario. The panels positionally correspond to the calibration plots and simulation parameters presented in Figure 2. The ROC
curves approximate the population-level curves as they are based on a large sample size (10,000 simulated observations). The
area under the ROC curve is 0.740 in all scenarios. ROC, receiver operating characteristic; B, ROC equality statistic; mAUC,
area under the model-based ROC curve.
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Discussion

This article provides an introduction of the model-based
ROC (mROC) curve, the ROC curve that should be
expected if the model is at least moderately calibrated in

an external validation sample. We showed that moderate
calibration is a sufficient condition for the convergence
of empirical ROC and mROC curves. We extended these
results by proving that, together, the mean calibration

Figure 4 Probability of rejecting the null hypothesis for the mean calibration (white bar), receiver-operating characteristic (ROC)
equality (gray bar), unified (orange bar), Hosmer-Lemeshow (dark blue bar), and likelihood ratio (light blue bar) tests. The
panels positionally correspond to the calibration plots and simulation parameters presented in Figure 2. Results are based on
2,500 simulations for each scenario.

Table 1 Baseline Characteristics and Outcomes for MACRO and STATCOPE Samples

Sample Characteristics Development Sample (MACRO) Validation Sample (STATCOPE)

Sample size 1,074 832
Number (%) with at least 1 exacerbation
during the first 6 mo of follow-up
All exacerbations 691 (64.3%) 454 (54.5%)
Severe exacerbations 141 (13.1%) 73 (8.8%)

Female sex (%) 59.2 56.6
Age (y), mean (IQR) 65.2 (13.0) 62.4 (13.0)
Previous history of oxygen therapy (%) 59.3 48.4
Previous history of hospitalization (%) 50.0 31.1
SGRQ, mean (IQR) 50.1 (22.4) 49.6 (24.4)
FEV1 (L), mean (IQR) 1.11 (0.70) 1.19 (0.81)
Current smoker (%) 21.7 29.7
Current LABA user (%) 74.4 42.6
Current LAMA user (%) 63.5 66.1

IQR, interquartile range; SGRQ, St. George Respiratory Questionnaire; FEV1, forced expiratory volume at 1 s; LABA, long-acting beta agonist;

LAMA, long-acting antimuscarinic agent.
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and the equivalence of mROC and ROC curves in the
population are sufficient conditions for the model to be
moderately calibrated. To test for such equivalences
within a sample, we suggested a simulation-based test.
Our simulations empirically verified the postulated prop-
erties of this novel test. To the best of our knowledge,
this is the first time that the ROC plot, a classical means
of communicating model discrimination, has been con-
nected to model calibration. We have implemented the
proposed methodology in an R package, which is available
from https://github.com/resplab/predtools/.

Previous investigators have suggested using case mix–
corrected performance metrics in judging the external
validation of a model. Vergouwe et al.3 proposed a gen-
eral approach for calculating different model-based
metrics by simulating responses from predicted risks in
the validation sample and comparing the resulting
metrics with the empirical ones in the validation sample.
Van Klaveren et al5 focused on one such metric, the
c-statistic, and developed closed-form estimators that
would quantify the expected change in a model’s discri-
minative ability due to case-mix heterogeneity. Our meth-
odology extends such work to the entire ROC curve and
in doing so establishes a connection between mROC/
ROC equality and model calibration that enables formal
statistical inference on moderate calibration. The test
that is classically associated with calibration plots is the
Hosmer-Lemeshow test, which is criticized because of its
sensitivity to the grouping of the data and lack of infor-
mation about direction of miscalibration.24 Our pro-
posed test is free from arbitrary grouping of the data or
the choice of smoothing factors. Given the shortcomings

of the Hosmer-Lemeshow test, alternative inferential
techniques for evaluating model calibration have been
proposed. Allison24 reviewed the measures of fit of logis-
tic regression models and categorized them as indices of
predictive power (such as R2) and goodness of fit. In their
comprehensive review of goodness-of-fit tests for logistic
models,25 Hosmer et al. defined goodness-of-fit as the
adequacy of a model on 3 fronts: the link function, the
probability distribution, and the linear predictor. This is
a distinctly different pursuit than examining moderate
calibration. Consequently, none of the tests examined by
Allison and Hosmer et al. can be considered a test for
moderate calibration. Our proposed test seems to be the
first alternative to the Hosmer-Lemeshow test that
strictly examines moderate calibration.

These developments can be used in practice in differ-
ent ways. Steyerberg and Vergouwe14 have proposed an
‘‘ABCD’’ approach for external validation of a model
(where A is the mean calibration; B, calibration slope; C,
c-statistic; and D, decision curve analysis).14 The B step
in their approach can be replaced with the mROC’s B
statistic, which, together with the A step (which is the
same as the A step in the unified test), will test moderate
calibration, the most desired form of calibration, as
opposed to weak calibration tested via calibration
slope.10 Further, if the research involves simultaneous
model development and external validation, drawing the
empirical ROC curves from both samples alongside the
mROC curve in the validation sample will provide visual
information on the causes of difference in the perfor-
mance of the model between the 2 samples (as demon-
strated in our case study). Incompatibility between

Table 2 Regression Coefficients for the Risk Prediction Models (Based on the MACRO Sample) for All and Severe
Exacerbations

Log-Odds Ratio
a

All Exacerbations, Estimate (SE) Severe Exacerbations, Estimate (SE)

Intercept 0.787 (0.707) –3.840 (1.018)
Female sex –0.482 (0.145) 0.209 (0.201)
Age (/10)b –0.094 (0.084) –0.016 (0.119)
Previous history of oxygen therapy 0.275 (0.147) 0.297 (0.217)
Previous history of hospitalization 0.490 (0.135) 0.925 (0.200)
SGRQb 0.098 (0.043) 0.219 (0.063)
FEV1 (L)

b –0.158 (0.146) –0.251 (0.219)
Current smoker –0.168 (0.176) –0.017 (0.242)
Current LABA user 0.157 (0.155) 0.466 (0.247)
Current LAMA user 0.354 (0.142) 0.083 (0.206)

SE, standard error; SGRQ, St. George Respiratory Questionnaire; FEV1, forced expiratory volume at 1 s; LABA, long-acting beta agonist;

LAMA, long-acting anti-muscarinic agent.
aWe included a coefficient for randomized treatment (azithromycin), but it was set to 0 for prediction (as the model is applicable to those who

are not on preventive therapy, and none of the individuals in the validation sample were on such a therapy).
bLog-odds ratios are for a 1-unit increase for continuous variables
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mROC and empirical ROC in the validation sample will
rule out moderate calibration. Conversely, while agree-
ment between the 2 curves does not rule in moderate
calibration per se, it does so provided that mean calibra-
tion (calibration-in-the-large) is achieved. This visual
interpretation can be augmented with formal hypothesis
testing using the proposed unified statistic. Such
comparisons can also be made for subgroups within the
sample, although multiple hypothesis testing should be

controlled for in such circumstances. Even when the
investigators are not planning to produce ROC curves,
the proposed test for moderate calibration can be
reported independently. This can complement the scalar
metrics that measure the degree of miscalibration but are
not based on formal hypothesis testing, such as Harrell’s
Emax,26 Austin and Steyerberg’s Integrated Calibration
Index,27 and Van Hoorde et al.’s Estimated Calibration
Index.28

Figure 5 The empirical ROC curves from the MACRO development (blue) and STATCOPE validation (black) samples, the
mROC curve from the STATCOPE validation sample (red; left panels), and the calibration plot (right panels). AUCdev, area
under the curve (c-statistic) in the development sample; AUCval, area under the curve (c-statistic) in the validation sample;
mAUC, area under the model-based ROC curve An, mean calibration statistic; Bn, ROC equality statistic; pðAnÞ: p value of the
mean calibration test; pðBnÞ, p value for the ROC equality test; pðUnÞ, p value of the unified test.
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There are several ways the proposed methodology can
be extended. The ROC curve has been extended to cate-
gorical29 as well as to time-to-event data,30,31 and similar
developments can also be pursued for the mROC metho-
dology. Development of inferential methods that would
not require Monte Carlo simulations can also be of
potential value. As the ROC curve can be interpreted as
a CDF,11 nonparametric statistics based on the distance
between CDFs can conceivably be developed to test the
equivalence of mROC and ROC curves. However, the
calculation of the simulation-based P value for the ROC
equality test is computationally efficient (except for very
large data sets). Thus, Monte Carlo error can be made
smaller than the error generated from applying asympto-
tic methods to a finite sample. Further, although we have
shown that mROC/ROC compatibility per se does not
guarantee model calibration, our simulations suggest
that such compatibility occurs when predicted and cali-
brated risks are proportional on the odds scale. As such,
mROC/ROC compatibility might mean one should
adjust the intercept term in a logistic regression model
only to achieve moderate calibration. In this sense, our
proposed approach has some similarities with the step-
wise approach proposed by Vergouwe et al.32 for exam-
ining which aspect of a risk prediction model (mean
calibration, calibration slope, or individual regression
coefficients) needs to be updated to improve the perfor-
mance of the model in a new sample. However, our
simulations were proof of concept, and this observation
should be further corroborated by theoretical develop-
ments or more extensive simulations.

One of the promises of precision medicine is to
empower patients in making informed decisions based
on their specific risk of outcomes.33 Basing medical deci-
sions on miscalibrated predictions can be harmful. Our
contribution is the development of mROC analysis, a
simple method for separating the effect of case mix and
model miscalibration on the ROC curve and for infer-
ence on model calibration. Recent arguments and coun-
terarguments indicate that the methodological research
community is divided in its opinion on the utility of
ROC curves in the assessment of risk prediction mod-
els.34,35 ROC curves, however, remain a widely adopted
tool among applied researchers in understanding and
communicating the discriminatory performance of such
models. The mROC methodology adds to the utility of
ROC curves by enabling the examination of model cali-
bration using the ROC plot. These developments can
result in more attention to model calibration as an often-
neglected but crucial aspect in the development of risk
prediction models.
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