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abstract

PURPOSE Women with a family history of breast cancer are frequently referred for hereditary cancer genetic
testing, yet , 10% are found to have pathogenic variants in known breast cancer susceptibility genes. Large-
scale genotyping studies have identified common variants (primarily single-nucleotide polymorphisms [SNPs])
with individually modest breast cancer risk that, in aggregate, account for considerable breast cancer sus-
ceptibility. Here, we describe the development and empirical validation of an SNP-based polygenic breast
cancer risk score.

METHODS A panel of 94 SNPs was examined for association with breast cancer in women of European ancestry
undergoing hereditary cancer genetic testing and negative for pathogenic variants in breast cancer susceptibility
genes. Candidate polygenic risk scores (PRSs) as predictors of personal breast cancer history were developed
through multivariable logistic regression models adjusted for age, cancer history, and ancestry. An optimized
PRS was validated in 2 independent cohorts (n = 13,174; n = 141,160).

RESULTS Within the training cohort (n = 24,259), 4,291 women (18%) had a personal history of breast cancer
and 8,725 women (36%) reported breast cancer in a first-degree relative. The optimized PRS included 86
variants and was highly predictive of breast cancer status in both validation cohorts (P = 6.4 × 10−66; P, 10−325).
The odds ratio (OR) per unit standard deviation was consistent between validations (OR, 1.45 [95% CI, 1.39 to
1.52]; OR 1.47 [95% CI, 1.45 to 1.49]). In a direct comparison, the 86-SNP PRS outperformed a previously
described PRS of 77 SNPs.

CONCLUSION The validation and implementation of a PRS for women without pathogenic variants in known
breast cancer susceptibility genes offers potential for risk stratification to guide surveillance recommendations.
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INTRODUCTION

Although breast cancer ranks among the cancer types
with the highest heritability,1 characterization of the
underlying genetic causes is still incomplete. Patho-
genic variants in high-penetrance genes (eg, BRCA1,
BRCA2, PALB2) associated with substantial increases
in risk are individually rare in the general population.2-4

All known high- and moderate-penetrance breast
cancer susceptibility genes are estimated to account for
a combined 20% of familial relative risk.5 As a result,
most women who are referred for hereditary cancer
genetic testing are negative for a pathogenic variant and
without a clear understanding of the magnitude of their
risk.6

Genome-wide association studies (GWAS) have iden-
tified several hundred, common, single-nucleotide
polymorphisms (SNPs) as breast cancer susceptibility
variants.7-11 Although their individual contribution to risk

is minor, polygenic risk scores (PRSs) of such variants
can define variant combinations with potentially ac-
tionable clinical risk.9,11 Together, pathogenic variants
in high- and moderate-risk genes and panels of SNPs
are estimated to explain up to 40% of the familial risk for
developing breast cancer.11

The first well-characterized PRS combined 77 SNPs
(PRS77) and was evaluated in . 67,000 women of
European ancestry.9 The score was strongly associ-
ated with breast cancer status: women in the highest
1% of the PRS77 score distribution had . 3-fold
higher risk of developing breast cancer compared
with women with an average score. However, the study
was limited by the use of the same patient cohort for
development and evaluation, probably overestimating
the score’s performance. Expansion of the discovery
meta-analysis identified additional susceptibility loci
that incrementally increased the proportion of familial
relative risk explained by polymorphic variants.10 More
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recently, a polygenic score of 313 SNPs was deduced from
the same GWAS and then validated in an independent
population cohort.11 The same study also supported pre-
vious work indicating SNP-based risk scores may have to
be optimized depending on breast cancer estrogen-
receptor (ER) status. Composition and individual contri-
bution of variants of the ideal SNP-based breast cancer risk
score remain to be defined.

Family history (FH) of breast cancer, a combination of
biologic, social, and environmental factors, includes a ge-
netic component that is expected to overlap with SNP-
based risk.9,11 To avoid double counting of risk due to
correlation between genetic components of FH and PRS,
joint modeling of both genetic factors is required. Here, we
describe the development and validation of a PRS in which
we co-estimate SNP-based risk and familial risk to obtain
effect sizes independent of FH. Sequential independent
studies were designed to confirm breast cancer associa-
tions of previously published SNPs, develop a PRS to
optimally capture the combined effects of confirmed SNPs
after adjusting for FH, and prospectively assess the per-
formance of the optimized PRS in two independent data
sets representative of the intended clinical-use population.

METHODS

Patients

The PRS was developed and then validated in three con-
secutive cohorts of women referred for hereditary cancer
testing at a Clinical Laboratory Improvement Amendments
and College of American Pathology–approved laboratory
(Myriad Genetic Laboratories, Salt Lake City, UT) for a panel
of 28 cancer-predisposition genes.12 Women of European
ancestry (Ashkenazi and non-Ashkenazi) were eligible for
inclusion if they were 18 to 84 years old at the time of testing
and were negative for pathogenic variants in 11 breast
cancer–risk genes: BRCA1, BRCA2, TP53, PTEN, STK11,
CDH1, PALB2, CHEK2, ATM, NBN, and BARD1). The

development and validation studies were carried out
according to institutional review board (IRB) approved
protocols (Quorum Review IRB no. 31713). Additional de-
tails are provided in the Data Supplement.

SNP Genotyping

Amplicons for 94 SNP markers published at the time of this
study were incorporated into a next-generation sequencing
panel.8,9 Two markers failed design due to their location
within repetitive elements, leaving 92 markers for evalua-
tion. Details on genotyping and variants are provided in the
Data Supplement (Table S1).

Statistical Methods

Modeling. Clinical information from provider-completed
test request forms included ancestry, personal and family
cancer history, cancer type(s), and age(s) at diagnosis. Breast
cancer associations were evaluated in terms of P values
and odds ratios (ORs) from multivariable logistic regression
models adjusted for the variables listed in the preceding
sentence, coded as described previously, using R, version
3.4.4 or later (https://cran.r-project.org/).13,14 ORs were
normalized to one unit of standard deviation of the PRS
distribution (standardized OR). Differences between models
were evaluated by the log likelihood-ratio test comparing
a model without the variable in question with a model in-
cluding the variable. P values were calculated from
likelihood-ratio χ2 test statistics and are reported as two-
sided.

PRS development. To define a PRS, we developed an it-
erative method to evaluate SNP markers discovered
through GWAS and to select the most informative marker
combination. We used multivariable analysis to account for
linkage disequilibrium between SNPs, and the overlap
between the genetic contribution of individual SNPs with
the genetic component of familial cancer history.

CONTEXT

Key Objective
To determine whether a polygenic risk score (PRS) could be developed and validated for clinical use in predicting breast

cancer risk.
Knowledge Generated
An 86-SNP PRS was developed and adjusted for family history of breast cancer to avoid double counting of risk due to

correlation between genetic components of family history and PRS. This PRS was highly predictive of breast cancer in two
independent validation cohorts.

Relevance
PRSs that aggregate genotypes from common variants have emerged as a new approach to improve breast cancer risk

assessment. Although several PRSs have been developed, they have not been adjusted or controlled for other genetic
factors that may be correlated with PRS. We developed and validated an 86-SNP score that was adjusted for family breast
cancer history and was highly predictive of breast cancer risk, making it appropriate for clinical use to identify women at
increased risk of developing breast cancer.
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Previous work supports a multiplicative model as the best
method for capturing the combined SNP effects.9,11 We
centered the multiplicative model according to general-
population allele frequencies so the OR for an individual
patient represents the fold-change in risk relative to the
general population. Specifically, the PRS was defined as
a linear combination of centered risk alleles:

PRS � b1(x1 – u1) + b2 (x2 – u2 ) + .... + bN(xN – uN),

where N was the total number of SNPs selected, the co-
efficient bk was the per-allele log OR for breast cancer
association of the kth SNP estimated from meta-analysis of
literature and the development cohort; xk was the number
of alleles of the kth SNP carried by an individual patient (xk =
0, 1, or 2); and uk was the average number of alleles of the
kth SNP reported for individuals included in large, general
population studies.8 Additional details of the PRS devel-
opment are provided in the Data Supplement.

PRS validation. Both validation studies were conducted
according to prespecified statistical analysis plans that were
locked before unblinding the study data. The initial vali-
dation was based on sample size estimates to ensure that
CIs around a 20% lifetime risk estimate would not be wider
than 18% to 22%. The second validation cohort included
independent clinical testing samples from August 2017
through January 2019. The primary analysis in each

validation study tested the association of the PRS with
invasive breast cancer after adjusting for age, personal and
family cancer history, and ancestry.

In exploratory analyses, we assessed the predictive ability of
the optimized PRS compared with a previously described
PRS77 by adding both to a multivariable model. The added
value of one score, after accounting for the other, was
assessed by a log likelihood-ratio test. We evaluated
goodness of fit of the PRS after accounting for clinical
factors. The observed versus theoretical effect of the PRS
on breast cancer risk under the multiplicative polygenic
model was assessed by comparing ORs from the contin-
uous PRS with those obtained from analysis of patients
binned in categories according to PRS percentiles. Het-
erogeneity of the PRS effect size according to age, ancestry,
and FH of breast cancer was evaluated by fitting additional
interaction terms and by repeating the primary analysis
restricted to subcohorts stratified by age, ancestry, and FH
severity. Nonlinear effects of the PRS were assessed by
including quadratic terms in the model.

RESULTS

PRS Development

The PRSwas developed in a cohort of 24,259women, 4,291
(18%) of whom had a personal history of breast cancer.
Patient characteristics are detailed in Table 1. The median
age at genetic testing was 47 years (interquartile range,

TABLE 1. Patient Clinical Characteristics

Characteristic

Development Validation 1 Validation 2

All Patients Patients With IBC All Patients Patients With IBC All Patients Patients With IBC

Total No. of patients (%) 24,259 (100) 4,291 (18) 13,174 (100) 3,293 (25) 141,160 (100) 28,928 (20)

Age at hereditary cancer
testing, years

Range 18-84 22-84 18-84 25-84 18-84 21-84

Median 47 54 49 58 48 59

% ≤ 50 years 61 7 55 30 57 26

Ancestry

Western/Northern European 18,079 (75) 3,443 (80) 9,505 (72) 2,548 (77) — —

Central/Eastern European 5,533 (23) 762 (18) 2,950 (22) 548 (17) — —

White/non-Hispanic — — — — 136,528 (97) 27,942 (97)

Ashkenazi 647 (3) 86 (2) 719 (5) 198 (6) 4,632 (3) 986 (3)

Cancer history in FDRs

No IBC or OC 13,230 (55) 2,800 (65) 7,115 (54) 1,896 (58) 80,697 (57) 17,211 (59)

≥ 1 IBC 8,725 (36) 1,315 (31) 4,896 (37) 1,258 (38) 48,631 (34) 10,610 (37)

≥ 1 OC 2,978 (12) 251 (6) 1,547 (12) 210 (6) 15,210 (11) 1,679 (6)

≥ 2 IBC 1,626 (7) 293 (7) 1,031 (8) 324 (10) 9,280 (7) 2,572 (9)

≥ 2 OC 104 (, 1) 11 (, 1) 55 (, 1) 7 (, 1) 453 (, 1) 60 (, 1)

≥ 1 IBC and ≥ 1 OC 674 (3) 75 (2) 384 (3) 71 (2) 3,378 (2) 572 (2)

NOTE. Data reported as No. (%) unless otherwise indicated. Dash indicates not evaluable based on fields available for self-reported ancestry
on the test-request form.

Abbreviations: FDR, first-degree relative; IBC, invasive breast cancer; OC, invasive epithelial ovarian cancer.
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37-56 years). Overall, 8,725 patients (36%) reported a breast
cancer diagnosis in ≥ 1 first-degree relative and 13,230
(55%) had no first-degree relatives with breast or ovarian
cancer.

Effect sizes and population frequencies were used to rank
92 susceptibility variants by their informativeness and to
construct a polygenic score by successive addition of the
most informative variant. Results from the iterative devel-
opment procedure are shown in Figure 1. The contribution
of each SNP to the discriminatory accuracy of the polygenic
score was measured in terms of the likelihood ratio χ2

statistic. For the first variants, we saw steep improvement
with each added SNP. The increase in discriminatory power
diminished as less-informative SNPs were incorporated.
The final PRS was based on the 86 most-informative SNPs
corresponding to the maximum discriminatory accuracy,
hereafter referred to as the 86-SNP score.

86-SNP PRS Validation

The 86-SNP score was assessed in two independent
consecutive cohorts of 13,174, and 141,160 women.
Clinical characteristics were similar between the develop-
ment and validation study populations (Table 1).

The 86-SNP score was strongly associated with breast
cancer after adjusting for FH and clinical factors in both
validation studies. We observed highly consistent ORs per
unit standard deviation of the 86-SNP score (validation 1
OR, 1.45 [95% CI, 1.39 to 1.52]; validation 2 OR, 1.47
[95% CI, 1.45 to 1.49]). Distribution of relative risks, or fold
changes, in breast cancer risks due to the 86-SNP score in
unaffected women was similar between the first and sec-
ond validations (Data Supplement Figures S1 and S2). ORs
for developing breast cancer by 86-SNP score percentile in
each of the two validation cohorts are given in Table 2.
Consistently, women in the top 95th percentile of the 86-
SNP score distribution had a more than 2-fold higher risk of
breast cancer development than women with an average

86-SNP score, whereas women with an 86-SNP score in
the lowest 10th percentile had a nearly 2-fold reduction in
risk of breast cancer development.

The SNP content of the 86-SNP PRS largely overlaps
a previously reported PRS77.9 We examined the predictive
strength of both scores in our validation cohorts by testing
for the added discrimination provided by each score after
accounting for the other. The results of a likelihood ratio test
applied to a multivariable model of both scores indicate that
the 86-SNP score (validation 1 OR, 1.41 [95%CI, 1.23 to
1.61]; validation 2 OR, 1.35 [95% CI, 1.30 to 1.42]) was
a more powerful stratification tool than the PRS77 (vali-
dation 1 OR, 1.04 [95% CI, 0.9 to 1.19]; validation 2 OR,
1.09 [95% CI, 1.04 to 1.14]) and PRS77 added less pre-
dictive power to the 86-SNP score than the 86-SNP score
added to PRS77 (Data Supplement Table S2, Figure S3).

In the goodness-of-fit analysis, testing the association of the
86-SNP score with breast cancer risk on the basis of
percentiles of the score, estimates observed from cate-
gorical analysis were highly consistent with theoretical
estimates based on the multiplicative model for both vali-
dation cohorts (Fig 2).

After adjusting for multiple testing, we found no evidence of
interaction between the 86-SNP score and age, ancestry, or
breast cancer FH. Effect sizes of the 86-SNP score were
consistent across subcohorts stratified by age (Table 3;
Data Supplement Figure S4), ancestry (Data Supplement
Table S3), and FH (Table 4; Data Supplement Figure S5) in
both validation cohorts. Quadratic effects of the 86-SNP
score were not significant. These results indicate the simple
multiplicative model remains the best method for capturing
the risk conferred by the combined effects of SNPs after
accounting for family cancer history.

DISCUSSION

PRSs aggregating genotypes from common variants offer
new ways to improve breast cancer risk assessment and
can contribute to better understanding of breast cancer risk
in all women. Modification of risk estimates by PRS-based
stratification has been shown in a variety of clinical settings,
including women who carry a pathogenic variant, high-risk
women, and population cohorts.11,15-17 These novel tools,
however, are of particular interest to women who present for
genetic risk assessment with increased risk due to a FH of
breast cancer. FH and susceptibility variants contribute
independently to risk prediction, yet the approximately
13% reduction in the OR for FH when adjusted for the
PRS77 (or PRS313) indicates an overlapping contribution
to risk.9,11,18 Adjustment for this correlation between SNPs
and FH can be achieved by co-estimating ORs from
multivariable models. This adjustment is essential to avoid
overestimating risk, in particular when PRS-based risk is
combined with traditional breast cancer risk models.

In this study, we designed an 86-SNP PRS to predict
breast cancer status in women of European ancestry who
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had hereditary-cancer genetic testing and were negative
for pathogenic variants. By deriving effect sizes for indi-
vidual variants from logistic regression models adjusted
for FH, we created a PRS that corrects SNP-based risk
for FH.

The 86-SNP PRS incorporates SNPs from the previously
described PRS77 as well as variants published
subsequently.8,9 Both PRSs were strongly associated with
breast cancer risk in our validation cohorts, with a slightly
higher OR for the 86-SNP score compared with OR for the
PRS77. In a model including both scores, the 86-SNP
score outperformed the PRS77, possibly due to the in-
clusion of additional variants not present in the PRS77. The
reduced OR for PRS77 in our validation studies is con-
sistent with some overfitting in the original study9 and is
equivalent to its performance in a prospective data set.11

Previous studies reported a weak decline of PRS stratifi-
cation with age, primarily observed in ER-positive disease.11

Despite a slight variation of point estimates, there was no
significant performance difference of the 86-SNP PRS
between age groups in either of our 2 validations. Possibly
the weak effect previously reported is confined to a specific
breast cancer subtype or more prevalent in a population
less enriched for FH. In contrast to earlier reports, we found
no interaction between the 86-SNP score and FH. The
reported interaction was only significant in ER-positive
disease, a subanalysis not available in our data set.11

Since the inception of this study, additional breast cancer
risk variants have been described, and expanded breast
cancer PRSs have been evaluated and validated in in-
dependent data sets.10,11 The enlarged PRSs are estimated
to account for a larger fraction of familial risk and promise

TABLE 2. Effect Sizes by Percentile of 86-SNP Score in the Validation Cohorts

86-SNP Score
Percentile

Validation 1 Validation 2

No. ORa 95% CI P No. ORa 95% CI P

≤ 1 132 0.43 0.24 to 0.73 .0029 1,412 0.40 0.33 to 0.48 1.41 × 10−20

. 1-5 527 0.56 0.42 to 0.73 3.0 × 10−5 5,646 0.48 0.44 to 0.53 9.89 × 10−52

5-10 659 0.55 0.43 to 0.70 1.7 × 10−6 7,058 0.59 0.54 to 0.64 4.52 × 10−37

10-20 1,317 0.63 0.53 to 0.76 8.4 × 10−7 14,116 0.69 0.65 to 0.73 4.47 × 10−35

20-40 2,635 0.80 0.70 to 0.92 0.0020 28,232 0.85 0.81 to 0.89 3.16 × 10−12

40-60 2,634 1 (referent) — — 28,232 1 (referent) — —

60-80 2,635 1.19 1.04 to 1.36 .012 28,232 1.30 1.24 to 1.36 5.75 × 10−32

80-90 1,317 1.62 1.39 to 1.90 1.6 × 10−9 14,116 1.53 1.45 to 1.61 3.49 × 10−59

90-95 659 1.77 1.45 to 2.16 1.6 × 10−8 7,058 1.80 1.69 to 1.92 7.36 × 10−72

95-99 527 2.18 1.76 to 2.70 6.8 × 10−13 5,646 2.28 2.13 to 2.44 2.85 × 10−124

. 99 132 2.14 1.44 to 3.17 1.5 × 10−4 1,412 2.99 2.64 to 3.37 1.89 × 10−69

Abbreviations: OR, odds ratio; SNP, single-nucleotide polymorphism.
aORs are for the difference in breast cancer risk between the indicated percentiles of the 86-SNP score relative to the middle quintile (40%-

60%).
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better predictive power. However, none of the larger PRSs
have been adjusted for confounding with FH, which should
be a prerequisite for incorporation into clinical models. The
approach described here of co-estimation in multivariate
models could be applied to any emerging PRS, irrespective
of number of variants or ancestral origin.

Among the strengths of this study are the use of large,
contemporary, and fully independent cohorts for devel-
opment and 2 validation studies. Derivation of the PRS
used a modeling approach that accounted for correlation
between genetic risk contained in SNPs and FH. Thus, to
our knowledge, the 86-SNP score is the first PRS with an
SNP component adjusted for FH and, as such, would be an
appropriate addition to conventional clinical models.

Limitations of the study include the inability to apply the 86-
SNP score to patients of non-European ancestry because
changes in genetic structure and linkage disequilibrium
may affect the predictive ability of individual risk variants
when present in a different ancestral background. Although
association studies with equivalent explanatory power in
other ancestries have yet to be described, they are the
subject of ongoing research and the expansion of breast
cancer PRS to other ancestries is a high priority. Family
cancer history information in our studies was based on
provider-completed test request forms, which may limit the

accuracy and/or completeness of that information. There is
also possible selection bias from using a population that
met clinical criteria for genetic testing. However, previous
studies have demonstrated that unbiased risk estimates
can be obtained from analysis of a clinical testing pop-
ulation through multivariable adjustment for the factors
related to ascertainment.14,19

Although the 86-SNP score described here adjusted for
FH, genetic factors are not the sole contributors to breast
cancer risk, even in cohorts with exceptional FH. Validated
clinical risk models incorporate variables such as body
mass index, age at menarche, parity, age at first birth and
hormone replacement therapy use, as well as details of
FH.20-23 Other important risk factors, such as mammo-
graphic density and diet, are not taken into account
here.24-26 More studies will be needed to accommodate
these additional variables and to determine their in-
dependent contributions. A testing approach that com-
bines monogenic and polygenic genetic risk with FH,
clinical, and lifestyle factors may result in improved tar-
geting of risk-reducing options.
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17. Näslund-Koch C, Nordestgaard BG, Bojesen SE: Common breast cancer risk alleles and risk assessment: A study on 35 441 individuals from the Danish
general population. Ann Oncol 28:175-181, 2017

18. Shieh Y, Hu D, Ma L, et al: Breast cancer risk prediction using a clinical risk model and polygenic risk score. Breast Cancer Res Treat 159:513-525, 2016

19. Rothman KJ, Greenland S, Lash T. Modern Epidemiology, Vol. 3. Philadelphia, PA, Lippincott Williams & Wilkins, 2008

20. Cuzick J, Brentnall AR, Segal C, et al: Impact of a panel of 88 single nucleotide polymorphisms on the risk of breast cancer in high-risk women: Results from two
randomized tamoxifen prevention trials. J Clin Oncol 35:743-750, 2017

21. Lee A,Mavaddat N, Wilcox AN, et al: BOADICEA: A comprehensive breast cancer risk predictionmodel incorporating genetic and nongenetic risk factors. Genet
Med 21:1708-1718, 2019

22. Terry MB, Liao Y, Whittemore AS, et al: 10-Year performance of four models of breast cancer risk: A validation study. Lancet Oncol 20:504-517, 2019

23. Tyrer J, Duffy SW, Cuzick J: A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 23:1111-1130, 2004

24. Brentnall AR, Cuzick J, Buist DSM, et al: Long-term accuracy of breast cancer risk assessment combining classic risk factors and breast density. JAMA Oncol 4:
e180174, 2018

25. Lindström S, Thompson DJ, Paterson AD, et al: Genome-wide association study identifies multiple loci associated with both mammographic density and breast
cancer risk. Nat Commun 5:5303, 2014 [Erratum: Nat Commun 6:8358, 2015]

26. Shapira N: The potential contribution of dietary factors to breast cancer prevention. Eur J Cancer Prev 26:385-395, 2017

n n n

Hughes et al

592 © 2020 by American Society of Clinical Oncology

http://www.R-project.org/
http://www.R-project.org/
http://ascopubs.org/doi/full/10.1200/PO.16.00066

	Development and Validation of a Clinical Polygenic Risk Score to Predict Breast Cancer Risk
	INTRODUCTION
	METHODS
	Patients
	SNP Genotyping
	Statistical Methods
	Modeling.
	PRS development.
	PRS validation.


	RESULTS
	PRS Development
	86

	DISCUSSION
	REFERENCES


