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A B S T R A C T   

Sjögren’s syndrome (SS) is a chronic autoimmune disease that affects the exocrine glands and 
may lead to a range of systemic symptoms that impact various organs. Both innate and adaptive 
immune pathways might trigger the disease. Studying the signaling pathways underlying SS is 
crucial for enhancing diagnostic and therapeutic effectiveness. SS poses an ongoing challenge for 
medical professionals owing to the limited therapeutic options available. This review offers a 
comprehensive understanding of the intricate nature of SS, encompassing disease classification 
criteria, risk factors, and signaling pathways in immunity and inflammation. The advancements 
summarized herein have the potential to spark new avenues of research into SS.   

1. Introduction 

Sjögren’s syndrome (SS) is a chronic autoimmune disease whose characteristic hallmark is lympho-plasmocytic infiltration of the 
salivary and lacrimal glands. The general features of SS are shown in Fig. 1 [1,2]. SS is more commonly observed in middle-aged 
women, with a higher incidence ratio in females than males (14:1), with the average age of onset ranging from 51.6 ± 13.8 to 62 
± 13 years [3,4]. Primary SS may present without any other autoimmune diathesis. However, approximately 60 % of SS patients have 
coexisting autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE), and systemic sclerosis [5]. Systemic 
involvement is seen in most SS patients [6]. Around half of patients with systemic involvement experience aggravation of the disease 
over time. The extra-glandular manifestations mainly include active synovitis, severe leukocytopenia, interstitial pneumonia, auto-
immune cytopenia, Raynaud’s phenomenon, lymphadenopathy, cutaneous vasculitis, renal disease, neurological involvement, and 
myositis [7–11]. In severe cases, the extra-glandular manifestations can be life-threatening [12,13]. 

Research has found that SS patients with positive anti-SSA/SSB antibodies are at an increased risk of developing diseases such as 
hypertension, hypercholesterolemia, venous thromboembolism, interstitial lung disease, cerebral infarction, and multiple myeloma 
[14–17]. Interstitial lung disease, the most common pulmonary complication in SS, occurs in around 20 % of patients and is associated 
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with higher levels of lactic dehydrogenases and anti-Ro52k positivity [18]. Non-Hodgkin lymphoma is a severe complication of SS and 
may worsen the disease prognosis. It occurs in around 5–10 % of patients—15 to 20 times higher than in the general population [19, 
20]. Lymphomagenesis may occur when lymphoepithelial sialadenitis is coupled with sustained antigenic stimulation, leading to 
autoreactive B cell clones in the salivary glands of SS patients. 

Although mild benefits are reported for some drugs, conventional systemic immunosuppressive therapy has not demonstrated 
efficacy in controlling SS [21,22]. SS therefore remains an unresolved challenge for clinicians, with limited therapeutic options. This 
review provides a comprehensive insight into the complex nature of SS, describing disease classification criteria, risk factors, and 
signaling pathways in immunity and inflammation. The developments described have the potential to inspire new ideas for SS 
research. 

2. Classification criteria 

The understanding of SS has evolved over a century, from initial case reports to research on pathogenesis at the cellular and 
molecular levels. The history of SS research may be divided into three periods: clinical (1888–1950), immunologic (1950–1980), and 
molecular (1980–present) (Fig. 2) [23]. Researchers from different regions have proposed multiple classification criteria for the 
diagnosis of SS. The earliest Bloch criterion was proposed in 1965, followed by several regional standards such as the Shearn standard, 
the San Francisco standard, the Copenhagen standard, the European classification standard, and the revised Japanese standard 
[24–27]. Currently, commonly used classification standards include the 2002 American-European Consensus Group (AECG) criteria, 
the 2012 Sjögren’s International Collaborative Clinical Alliance (SICCA) classification standard, and the 2016 American College of 
Rheumatology/European League Against Rheumatism (ACR/EULAR) Classification Criteria [28–30]. The 2016 ACR/EULAR classi-
fication criteria have a high sensitivity and specificity of 96 % and 95 %, respectively, making them suitable for validation analysis of 
diagnostic criteria and inclusion in clinical trials [30,31]. In recent years, non-invasive and real-time examination techniques such as 
magnetic resonance imaging, ultrasound elastography, corneal in vivo laser-scanning confocal microscopy, and impression cytology 
have shown promise, and may potentially improve timely diagnosis and prognostic evaluation of SS [32–36]. 

3. SS risk factors 

3.1. Genetic factors 

Although the etiology of SS remains unknown, various factors have been hypothesized to contribute to its development. Among 
these, the HLA genes account for the most significant genetic predisposition to SS [37]. The epithelial expression of HLA-DP or -DQ, 

Fig. 1. General features, risk factors and systemic complications of Sjögren’s syndrome 
Sjögren’s syndrome is an incurable autoimmune disease that occurs most frequently in women, usually affecting the lacrimal and salivary glands, 
with systemic complications. Genetic, viral, and hormonal factors are essential in inducing SS. The extra-glandular manifestations mainly include 
active synovitis, severe leukocytopenia, interstitial pneumonia, autoimmune cytopenia, Raynaud’s phenomenon, lymphadenopathy, cutaneous 
vasculitis, renal disease, neurological involvement, and myositis. Interstitial lung disease is the most common pulmonary complication in SS. Non- 
Hodgkin’s lymphoma is a severe complication of SS and could worsen disease prognosis. In severe cases, the extra-glandular manifestations of SS 
may be life-threatening. Created with BioRender.com. 
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rather than -DR, may be a prerequisite for the autoimmune process underlying SS to develop in genetically susceptible individuals 
[38]. Moreover, the association between HLA and SS is limited to patients with anti-SSA and anti-SSB antibodies—HLA is not asso-
ciated with SS in patients without these auto-antibodies [39]. Strong associations with anti-Ro/SSA and anti-La/SSB have been found 
in patients carrying DRB1*03 and DQB1*02 alleles or those heterozygous for DQw1 and DQw2 [40]. At the allelic level, DQB1*02:01, 
DRB1*03:01, and DQA1*05:01 alleles are risk factors for SS, whereas DQA1*02:01, DQA1*03:01, and DQB1*05:01 alleles are pro-
tective factors [41]. MICA, a new non-canonical MHC-linked but HLA-independent susceptibility locus, has a strong association with 
SS [42]. Weighted gene co-expression network analysis indicates that SS samples with highly expressed EIF2AK2 or TDRD7 genes are 
correlated with inflammatory response, interferon (IFN)-α response, and IFN-γ response [43]. Although the exact genetic factors 
implicated in SS are not entirely understood, genome-wide association studies have identified several non-HLA genes (including IRF5, 
STAT4, BLK, PHIP, DDX6-CXCR5, COL11A2, DGKQ, PTTG1, FCGR2A, TNPO3, TNFAIP3, TNIP1, FAM167-BLK, GTF2I, IL12A, and 
ITSN2, among others) that appear to be associated with the condition [44–51]. Research has found that individual TNFAIP3, PTPN22, 
and TRAF1-C5 single-nucleotide polymorphisms (SNPs) are not associated with susceptibility or severity of SS, and do not act as 
serological markers of the disease. However, genetic interactions between TRAF1-C5 and TNFAIP3 or TNFAIP3, PTPN22, and 
TRAF1-C5 SNPs are risk factors for SS [52]. The rs2069705 SNP in the IFN-γ gene acts as a pivotal element in SS susceptibility, 

Fig. 2. Milestones in the history of research on Sjögren’s syndrome 
SS has been studied for over a century, with research progressing from case reports to cellular and molecular studies. The history of SS research may 
be divided into three periods: clinical (1888–1950), immunologic (1950–1980), and molecular (1980–present). Over time, SS became recognized as 
a systemic disease by Sjögren in 1933 and auto-antibodies were subsequently discovered by various researchers. The development of lip gland 
biopsy and the recognition of auto-antibodies have led to notable improvements in the diagnosis and treatment of SS. Various classification 
standards for the diagnosis of SS have been successively formulated. The earliest of these was the Bloch criterion in 1965, which was followed by 
several regional standards. The 2002 European criteria, the 2012 Sjögren’s International Collaborative Clinical Alliance classification standard, and 
the 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria are commonly used at present. Created 
with BioRender.com. 
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primarily by augmenting IFN-γ transcription, leading to B cell infiltration in the exocrine glands [53]. The rs12583006 SNP is 
significantly related to SS susceptibility in SS patients [54]. In addition, the presence of multiple X chromosomes are important risk 
factors for susceptibility to SS [55]. The estimated prevalence of SS in women with the 47, XXX karyotype is ~2.9 times higher than in 
women with the 46, XX karyotype, and ~41 times higher than that in men with the 46, XY karyotype [56]. Very rare X chromosome 
abnormalities are present among patients with SS [57]. Among ~2100 women with SS, 1 patient had 45, X/46, XX/47, XXX, with a 
triplication of the distal p arm of the X chromosome in the 47, XXX cells. These insights provide valuable information for potential 
future research on SS. 

3.2. Viral infection 

Infection with viruses or other immune activators may cause abnormal activation of epithelial cells and immune system responses 
[58]. Direct stimulation by viruses causes salivary gland epithelial cells to secrete chemokines that recruit and activate lymphocytes, 
resulting in lymphocyte infiltration into the exocrine glands [59]. The epithelial cells of the labial salivary gland were the target of 
Epstein-Barr virus (EBV) infection [60,61]. Persistent EBV infection may activate polyclonal B cells, inducing the production of 
auto-antibodies [62,63]. Additionally, a high human T-cell leukemia virus type I viral load in situ is considered to promote the 
production of transforming growth factor beta, resulting in fibrous changes to the salivary glands in patients with 
anti-centromere-antibody-seropositive SS [64]. Human T-cell leukemia virus type 1-associated SS may exhibit different immunological 
patterns to idiopathic SS [65]. In addition, hepatitis C [66–68], cytomegalovirus [69,70], and COVID-19 [71–73] have also been 
suggested to be closely related to the onset of SS. Although antiviral therapy may help control persistent viral infections that could 
trigger SS, it may not effectively treat persistent diseases that are no longer dependent on the initial viral infection. 

3.3. Hormone abnormality 

Estrogen is believed to play a complex role in the occurrence and development of SS by targeting key immune pathways, and 
increases the risk of the disease in genetically predisposed women [74,75]. Estrogen levels decline during menopause, and lower 
estrogen levels promote apoptosis in acinar cells [76]. In estrogen-deficient mice, severe autoimmune lesions developed in the salivary 
and lacrimal glands, and estrogen administration resulted in the recovery of these lesions [77]. Estradiol, a primary form of estrogen, 
inhibits subcellular structural damage and confers protective effects on the sublingual gland [78]. The salivary gland epithelial cells of 
patients with SS exhibit significantly reduced responsiveness to 17β-estradiol [79]. A large cohort study has confirmed that women 
who use estrogen replacement therapy are at an increased risk of dry eye syndrome [80]. In addition, the 
hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and hypothalamic-pituitary-thyroid axis may also influ-
ence the development of SS [81–84]. 

4. The pathogenesis of SS 

As shown in Fig. 3a, the salivary gland epithelium is primarily made up of acinar cells and ductal cells. Acinar cells experience 
multiple defects in SS, while pathogenic events may occur in the ductal epithelium. SS is characterized by chronic antigen exposure, 
local production of autoantibodies, accumulation of T cells and B cells, and the formation of lymphoepithelial lesions with basal cell 
hyperplasia [85]. Epithelial cells undergo abnormal activation, serving as a crucial trigger for an autoimmune response. It may secrete 
releasing chemokines to attract B cells [86]. In a pro-inflammatory environment, activating B cell-activating factor (BAFF) and 
proliferation-inducing ligand (APRIL) triggers B cells to produce pro-inflammatory cytokines, potentially resulting in epithelial hy-
perplasia (Fig. 3b). Follicular helper T (TFH) cells may secrete cytokines to drive B cell proliferation, leading to the differentiation of B 
cells into plasma cells and the production of numerous autoantibodies, advancing the progression of SS [87,88]. 

4.1. Altered glandular homeostasis 

Altered glandular homeostasis might precede the onset of inflammation and contribute to secretory dysfunction in patients with SS 
[89,90]. Acinar cells produce and secrete saliva, which is transported through the intercalated and striated ducts to the mouth. 
However, in individuals with SS, acinar cells tend to have multiple defects [91]. The production of saliva by acinar cells starts with the 
activation of muscarinic 3 receptors by muscarinic neurotransmitters such as acetylcholine. In patients with SS, auto-antibodies 
against muscarinic receptors may disrupt this process [85,92]. Under normal physiological conditions, aquaporins (AQPs) facilitate 
water discharge from the apical membrane of acinar cells. However, in patients with SS, the expression of various AQPs is altered, and 
the ability of these channels to respond to muscarinic stimuli is significantly reduced [93,94]. Aberrant localization of fusion receptors 
involved in regulated exocytosis has also been observed in the salivary glands of SS patients [95]. Mucins, produced by mucous acinar 
cells in the salivary gland, are crucial for lubrication, which aids swallowing [96]. Mucin components such as Mucin 5B/7 are found 
outside the basal pole of mucous acinar cells, and may contribute to glandular inflammation in SS [97,98]. Maintenance of the polarity 
of acinar cells is crucial for normal secretory function [99]. During the pathogenesis of SS, the ductal epithelium may also be affected 
by various pathogenic events such as the activation of innate immune pathways, epithelial cell apoptosis, and senescence [100,101]. In 
a healthy individual, immune cells are present in the salivary gland epithelium for immune surveillance, which enables a quick 
response to any injury or infection [102]. However, chronic antigen exposure may lead to the formation of lymphoepithelial lesions in 
SS. 
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4.2. Immune cells and salivary gland epithelial cells in SS 

4.2.1. Immune cells in SS 
In patients with SS, the exocrine glands are infiltrated by various immune cells. T-cell subpopulations play essential roles in SS- 

related autoimmunity through orchestrating complex immune responses. T helper type 1 (Th1) and T helper type 17 (Th17) cells 
penetrate the gland in the early stage of the disease, producing inflammatory factors that lead to epithelial cell damage and main-
taining the inflammatory response [103,104]. The process of infiltration of TFH and B cells occurs in the late stage of the disease, with 

(caption on next page) 
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TFH promoting B cell differentiation and antibody production [105–107]. Regulatory T cells (Tregs) might play a role in maintaining 
immune balance and regulating the loss of self-tolerance mechanisms in SS [108]. The levels of forkhead box protein p3-positive 
(FoxP3 (+)) Tregs in the minor salivary glands lesions of SS patients correlate with inflammation grade during lymphoma develop-
ment [109]. However, their role in SS is controversial. Studies have identified the distinctive phenotype and possible pathogenic 
impact of CD8+ T cells in SS [110–112]. CD8+ T cells can contribute to acinar injury in exocrine glands [113]. Studies have confirmed 
that interleukin (IL)-17-producing CD4− CD8− T cells undergo expansion in peripheral blood and infiltrate salivary glands in patients 
with SS [114]. However, peripheral CD4+CD8+ double-positive T cells may have a protective role in SS [115]. Almost half of the 
infiltrating B cells in the peripheral stroma of the glandular lobules of salivary gland tissue are fully differentiated plasma cells [116, 
117]. A significant amount of auto-antibodies produced by plasma cells binds to auto-antigens released by damaged host cells, 
enhancing tissue damage and gland dysfunction. Macrophages—innate immune cells widely present in the glandular tissues of patients 
with SS—have a bidirectional relationship with the inflammatory microenvironment, which makes them a potential therapeutic target 
for SS [118]. The pathogenesis of aqueous-deficient dry eye is driven by the concerted action of monocytes/macrophages and infil-
trating lymphocytes [119]. In addition, natural killer T-like cells infiltrate the labial salivary glands of patients with SS, putatively 
playing a role in its pathogenesis [120,121]. However, the potential contribution of immune cells to the pathology of SS remains 
understudied. 

4.2.2. Salivary gland epithelial cells in SS 
The exocrine glands of SS patients have an inflammatory microenvironment rich in various proinflammatory cytokines and other 

factors that can induce an activation status to the surrounding epithelia [122]. Salivary gland epithelial cells can be abnormally 
activated when stimulated by virus infections or type I interferon, producing chemokines such as CCL7, CCL21, CXCL10, and CXCL13 
[123]. These chemokines promote the aggregation of lymphocytes and their focal distribution around the gland ducts. Salivary gland 
epithelial cells can actively secrete cytokines such as BAFF, IL-21, and IL-7 and promote the proliferation and activation of B lym-
phocytes and TFH cells [87,88]. Meanwhile, salivary gland epithelial cells are crucial as antigen-presenting cells, which express MHC 
class II molecules and co-stimulatory molecules like CD86 and CD80 on the cell surface, effectively interacting with CD28 on T 
lymphocytes to drive T cell activation [124]. In addition to the active presentation of autoantigens, apoptosis also serves as a sig-
nificant source for releasing autoantigens. Increasing the level of epithelial cell apoptosis can trigger the production of anti-SSA and 
anti-SSB antibodies [125]. The disruption of the salivary gland epithelium in SS is influenced by critical signaling pathways such as the 
Toll-like receptor (TLR) and nuclear transcription factor kappa B (NF-κB) signaling, as well as interferons pathways [85,126,127]. 
Studies have confirmed that the increased vulnerability of SS salivary gland epithelial cells to the injurious effect of TLR-3 ligation is 
likely associated with the intrinsic activation processes that apparently operate in the epithelia of SS patients [128]. Herein, epithelial 
cells are actively involved in initiating and driving the autoimmune response in multiple ways, although the underlying cause of its 
persistent abnormality remains a mystery. 

5. Signaling pathways in the pathogenesis of SS 

In SS, the activated infiltrated immune cells form a complex signaling network— wherein TLR signaling augments or results in both 
IFN/cytokine responses and the activation of the other molecular pathways—with salivary gland cells, leading to secretion 
dysfunction. During immune cell activation, pro-inflammatory factors are released, leading to sustained and persistent inflammatory 
responses, amplifying tissue damage, and causing progressive functional damage to affected organs and chronic inflammatory 
environments. 

5.1. Toll-like receptor signaling pathway in SS 

TLRs are important mediators of inflammatory pathways, mainly involved in innate immunity. The activation of TLR signaling 
pathways leads to the activation of several factors such as NF-κB, p38 mitogen-activated protein kinase (p38 MAPK), and c-Jun ter-
minal kinase [129]. TLRs are expressed on ductal and acinar epithelial cells in the labial salivary glands of patients with SS [130]. TLR2 
plays a role in inducing Th17 cell pathogenicity and driving autoimmune inflammation [131]. TLR2 ligation induces the production of 
IL-23/IL-17 via IL-6, STAT3, and NF-κB pathways in SS [132]. TLR3-induced apoptosis of salivary gland epithelial cells is mediated 
through Fas-associated protein with death domain/caspase-8/caspase-3 pathways [130]. TLR4 can initiate a pro-inflammatory 

Fig. 3. The complex pathogenesis of Sjögren’s syndrome 
(a) Altered glandular homeostasis precedes the onset of inflammation, contributing to secretory dysfunction in patients with SS. In individuals with 
SS, acinar cells tend to have multiple defects. The expression of different AQPs is altered, and the ability of these channels to respond to muscarinic 
stimuli is significantly impaired. Aberrant localization of fusion receptors involved in regulated exocytosis has been observed in the salivary glands 
of SS patients. The ductal epithelium may be affected during SS development because of various pathogenic events such as activation of innate 
immune pathways, epithelial cell apoptosis, and senescence. Multiple factors could cause chronic antigen exposure, leading to the formation of 
lymphoepithelial lesions. (b) During immune cell activation, pro-inflammatory factors are released, leading to sustained and persistent inflam-
matory responses, amplifying tissue damage, and causing progressive functional damage to affected organs. TFH cells secrete cytokines to drive B 
cell proliferation, leading to the differentiation of B cells into plasma cells and the production of numerous autoantibodies, thus further advancing 
the progression of SS. The activated infiltrated immune cells are considered to form a complex signaling network with salivary gland cells, leading to 
impaired secretion. Created with BioRender.com. 
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response and attract inflammatory cells to amplify and perpetuate inflammation in epithelial cells [98]. TLR7 is related to the 
development of sialadenitis in SS. Mononuclear cells from labial/salivary glands in SS patients have been found to show 
TLR-7-dominant expression [133]. Meanwhile, TLR7 from patients with SS has been reported to stimulate immature B cells, leading to 
increased plasma cell differentiation and class transition [134]. Additionally, the PBMCs of SS patients demonstrate upregulated levels 
of TLR9 mRNA, while patients with SS exhibit the presence of TLR7/TLR9-positive cells in multiple areas of the parotid glands, such as 
the epithelial islands, lymphocytes, and ductal epithelial cells [135]. Activation of TLR9 signaling may induce phosphorylation of its 
downstream protein kinases, p38/MAPK and JNK, in a time-dependent manner in SS [136,137]. 

5.2. NF-κB signaling pathway in SS 

NF-κB is positioned at the center of the downstream signaling pathway of TLR. In response to biological stress, NF-κB is activated in 
cells. The activated NF-κB enters the nucleus to regulate the expression of inflammatory cytokines and initiate immune responses 
[138]. NF-κB is involved in inflammasome regulation, highlighting its importance in the pathogenesis of inflammatory diseases. 
Studies have suggested that there are abnormalities with inhibitor of nuclear factor kappa-B kinase ε, NF-kappa-B inhibitor α, and 
NF-κB in SS [139]. The destruction and exposure of salivary gland close junction structure in SS patients may be related to NF-κB [127]. 
One possible biomarker for SS is the overexpression of TNF receptor-associated factor 6, which is controlled by the NF-κB pathway 
[140]. In addition, the dysregulation of the NF-κB pathway may increase susceptibility to SS lymphoma [141,142]. 

5.3. NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) signaling pathway in SS 

The inflammasome is a molecular platform that is formed in the cytosolic compartment to mediate host immune responses to 
infection and cellular damage [143]. The process of NLRP3 inflammasome activation involves two signals, namely priming and 
activation. An illustrative instance of priming is the binding of bacterial lipopolysaccharides to TLR4, which initiates NF-κB signaling. 
This leads to the activation of NF-κB in the nucleus, facilitating the transcription of NF-κB dependent genes. The second signal for 
inflammasome activation is provided by NLRP3 agonists, which activate NLRP3 to initiate inflammasome assembly and the secretion 
of mature IL-1β [144]. The NLRP3 inflammasome-mediated inflammation is implicated in the pathogenesis of SS [145]. The occur-
rence of systemic NLRP3 inflammasome activation has been reported in severe SS [146]. The NLRP3 inflammasome is involved in the 
onset and development of inflammation in dry eye associated with SS [147]. NLRP3 genotypes potentially influence the progression 
and clinical outcome of SS [148]. Additionally, inhibiting the NLRP3 inflammasome-related signaling pathway and its mediated 
pyroptosis can alleviate SS [149]. 

5.4. The IFN signaling pathway in SS 

The IFN signaling pathway is a critical feature of SS. Dysregulation of the IFN pathway often results in tissue damage and 
inflammation, with the salivary gland being a commonly affected organ [150,151]. IFNs are categorized into three types based on the 
receptors involved in signal transduction: type I interferons (IFN-Is, mainly including IFN-α, IFN-β and IFN-ω), type II interferon 
(IFN-γ), and type III interferons (IFN-λs) [152]. TLRs are the primary pattern recognition receptors in the IFN-Is signaling pathway. 
TLR may induce type I IFN responses by activating IFN-regulatory factor (IRF) family-3 and IRF-7 [153]. Meanwhile, IFN-Is may 
activate the Janus kinase/signal transducer and activator of the transcription 1 (JAK-STAT1) signaling pathway and induce the 
expression of inflammatory genes [154]. Inhibition of the JAK-STAT pathway suppresses the expression of IFN-related genes and B-cell 
activating factor belonging to the TNF family (BAFF, also termed BLyS) in primary salivary gland epithelial cells [155]. Research has 
found that the expression of IFN-I inducer and IFN-I-related proteins in peripheral blood mononuclear cells (PBMCs) of patients with SS 
is increased, and the positive rate of IFN-I signaling in the whole blood of these patients ranges from 53 % to 81 % [156]. The 
abrogation of IFN-I signaling could prevent the occurrence and development of SS [157–159]. IFN-I may also continuously stimulate 
the secretion of BAFF by salivary epithelial cells, destroying the lacrimal and salivary glands [151,160]. Additionally, in patients with 
SS, activation of IFN-I in neutrophils causes damage to mitochondria and results in the production of reactive oxygen species, which 
leads to the creation of neutrophil extracellular traps. The substances released by neutrophil extracellular traps may act as 
auto-antigens, triggering immune responses and releasing inflammatory substances [156]. IFN-γ has been reported to promote 
autoimmune germinal centers (GCs) via interaction with the B cell IFN-γ receptor [161,162]. Chronic exposure of the salivary 
epithelium to IFN-γ alters tight junction integrity, leading to secretory dysfunction [163]. IFN-γ triggers salivary gland epithelial cell 
ferroptosis by inhibiting cystine-glutamate exchange through the JAK-STAT1 pathway [164]. Moreover, IFN-γ may increase global 
DNA hydroxymethylation through activation of the JAK-STAT pathway and upregulation of the expression of ten-eleven translocation 
methylcytosine dioxygenases 3 in the human salivary gland [165]. Studies have shown that IFN-λs are expressed in minor salivary 
gland tissues in a similar pattern to IFN-I, and their expression is probably subject to micro-environmental regulation [166]. In 
addition, IFN-λs have a positive regulatory effect on various plasmacytoid dendritic cell functions, including the production of cy-
tokines, survival, and determination of phenotype [167]. 

5.5. Phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway in SS 

The PI3K/AKT/mTOR pathway regulates cell survival, proliferation, growth, metabolism, angiogenesis and metastasis [168,169]. 
PI3K activation triggers inflammation by enhancing TLR4-mediated NF-κB transactivation through PI3K/Akt signaling [170]. 
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Furthermore, PI3K activation inhibits the activation of downstream transcription factors mediated by TLR and the production of 
inflammatory factors [171]. The mRNA expression of PI3K, AKT, and mTOR was found to be dramatically increased in a mouse model 
of SS [172]. PI3K/Akt pathway activation is involved in the TLR3-induced apoptosis of salivary gland epithelial cells [173]. High 
expression of phosphorylated ribosomal protein S6, a downstream mediator of the PI3Kδ pathway, was found in the salivary glands of 
patients with SS [174]. The Akt pathway is specifically activated in the minor salivary glands of SS patients [175]. In addition, salivary 
gland atrophy may be regulated through mTOR [176]. Autophagy is modulated by mTOR kinase and indirectly by the PI3K/AKT 
survival pathway [177]. Autophagy pathway activation is an essential mechanism for preserving acinar cells during the atrophy of 
salivary glands after injury [178]. Further research is necessary to understand how the metabolic changes caused by PI3K/Akt pathway 
activation impact the immune response in SS. 

5.6. IL-33/ST2 signaling pathway in SS 

The ST2 is a part of the IL-1 receptor/TLR superfamily and has two main subtypes, namely, transmembrane type ST2 (ST2L) and 
soluble type ST2 (sST2). ST2L represents the longest transcript, whereas sST2 is the truncated, soluble isoform [179]. sST2 levels are 
significantly increased in SS patients with hematological abnormalities [180]. The ST2-specific ligand is IL-33, which is a 
tissue-derived nuclear cytokine from the IL-1 family and abundantly expressed in endothelial cells [181]. IL-33 binds to the promoter 
region of the transcription factor NF-κB subunit p65, inhibiting p65 synthesis. This indirect effect leads to negative regulation of the 
expression of genes controlled by NF-κB [182]. Moreover, the levels of IL-33 in the tears of SS patients were strongly associated with 
the severity of ocular involvement [183]. IL-33 is released and acts with IL-12 and IL-23 to favor the secretion of IFN-γ by natural killer 
and natural killer T cells, forming a vicious auto-inflammatory loop that can contribute to disease perpetuation [184]. Further un-
derstanding of the biological activity of IL-33 and the mechanisms underlying its involvement in SS may help clinical drugs effectively 
block the progression of various immune diseases caused by IL-33. 

5.7. Wnt signaling pathway in SS 

Wnts are a family of 19 human extracellular secreted glycoproteins that play a crucial role in regulating immune responses and 
underlie the complexity of the regulatory structure and physiological efficiency of signaling [185]. Wnt may activate the TLR/MyD88 
pathway, promoting the synthesis of the anti-inflammatory cytokine IL-10. Meanwhile, the components of the Wnt/β-catenin pathway 
modulate inflammatory and immune responses via interaction with NF-κB and, thus, significantly influence the progression of 
inflammation [186]. The Wnt/β-catenin pathway has been shown to play a role in both mesenchymal and ductal maturation of salivary 
glands [187,188]. A study has confirmed that the LRP5, ADIPOQ, and FRZB genes associated with the Wnt/β-catenin signaling pathway 
may increase the risk of SS [189]. Additionally, the expression of Wnt1 and Wnt3a in the salivary glands has been found to be elevated 
in SS [190]. As in the case of all new immune targets, a deeper understanding of Wnt/β-catenin signaling will help determine which 
treatment pathways and choices may benefit patients with SS the most. 

5.8. Other transcription factors and signaling pathways in SS 

In regards to SS, there are other transcription factors and signaling pathways worth considering. B7–H3, which belongs to the B7 
ligand family, has shown potential as a target for antibody-based immunotherapy. It induces apoptosis in human salivary gland 
epithelial cells by activating the NF-κB pathway [191,192]. HMGB1, which is a nuclear protein from the alarmin family, plays a role in 
triggering xerostomia in SS. Suppressing HMGB1 may help alleviate symptoms by reducing TLR4/NF-κB pathway activation and 
increasing AQP5 expression [193]. A distinct ligand-gated ion channel P2X7 receptor (P2X7R) may mediate activation of the NLRP3 
inflammasome in the salivary gland epithelium [194,195]. P2X7R can regulate fluid secretion in the mouse submandibular gland 
[196]. Studies have confirmed that the P2X7R-NLRP3 inflammasome complex modulates the release of IL-1β and IL-18 in the 
development of SS [197]. 

Recent studies have found that cell metabolism, stress response, and the molecular mechanisms involved in cell death are closely 
related to SS immune inflammation; these processes include ferroptosis, cuproptosis, mtDNA accumulation, pyroptosis, autophagy, gut 
microbiota, mitochondrial dysfunctions, and endoplasmic reticulum stress [164,198–200]. Herein, the SS signaling pathway high-
lights a complex network of molecular interactions and signaling cascades. These pathways are crucial for understanding the in-
flammatory processes, glandular dysfunction, and systemic manifestations associated with SS. 

6. Concluding remarks and future perspectives 

In SS, genetic markers act in concert with environmental triggers such as viral infections, which may initiate or exacerbate the SS 
autoimmune response. Although SS may involve a combination of environmental and genetic factors, little is known about the 
pathogenic mechanisms that lead to the disease. Inflammation and the presence of autoantibodies targeting ribonucleoprotein par-
ticles SSA/Ro and SSB/La are the main pathological features of SS; furthermore, the imbalance of immune homeostasis in salivary 
gland inflammation plays a significant role in the occurrence and development of SS. Epithelial cells may present autoantigens to 
immune cells, perpetuating the autoimmune response. By unraveling the intricate mechanisms by which immune cells infiltrate and 
damage the salivary glands, specific targets for immunotherapy can be identified to offer more personalized treatment options for 
patients. 
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To improve treatment options for SS, it is essential to address some critical questions. In particular, it is necessary to identify the risk 
factors that affect SS patients with different systemic complications. A standardized method for evaluating disease activity and out-
comes reported in patients with SS must be established. Additionally, the relationship between salivary gland symptoms and extra- 
glandular manifestations should be investigated, and the mechanisms responsible for fatigue and organ involvement in SS patients 
explored. By tackling these questions head-on, we may gain a better understanding of SS and develop more effective treatments for 
patients with the disease. 

In conclusion, in this review, we lay the groundwork for novel therapeutic approaches by dissecting the genetic, environmental, 
and immunological factors contributing to SS and describing the interactions between immune cells and glandular epithelial cells. The 
elucidation of signaling pathways in SS offers promising targets for immunotherapy. Understanding the association of the epithelium 
with immune cells opens new avenues for therapeutic strategies to restore glandular function and extra-glandular manifestations of SS. 
As research in this field continues to evolve, it is hoped that these insights will be translated into more effective and personalized 
therapies for patients with SS, ultimately improving their quality of life. 
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[17] D. Bernal-Bello, J. Rodríguez-Rodríguez, M.Á. Duarte-Millán, et al., Anti-synthetase syndrome and the risk of progressive pulmonary fibrosis: weighting of 
concomitant anti-Ro/SSA antibodies, Clin. Rheumatol. 42 (8) (2023) 2249–2250, https://doi.org/10.1007/s10067-023-06615-7. 

[18] G. Sambataro, F. Ferro, M. Orlandi, et al., Clinical, morphological features and prognostic factors associated with interstitial lung disease in primary Sjӧgren’s 
syndrome: a systematic review from the Italian Society of Rheumatology, Autoimmun. Rev. 19 (2) (2020) 102447, https://doi.org/10.1016/j. 
autrev.2019.102447. 

[19] A. Alunno, M.C. Leone, E. Bartoloni, et al., Novel insights on lymphoma and lymphomagenesis in primary Sjögren’s Syndrome, Panminerva Med. 63 (4) (2021) 
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https://doi.org/10.1016/s0889-857x(05)70177-0. 
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J. Autoimmun. 51 (2014) 57–66, https://doi.org/10.1016/j.jaut.2013.11.003. 

T. Zhao et al.                                                                                                                                                                                                           

https://doi.org/10.1038/jhg.2013.26
https://doi.org/10.46497/ArchRheumatol.2024.10108
https://doi.org/10.1152/ajpcell.00661.2023
https://doi.org/10.1002/iid3.1103
https://doi.org/10.1111/odi.12825
https://doi.org/10.1002/art.39560
https://doi.org/10.1002/art.40207
https://doi.org/10.1007/s40744-021-00334-8
https://doi.org/10.3390/v14071474
https://doi.org/10.3390/v14071474
https://doi.org/10.1016/s0161-6420(90)32476-4
http://refhub.elsevier.com/S2405-8440(24)12251-7/sref61
http://refhub.elsevier.com/S2405-8440(24)12251-7/sref61
https://doi.org/10.1016/0306-9877(87)90033-8
https://doi.org/10.1097/bor.0000000000000622
https://doi.org/10.1097/bor.0000000000000622
https://doi.org/10.1007/s10165-012-0641-x
https://doi.org/10.3899/jrheum.111075
https://doi.org/10.3390/jcm11154259
https://doi.org/10.1177/00220345211049395
https://doi.org/10.1016/j.semarthrit.2020.07.013
https://doi.org/10.1016/j.semarthrit.2020.07.013
https://doi.org/10.1111/jop.13036
https://doi.org/10.1111/jop.13036
https://doi.org/10.1007/s00296-016-3601-5
https://doi.org/10.1111/hex.13823
https://doi.org/10.7759/cureus.35290
https://doi.org/10.3389/fimmu.2022.938837
https://doi.org/10.1016/j.cellimm.2015.01.018
https://doi.org/10.1016/j.cellimm.2015.01.018
https://doi.org/10.1002/acr.24014
https://doi.org/10.1111/imm.13740
https://doi.org/10.1016/s0002-9440(10)65111-5
https://doi.org/10.1186/s40659-017-0115-x
https://doi.org/10.1016/j.jaut.2012.01.005
https://doi.org/10.1001/jama.286.17.2114
https://doi.org/10.1001/jama.286.17.2114
https://doi.org/10.1196/annals.1366.018
https://doi.org/10.1016/s0889-857x(05)70177-0
https://doi.org/10.2174/1381612824666181010153536
https://doi.org/10.2174/1381612824666181010153536
https://doi.org/10.1016/j.jaut.2012.05.011
https://doi.org/10.1038/s41584-021-00605-2
https://doi.org/10.1007/s10238-021-00728-6
https://doi.org/10.1007/s10238-021-00728-6
https://doi.org/10.31138/mjr.31.4.424
https://doi.org/10.1016/j.jaut.2013.11.003


Heliyon 10 (2024) e36220

12

[89] S. Cha, A.B. Peck, M.G. Humphreys-Beher, Progress in understanding autoimmune exocrinopathy using the non-obese diabetic mouse: an update, Crit. Rev. 
Oral Biol. Med. : an official publication of the American Association of Oral Biologists 13 (1) (2002) 5–16, https://doi.org/10.1177/154411130201300103. 

[90] F. Rosignoli, V. Roca, R. Meiss, et al., Defective signalling in salivary glands precedes the autoimmune response in the non-obese diabetic mouse model of 
sialadenitis, Clin. Exp. Immunol. 142 (3) (2005) 411–418, https://doi.org/10.1111/j.1365-2249.2005.02930.x. 

[91] A.M. Pedersen, A. Bardow, B. Nauntofte, Salivary changes and dental caries as potential oral markers of autoimmune salivary gland dysfunction in primary 
Sjogren’s syndrome, BMC Clin. Pathol. 5 (1) (2005) 4, https://doi.org/10.1186/1472-6890-5-4. 

[92] S.A. Waterman, T.P. Gordon, M. Rischmueller, Inhibitory effects of muscarinic receptor autoantibodies on parasympathetic neurotransmission in Sjögren’s 
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patients is linked to ectopic mucin secretion, J. Autoimmun. 39 (1–2) (2012) 83–92, https://doi.org/10.1016/j.jaut.2012.01.011. 

[96] A.M. Wu, G. Csako, A. Herp, Structure, biosynthesis, and function of salivary mucins, Mol. Cell. Biochem. 137 (1) (1994) 39–55, https://doi.org/10.1007/ 
bf00926038. 
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inflammagenic DNA accumulations, J. Autoimmun. 91 (2018) 23–33, https://doi.org/10.1016/j.jaut.2018.02.010. 
[147] L. Niu, S. Zhang, J. Wu, et al., Upregulation of NLRP3 inflammasome in the tears and ocular surface of dry eye patients, PLoS One 10 (5) (2015) e0126277, 

https://doi.org/10.1371/journal.pone.0126277. 
[148] R.N. Li, T.T. Ou, C.H. Lin, et al., NLRP3 gene polymorphisms in rheumatoid arthritis and primary sjogren’s syndrome patients, Diagnostics 13 (2) (2023) 206, 

https://doi.org/10.3390/diagnostics13020206. 
[149] S.M. Hong, J. Lee, S.G. Jang, et al., Type I interferon increases inflammasomes associated pyroptosis in the salivary glands of patients with primary Sjögren’s 
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Sjögren’s syndrome patients, Rheumatol. Int. 33 (2) (2013) 441–450, https://doi.org/10.1007/s00296-012-2381-9. 
[174] S. Nayar, J. Campos, C.G. Smith, et al., Phosphatidylinositol 3-kinase delta pathway: a novel therapeutic target for Sjögren’s syndrome, Ann. Rheum. Dis. 78 
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