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Abstract

Understanding how animals navigate complex environments is a fundamental challenge in

biology and a source of inspiration for the design of autonomous systems in engineering.

Animal orientation and navigation is a complex process that integrates multiple senses,

whose function and contribution are yet to be fully clarified. Here, we propose a data-driven

mathematical model of adult zebrafish engaging in counter-flow swimming, an innate behav-

ior known as rheotaxis. Zebrafish locomotion in a two-dimensional fluid flow is described

within the finite-dipole model, which consists of a pair of vortices separated by a constant

distance. The strength of these vortices is adjusted in real time by the fish to afford orienta-

tion and navigation control, in response to of the multi-sensory input from vision, lateral line,

and touch. Model parameters for the resulting stochastic differential equations are calibrated

through a series of experiments, in which zebrafish swam in a water channel under different

illumination conditions. The accuracy of the model is validated through the study of a series

of measures of rheotactic behavior, contrasting results of real and in-silico experiments. Our

results point at a critical role of hydromechanical feedback during rheotaxis, in the form of a

gradient-following strategy.

Author summary

The astounding feats of animal orientation and navigation have fascinated scientists and

engineers for decades. The refined and elegant processes of orientation and navigation are

generally thought to be the outcome of a complex feedback process, which involves the

integration of multiple cues gathered from the surroundings. Fish rheotaxis is an innate

behavior through which an animal is able to orient itself and swim against a current, even

in the absence of visual cues. To date, little is known about the information pathways that

underlie this behavior and how they are integrated. To help address this challenge, we pro-

pose a data-driven mathematical model of rheotaxis in zebrafish— an emerging species of

choice in biomedical research. Our model explains how zebrafish make use of visual,

hydrodynamic, and tactile cues in a feedback loop to adjust their heading and speed dur-

ing swimming. We validate the accuracy of our model by comparing real and synthetic
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data across two experimental conditions, in which we vary the illumination of a water

channel. Our results demonstrate how a simple, yet effective, feedback control mechanism

can explain a complex process such as rheotaxis.

Introduction

The ability of animals to orient themselves and navigate in complex environments has fasci-

nated scientists and engineers for decades [1–3]. Understanding the mechanisms underlying

this behavior is of paramount importance in behavioral ecology for elucidating complex pro-

cesses such as foraging [4], mating [5], and survival [6]. Animal orientation and navigation has

also inspired technological solutions ranging from sensors [7] to computer algorithms for

coordinating teams of construction robots [8].

Animal orientation and navigation typically involves the integration of different sensory

systems such as vision, olfaction, and touch. These systems are used to gather information

from the surrounding environment, which is, in turn, used to “close the loop” by the animal.

Using this information, the animal can adjust its position and orientation. Remarkable exam-

ples include homing in salmons, which use a combination of geomagnetic and olfactory cues

to swim back to their natural streams to spawn, after spending several years in the open ocean

[9, 10]. Moths, on the other hand, are able to use intermittent olfactory cues in odor plumes to

control their maneuvers to reach their mating partner [11]. Interestingly, navigation and ori-

entation can be very complex even for insects, which are far in the evolutionary tree from ver-

tebrates [12].

In some cases, animals display a specific orientation of locomotory behavior (taxis), elicited

by environmental stimuli like gravity (geotaxis) [13], light (phototaxis) [14], or fluid flow

(rheotaxis). For instance, fish rheotaxis is an innate behavior from early stages of life [15] that

is essential for survival [16–18]. This behavior can be performed even in the absence of visual

cues [19], whereby fish can use their lateral line to aid their navigation in the dark [17, 20]. The

lateral line consists of a collection of neuromasts (clusters of sensory cells), sensitive to changes

of water pressure, that enable a fish to create a hydrodynamic image of the surroundings [21–

23]. Empirical evidence suggests that the lateral line plays a key role in the animals’ orientation

process [15, 20, 24]. For example, it has been recently shown that larval zebrafish use the lateral

line to estimate the local vorticity of the surrounding fluid flow, which aids their orientation

process [25].

In general, rheotaxis is regarded as a multi-sensory feedback process that integrates visual,

hydromechanical, olfactory, and even tactile cues [26, 27]. A full understanding of how all the

sensory information is processed by rheotacting fish is yet to be established. Here, we seek to

contribute insight into the mechanisms underlying rheotaxis through the development of a

data-driven mathematical model of adult zebrafish locomotion in a fluid flow.

Zebrafish is a freshwater species, which has been widely used as a model organism for its

several advantages, ranging from its fully-sequenced genome to physiological and neurological

homologies with humans [28, 29]. Zebrafish have been used in a wide array of preclinical

efforts, from drug discovery [30] to the study of complex brain disorders such as depression,

autism, and psychoses [31]. The possibility of investigating the neural and genetic basis of

behavior through zebrafish [32] offers compelling motivation for the study of their rheotactic

response.

Mathematical models of zebrafish locomotion have been shown to be a powerful tool to

complement and inform experimental research. For instance, in [33], a simple mathematical
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model of the burst-and-coast swimming style of zebrafish revealed that adult fish have longer

coasting due to their larger body mass and higher speed at the beginning of a burst. Data-

driven models of fish locomotion typically describe the time evolution of the heading and the

linear speed of fish using stochastic differential equations (SDEs) [34–38]. For instance, a pair

of coupled Ornstein-Uhlenbeck processes were proposed in [36] to model the coupled evolu-

tion of the turn rate and speed of adult zebrafish. Similarly, the jump persistent turning walker

was introduced to faithfully capture the burst-and-coast swimming of zebrafish in two [37]

and three dimensions [39]. Building on these efforts, mathematical models have addressed the

role of spatial constraints on zebrafish range of vision [40], as well as pharmacological manipu-

lations [41, 42].

Common to this entire body of literature on mathematical modeling of zebrafish locomo-

tion is the premise of a quiescent fluid environment. In its natural habitat, however, zebrafish

can experience different flow speeds between 3.5 to 13.9 cm/s [43]. Recent experimental

research points to the critical role of water flow on the collective response of zebrafish [44].

Existing mathematical models largely exclude the effects of a fluid flow, thereby challenging

the study of rheotaxis. To the best of our knowledge, the only mathematical models of fish

rheotaxis in literature are the phenomenological model proposed by [45] and the kinematic

model by [46]. In [45], the authors established a minimalistic model of rheotaxis based on a

Kuramoto-like oscillator, which describes fish heading through a bias towards the flow source.

Similarly, in [46], the authors proposed a kinematic model with a bias towards the flow in the

form of a linear feedback of the differential pressure sensed by the animal. Despite their prom-

ise, these models neither consider the flow physics nor the multi-sensory feedback that fish

should employ to orient and swim in the flow.

A potential approach to develop a data-driven model of zebrafish rheotaxis is to leverage

recent theoretical results on finite-dipole models of animal swimming [47, 48]. Within the

finite-dipole model, a fish is assimilated to a pair of point vortices separated by a finite distance

[47], whose strengths can adapt according to behavioral rules [48]. Based on this modeling

paradigm, we explore a multi-sensory feedback control system, which allows the animal to

adjust its orientation as a function of visual, hydromechanical, and tactile cues.

More specifically, we expand on the finite-dipole paradigm to encompass a data-driven

model that allows the fish to adjust the vortex strengths as a function of multi-sensory input

from the surroundings. Sensory input from the lateral line is used to estimate the local circula-

tion of the fluid flow, and visual and tactile cues inform the interaction with the walls. The

model is calibrated using a data set consisting of overhead recordings of adult zebrafish swim-

ming in a water channel in standard illumination conditions or in the dark. We demonstrate

the effectiveness of our approach by comparing the scoring of behavioral metrics on real and

synthetic data from in-silico experiments.

Results

Experiments

We conducted 24 experiments where adult zebrafish individually swam in the flow. In order to

understand the role of vision in the fish swimming mechanism, we considered two experimen-

tal conditions on groups of 12 individuals: Bright and Dark. In Bright, fish swam with standard

illumination (250 lx), and in Dark they swam in the darkness.

Based on related studies, we anticipated that vision would play an important role on rheo-

taxis [20, 26]. In particular, we expected zebrafish to reduce rheotactic behavior in the darkness

when compared to standard illumination conditions [20, 25, 27]. In addition, we anticipated

that, even when deprived from vision, fish would still be able to engage in counter flow
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swimming. In fact, touch and hydromechanical cues along with information from the vestibu-

lar system could be integrated to perform rheotaxis [17, 27]. In summary, we made the follow-

ing hypotheses: (i) zebrafish would still be able to perform rheotaxis in the absence of visual

cues, and (ii) the lack of illumination would decrease the ability of zebrafish to perform

rheotaxis.

Using an automatic tracking software, we obtained time series for the position of the fish

centroid and heading angle as described in Materials and methods. To quantify rheotaxis, we

compared the scoring of two different metrics, the mean of (negative) cosine of the heading

and the mean rheotaxis index (RI); see Materials and methods for a mathematical definition.

Both metrics take values between −1 and 1 corresponding to biased headings towards down-

stream and upstream, respectively. A zero value represents the case in which a fish does not

have a preference to swim either upstream or downstream.

From the results in Fig 1, we determined that the cosine of the heading was different from

chance in both Bright (V = 78;p< 0.001) and Dark (V = 71;p< 0.010). Likewise, for RI, we

registered significant differences from chance in both Bright (V = 78;p< 0.001) and Dark

(V = 68;p = 0.050). These findings support the first hypothesis that fish can perform rheotaxis

independent of the illumination conditions. In agreement with the second hypothesis, pairwise

comparisons between Bright and Dark identified a superior rheotactic response for animals

swimming in standard illumination conditions, with respect to the cosine of the heading

(W = 134;p< 0.001) and RI (W = 134;p< 0.001).

Finally, to measure locomotory activity of the animal in the form of exploration of the

entire test section, we calculated the spatial entropy; see Materials and methods for a mathe-

matical definition. The comparison between the two conditions suggests the presence of a

weak trend, with fish swimming in the dark displaying a higher locomotory activity than sub-

jects swimming in standard illumination conditions (W = 47;p = 0.160). This weak trend was

accompanied by a significant difference of the variance of the spatial entropy between condi-

tions (F = 13.497;p< 0.010), with animals swimming in the dark displaying a lower variability.

Fig 1. Average scoring of three behavioral metrics for real experiments. (A-B) Rheotactic metrics taking values

between −1 and 1 corresponding to biased headings downstream and upstream, respectively. (C) Spatial entropy,

measuring the exploratory behavior across the test section. The average was taken over the entire time series of 9, 000

points for each experimental subject. The gray bar in each violin plot details median (white dot), first and third quartiles,

and lower and upper adjacent values. The colored area of a violin plot corresponds to the probability density of the data.

Symbols �, �� and ��� indicate significant differences from zero with p< 0.050, p< 0.010, and p< 0.001, respectively.

Symbol $$$ indicates significant difference between conditions with p< 0.001.

https://doi.org/10.1371/journal.pcbi.1008644.g001
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Zebrafish swimming as a finite-dipole

We treat a zebrafish as a self-propelled body swimming in two dimensions within a uniaxial

inviscid flow (see Fig 2). Here, (x(t), y(t)) are the coordinates of the fish centroid in the global

reference frame (X ;YÞ, where t is the time variable. The angle θ(t) 2 [−π, π) represents the fish

heading. For θ = −π the fish is heading upstream, while for θ = 0 it is heading downstream. Fol-

lowing [47, 48], we assimilate the fish to a finite-dipole, consisting of a pair of point vortices

separated by a distance l, corresponding to the fish thickness. These two point vortices of circu-

lation strengths Γl(t) and Γr(t) describe the fish self-induced propulsion. The fish thickness is

about 5mm for adult zebrafish, which is much smaller than either dimensions of the water

channel, 2xmax and 2ymax.

Hence, the time evolution of the fish position and heading angle can be described by the fol-

lowing set of ODEs:

dxðtÞ
dt
¼
GlðtÞ þ GrðtÞ

4pl
cos ðyðtÞÞ þ UðyðtÞÞ; ð1aÞ

dyðtÞ
dt
¼
GlðtÞ þ GrðtÞ

4pl
sin ðyðtÞÞ; ð1bÞ

dyðtÞ
dt
¼ � U 0ðyðtÞÞ cos 2ðyðtÞÞ þ

GlðtÞ � GrðtÞ
2pl2

; ð1cÞ

where UðYÞ and U 0ðYÞ are the axial flow velocity and its gradient along the width of the chan-

nel, respectively; see Materials and methods for details on the derivation. These scalar spatial

fields entirely capture the effect of the background flow on the fish motion.

The vortex strengths encapsulate the self-propelling mechanism along with the feedback

contributions for controlling both heading and speed. In particular, Γl(t)>Γr(t) indicates that

the fish performs a counterclockwise turn, while the opposite, Γr(t)>Γl(t), refers to clockwise

turns. For Γl(t) = Γr(t), the fish swims straight. The fish relative speed with respect to the back-

ground flow is (Γl(t) + Γr(t))/(4πl).

Fig 2. Modeling zebrafish swimming in a flow as a finite-dipole. UðYÞ is the profile of the uniaxial background flow.

The black dot and arrow denote the fish centroid position (x(t), y(t)) and heading angle θ(t), with respect to the global

reference frame (X ;Y). The green and red dots represent the left and right location of the vortices of circulation

strengths Γl(t) and Γr(t), respectively.

https://doi.org/10.1371/journal.pcbi.1008644.g002
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Modeling the time evolution of the vortex strengths

In general, the distributions of Γl and Γr are highly correlated suggesting that these processes

are not independent. In particular, the processes unfold around the line Γl = Γr with random

fluctuations corresponding to turning maneuvers. This behavior shares similarities with phase

plots of diffusively coupled dynamical systems, often studied in the context of synchronization

[49–51]. Just as oscillators tend to synchronize their phase against noise [52], the two vortices

seek to match their circulation strengths against random fluctuations (see Supporting informa-

tion S1 Fig).

We approximate the vortex strengths Γl(t) and Γr(t) by a Gamma distribution [53]. Based

on the analogy with diffusively coupled systems, we propose the following pair of coupled

Cox–Ingersoll–Ross processes [54] to model the time evolution of the vortex strengths:

dGlðtÞ ¼ ðaðb � GlðtÞÞ þ uðtÞÞdt þ s
ffiffiffiffiffiffiffiffiffiffi
GlðtÞ

p
dWlðtÞ; ð2aÞ

dGrðtÞ ¼ ðaðb � GrðtÞÞ � uðtÞÞdt þ s
ffiffiffiffiffiffiffiffiffiffi
GrðtÞ

p
dWrðtÞ; ð2bÞ

where α [1/s] and β [cm2/s] are positive parameters representing the linear rate of decay and a

baseline value of the vortex strengths, respectively. The parameter β is associated with the

speed of the fish relative to the background flow, whereby β/(2πl) would be the relative speed

of the finite-dipole during straight swimming, without the effect of noise. The positive parame-

ter σ [cm/s] measures the strength of both added noises Wl(t) and Wr(t), which are assumed to

be independent standard Wiener processes [s1/2]. u(t) is a feedback term [cm2/s2] modeling

the coupling between the circulation strengths, the hydromechanical orientation mechanism,

and the visual interaction of the fish with the walls, such that

uðtÞ ¼ kðGrðtÞ � GlðtÞÞ þ uhðtÞ þ uwðtÞ: ð3Þ

The feedback term u(t) acts differentially on Γl(t) and Γr(t), that is, it takes opposite signs in

Eqs (2a) and (2b) to produce adequate turning maneuvers. For instance, when the fish per-

forms clockwise turns, the vortex strengths should satisfy Γl(t)> Γr(t). Then, the feedback

would tend to increase the circulation of the vortex on the left and decrease the circulation of

the one on the right. The first term on the right hand side of Eq (3) corresponds to a classic

bidirectional diffusive coupling, with κ[1/s] being the coupling strength [51, 52]. This positive

parameter is associated with the ability of a fish to resume straight swimming after a maneuver.

The diffusive coupling forces both processes to evolve along the synchronization manifold

Γl(t) = Γr(t). The terms uh(t) and uw(t) capture the hydromechanical orientation mechanism

and wall interactions through visual cues, respectively. Tactile interactions with the walls are

separately addressed by modifying Eqs (2a) and (2b) to account for collisions.

Hydromechanical feedback mechanism

Here, we model the feedback process allowing zebrafish to gather information from hydrody-

namic cues and use them to orient in the flow, that is, modulating the vortex strengths through

the term uh(t) in Eq (3). Similar to zebrafish larvae [25], we propose that adult zebrafish per-

form rheotaxis on the basis of an estimate of the local vorticity field. We compute the circula-

tion of the background flow around a circle C with radius r centered at (x(t), y(t)), which
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approximates the fish perimeter (see Fig 3A),

LcðtÞ ¼
Z

⥀

C
UðsÞ ds ¼ � pr2U 0ðyðtÞÞ: ð4Þ

Here, U(s) = [U(sy), 0] is the vector-field of the uni-axial background flow and the last

equality is true up to the order Oðr4Þ; see Materials and methods for details on the derivation.

We set r = 1/2BL, with BL = 3.6 mm being the average fish body length. Positive values of Lc(t)
indicate that the background flow induces counterclockwise rotations, while negative values

refer to clockwise rotations. The value of the local circulation Lc(t) depends on the fish position

in the swimming channel.

We consider the hydromechanical feedback uh(t) in Eq (3) to be a linear function of the

local circulation of the background flow,

uhðtÞ ¼ KR KðtÞ LcðtÞ: ð5Þ

Here, KR [1/s] is a positive parameter weighting the hydrodynamic information, as illus-

trated in Fig 3B, and K(t) is a Boolean random variable. K(t) = 1 represents the case when the

fish tracks the local circulation Lc(t) to maneuver, while for K(t) = 0 this information is not uti-

lized. The switching mechanism was introduced to model uncertainty in the rheotactic

response, where fish alternates between time intervals following and ignoring the local circula-

tion (see model calibration in Materials and methods for details on the estimation of K(t)). We

model K(t) as a continuous-time Markov chain given by

dKðtÞ ¼ ð1 � KðtÞÞdN1ðtÞ � KðtÞdN2ðtÞ; ð6Þ

where N1(t) and N2(t) are two independent counting processes whose increments N1(t00) −
N1(t0) and N2(t00) − N2(t0) are Poisson random variables λ1(t00 − t0), λ2(t0 0 − t0) for any t0, t00 2 t
with t00 > t0. Here, λ1 and λ2 are two positive parameters representing the rate of transitioning

from not ignoring the local circulation to following it, and vice versa. For K(t) = 1, when Lc(t)
is positive, the fish feedback control mechanism would induce counterclockwise turns; in con-

trast, for negative values of Lc(t) the turns would be clockwise (see Supporting information S1

Video).

Fig 3. Hydromechanical feedback mechanism. (A) Example of rotation induced by a parabolic flow; the red circle of radius r is the approximation

used for the fish perimeter in the computation of the local circulation of the background flow. (B) Block diagram describing the feedback mechanism to

orient in the flow and perform rheotaxis.

https://doi.org/10.1371/journal.pcbi.1008644.g003
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Wall interaction: Visual and tactile feedback

Here, we study the interaction of a fish with the walls, which comprises two different feedback

mechanisms using vision and touch. Visual feedback is captured through uw in Eq (3). Tactile

feedback instead is modelled as a collision that modifies the evolution of the vortex strengths

with respect to Eqs (2a) and (2b), as the fish collides with the walls.

Inspired by [34, 36], we quantified the wall effect by measuring the projected distance d and

angle of collision ϕ which is measured from the wall axis to the projected heading vector (see

Supporting information S2 Fig). We only considered those instances when the centroid was

within 1 BL range from the wall.

The results indicate that a zebrafish rotates according to the sign of the angle ϕ when inter-

acting with a wall (see Supporting information S2 Fig). Following [35], we model the visual

feedback as a function of the projected distance and angle of collision which is given by

uwðtÞ ¼
KW

CdðtÞ þ 1
signð�ðtÞÞ; ð7Þ

where KW [cm2/s2] and C [1/cm] are positive constant parameters capturing the maximum

intensity of turns and the decay of the wall effect as a function of the distance d [cm]. In the

dark, we assume that animals do not have visual cues and this term is not present in the model,

that is, KW = 0.

To further delve into how fish interacts with the wall, we examined only instances when

they were in close proximity or in direct contact to a wall. In these instances, the animal could

exploit other sensing mechanisms beyond vision to avoid the wall. Our experimental results

suggest that fish rotation in the vicinity of a wall depends on the sign of the angle ϕ (see Sup-

porting information S2 Fig). We model the tactile component of turning in the vicinity of a

wall, which is crucial for describing the wall interaction of the fish in the dark. In the vicinity

of a wall, turns are captured through

dGlðtÞ
dt

¼ Z signð�� ðtÞÞ; for all jxðtÞj > xmax � �; jyðtÞj > ymax � �; ð8aÞ

dGrðtÞ
dt

¼ � Z signð�� ðtÞÞ; for all jxðtÞj > xmax � �; jyðtÞj > ymax � �; ð8bÞ

where ϕ−(t) denotes the angle of collision previous to the impact, η [cm2/s2] is the rate of turn-

ing once a collision occurs, and � [cm] is an arbitrary small constant representing wall touch-

ing. We heuristically found that setting η = 10 cm2/s2 and � = 0.001 cm reproduces realistic

turns, as observed in real experiments.

There is an additional consideration to make for the right wall which corresponds to the

test section outlet, shown in Fig 2. In this case, the fish experiences suction forces and could hit

the wall while heading in a direction opposite to it, thereby preventing the use of Eqs (8a) and

(8b) for capturing the impact. To account for this case and counter-balance the suction force,

we should modify Eqs (8a) and (8b) as follows:

dGlðtÞ
dt

¼ Z; for all xðtÞ > xmax � �; jyðtÞj >
p

2
; ð9aÞ

dGrðtÞ
dt

¼ Z; for all xðtÞ > xmax � �; jyðtÞj >
p

2
: ð9bÞ
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Here, the constraint on the heading angle guarantees that the animal is heading in the

opposite direction to the right wall. Also, the signs in Eqs (9a) and (9b) are both positive,

indicating that the interaction with this particular wall is repulsive to counter the suction

force.

Model validation: Comparison between real and in-silico experiments. We calibrated

our model using experimental data, as detailed in Material and methods; the resulting parame-

ter values are shown in Fig 4 for both conditions Bright and Dark. We found that the condition

significantly influenced the baseline value of the circulation strengths β (W = 3;p< 0.010). We

did not register a significant difference on the linear rate of decay of the vortex strengths α
(W = 93;p = 1.000), the intensity of added noise σ (W = 56;p = 1.000), the coupling strength κ
(W = 50;p = 1.000), hydrodynamic feedback gain KR (W = 66;p = 1.000), λ1 (W = 72;

p = 1.000), and λ2 (W = 27;p = 0.196).

In order to validate the predictive power of our model, we conducted in-silico experiments

consisting of 12 trials for each condition: Bright and Dark, as in the real experiment. In-silico
experiments predicted relationships analogous to real experiments as shown in Fig 5. The

cosine of the heading differed from chance in both Bright (V = 78;p< 0.001) and Dark

(V = 77;p< 0.001). Similarly, RI registered significant differences in both Bright (V = 78;

p< 0.001) and Dark (V = 77;p< 0.001). Pairwise comparisons between Bright and Dark indi-

cated significant differences for the cosine of the heading (W = 144;p< 0.001), RI (W = 144;

p< 0.001), and spatial entropy (W = 0;p< 0.001), while we only identify a weak trend for the

variance of spatial entropy (F = 3.669;p = 0.068). Supporting information S2 Video and S3

Video show exemplary instances of rheotactic behavior predicted by the mathematical model

in conditions Bright and Dark, respectively.

Fig 4. Calibrated model parameters for conditions Bright and Dark. (A) Linear rate of decay of the vortex strengths.

(B) Baseline value of the vortex strengths. (C) Intensity of the noise added to the time-evolution of vortex strengths. (D)

Coupling gain between vortex strengths associated with the ability of a fish to resume straight swimming after a maneuver.

(E) Hydrodynamic feedback gain. (F-G) Rates of transitioning from dismissing to using information about the local

circulation and vice versa. The gray bar in each violin plot details median (white dot), first and third quartiles, and lower

and upper adjacent values. The colored area of a violin plot corresponds to the probability density of the data. Symbol $$

indicates a significant difference between conditions with p< 0.010.

https://doi.org/10.1371/journal.pcbi.1008644.g004
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Discussion

Rheotaxis is a complex multi-sensory process that involves the integration of different cues to

orient in a flow and engage in counter-flow swimming. Toward a better understanding of how

fish interacts with their surroundings and integrate different sensory cues during rheotaxis, we

developed a data-driven mathematical model of zebrafish swimming in a flow. With respect to

the state of knowledge on data-driven modeling of zebrafish locomotion, this study establishes

the first mathematical model of swimming in a fluid flow. To generalize existing data-driven

models that were intentionally developed for studying swimming in quiescent fluids [34–38],

we tap into recent advancements in hydrodynamic modeling of fish swimming based on the

finite-dipole paradigm [47, 48].

The proposed modeling framework is articulated in three main steps: (i) multi-sensing,

through which the fish appraises its surroundings from visual, hydrodynamic, and tactile cues;

(ii) orientation and navigation control, which uses the multi-sensory input to modulate the

vortex strengths that are associated with self-propulsion; and (iii) motion in the flow based on

the finite-dipole model, as a function of the background flow and the circulation strengths of

the vortex pair. Our results indicate that hydromechanical feedback plays an important role in

orientation and navigation whereby the fish tends to make turns by following the rotation

induced by the flow, regardless of the availability of visual cues. This suggests that information

about the environment provided by the lateral line alone could be sufficient to perform rheo-

taxis. This is also evident in our calibrated model parameters, where the feedback gain that is

associated with hydromechanical sensory information did not vary with the illumination con-

ditions. Our findings are in line with previous results in the literature, where it has been shown

that the lateral line organ plays an important role in aiding the orientation of fish.

In a uniaxial flow, the feedback mechanism used by zebrafish reduces to tracking the gradi-

ent of the background flow. Specifically, the difference in the vortex strengths of the finite-

dipole model is linearly controlled by the variation of the axial flow with respect to the width

of the test section. Orientation strategies based on gradients have also been observed in other

biological domains such as light gradient sensing in fish [55] where animals are able to track

Fig 5. Average scoring of three behavioral metrics for in-silico experiments. (A-B) Rheotactic metrics taking values

between −1 and 1 corresponding to biased headings downstream and upstream, respectively. (C) Spatial entropy,

measuring the exploratory behavior across the test section. The average was taken over synthetic time series of 9, 000

points for each experimental subject. The gray bar in each violin plot details median (white dot), first and third quartiles,

and lower and upper adjacent values. The colored area of a violin plot corresponds to the probability density of the data.

Symbol $$$ indicate significant difference between conditions p< 0.001, respectively.

https://doi.org/10.1371/journal.pcbi.1008644.g005
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variations of light intensity and adjust their maneuvers [56]. Another example is chemical gra-

dient sensing in cells [57, 58], where chemoattractant fields are sensed by proteins whose infor-

mation is then used to modulate the orientation of the cell.

We observed that the scoring of behavioral metrics in real experiments was successfully par-

alleled by simulations. In particular, fish swimming in the dark displayed a higher locomotory

activity in the test section, when compared to subjects in standard illumination conditions.

Increased activity is likely related to an anxiety-related response, which is triggered by the pres-

ence of a dark, threatening environment, as widely documented in zebrafish literature on sco-

totaxis [59]. In-silico experiments are also successful in predicting a significantly lower

rheotactic performance for animals swimming in the dark. While sensing local circulation

through the lateral line is not affected by the presence of visual cues, animal locomotion varies

with the illumination conditions. Specifically, the mathematical model identifies that animals

swimming in the dark have a higher relative speed with respect to the background flow than

subjects in standard illumination conditions. This increased speed challenges the ability of zeb-

rafish to adjust their orientation in response to the gradient of the background flow during

rheotaxis.

Our approach has limitations that call for future research. First and foremost, the data-

driven mathematical model focuses on two-dimensional swimming, thereby preventing the

possibility of studying diving maneuvers along the height of the test section. Several studies

[60–62] have pointed out the critical role of diving maneuvers on the response of this freshwa-

ter species, thereby suggesting the use of a three-dimensional ethogram for scoring zebrafish

behavior. Three-dimensional effects are also likely to play a role on the difference between the

rheotaxis metrics of real and in-silico experiments, whereby live animals have access to a richer

flow physics than the two-dimensional background flow used in the simulations. Extending

the proposed approach to three dimensions poses a number of methodological challenges,

which requires a more complex representation than a vortex pair to encapsulate zebrafish

swimming.

Second, we cannot exclude that zebrafish might exploit other sensory systems for perform-

ing rheotaxis. In our formulation, hydromechanical cues are the only source of rotational

information for the fish, when swimming away from the wall. However, fish might integrate

these cues with information of self-motion provided by the vestibular system [26, 27]. Disen-

tangling the contribution of the vestibular system would require a different experimental set-

up, possibly with zebrafish larvae. In fact, linear acceleration can be sensed by the semicircular

canals, which are not functional at larval stages, allowing to hinder the effect of the vestibular

system [25]. This approach could be used to study how rheotaxis changes across different

stages and/or when senses are impaired, in order to differentiate individual contributions to

this complex multi-sensory process.

Third, in more realistic environments, fish could exploit vortex wakes for maintaining

upstream swimming via passive propulsion, by extracting energy from the background flow

[63]. Hence, it is tenable that passive swimming could also contribute to fish rheotaxis, as evi-

denced for small scale systems such as human sperm [64] and artificial micro-swimmers [65].

Addressing these limitations calls for further research that combines experiments and mathe-

matical models to better understand fish rheotaxis and uncover its underlying mechanisms.

In summary, we proposed a simple, yet effective, multi-sensory feedback control process

for describing rheotaxis of an adult zebrafish. In particular, we incorporated three types of sen-

sory feedback mechanism relying on visual, hydromechanical, and tactile cues. Interestingly,

our model suggests that the gradient of the flow profile is the key information that drives rheo-

tactic behavior. Similar to zebrafish larvae [25], our model indicates that rheotacting adults
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tend to follow the negative direction of the velocity gradient to adjust their orientation and

swim upstream.

Materials and methods

Ethics statement

Experiments were performed in accordance with the guidelines and regulations approved by

the University Animal Welfare Commitee (UAWC) of New York University under protocol

number 13-1424.

Animal care and maintenance

A total of 24 wild-type adult zebrafish (Danio rerio), 12 male and 12 female, were used in this

study. The fish were purchased from Carolina Biological Supply Co. (Burlington, NC, USA),

and housed in a 615 L vivarium tank divided into two compartments to mantain sexes sepa-

rated. Fish were kept under a 12 h light/12 h dark photo-period and fed with commercial flake

food once a day, approximately at 7 PM. Water parameters of the holding tanks were regularly

checked, and temperature and pH were maintained at 26˚C and 7.2, respectively. Prior to the

beginning of the experiments, fish were acclimatized in the holding facility for one month.

Experimental apparatus

The experimental set-up (see Fig 6A) consisted of a 151 L Blazka-type water channel (Engi-

neering Laboratory Design Inc., Lake City, MI, USA), a video camera (Logitech C910 HD Pro

Webcam without infrared filter, Logitech, Switzerland) located at the bottom of the channel,

an array of lights, and black curtains to minimize outside visual stimuli. We used two different

lighting systems for the Bright and Dark conditions. In particular, for the Bright condition, we

used a pair of fluorescent lamps (Aqueon Full Spectrum Daylight T8, Aqueon, USA) located at

the top of the channel along with a white plexiglass sheet to dim the light intensity and provide

a homogeneous light background of 250 lx. For recording fish swimming in the dark, we used

infrared lights (Iluminar IRC99 Series, Iluminar, Irvine, CA) with wavelength 940 nm, which

is greater than the adult zebrafish threshold of spectral sensitivity [66]. Two pairs of infrared

lights were located at the bottom and top of the water channel to provide a clear background

for recording videos in the dark.

A test section of 30 cm × 13.8 cm (2xmax × 2ymax) at a water height of 10 cm was arranged

within the channel using flow straighteners, as shown in Fig 6A. The flow profile was created

using an array of U-shaped flow straighteners with different opening sizes to manipulate the

flow speed (see Fig 6B and 6C). We estimated the axial flow velocity utilizing the fish swim-

ming trajectories for each experimental subject based on the following steps. First, we limited

our analysis to instances when sin(θ(t)) 6¼ 0, such that Eq (1) could be inverted to obtain

UðyðtÞÞ ¼ dxðtÞ
dt �

dyðtÞ
dt

cosðyðtÞÞ
sinðyðtÞÞ. Second, we utilized a standard least squares method in Matlab

(R2019b) to fit each data set with a parabola. By averaging the 24 fish, we determined a flow

profile UðYÞ ¼ � 0:036Y2
þ 1:584 (with units in cm and cm/s; see Fig 6D).

Interestingly, the advective velocity experienced by the fish was less than the velocity in the

middle of the water height (5 cm from the bottom) through laser Doppler velocimeter (BSA,

F50, Dantec, Denmark). Through velocimetry, we obtained five velocity measurements for

nine different points across the test section (Y-coordinate). The fitted parabolic flow profile is

shown in Fig 6D, for completeness. This discrepancy between identified data and velocimetry

experiments is due to the fact that fish can swim along the z-axis, not only in the plane. We

confirm this reduction along and across the tunnel by conducting finite element (FE)
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simulations of the fluid flow within the test section in the commercial FE software Comsol

Multiphysics (see Supporting information S3 Fig).

Experimental procedure

Two different illumination conditions were tested, namely Bright and Dark. Each trial con-

sisted of three main phases. The first two phases were introduced for habituation to the new

environment and the flow, while the third phase was the actual testing. Only the last phase was

recorded. At the beginning of the trial, the animal was transferred from the vivarium to the

water tunnel (using a hand net) and kept there for five minutes of habituation with the water

velocity set to zero. Then, the water flow was turn on for two minutes of further habituation

and five minutes of testing. A total of 24 naïve adult fish were tested, 12 (6 male and 6 female)

for each condition (Bright and Dark).

Tracking

A total of 300 s were recorded for each trial at 30 frames per second. All videos were post-pro-

cessed using a foreground detection algorithm in Matlab (R2019b) for highlighting the animal

shape on the image and improve the tracking process [67]. The resulting images were input to

a slightly modified version of the multi-target tracking algorithm Peregrine [68], accounting

for manual repairs in body shape tracking mode. The software fitted a parabola on the fish

blob and returned: the fish centroid position (x(t), y(t)) with their respective velocities, shape

parameters (coefficients of the parabola), and heading vector h(t) = [cos(θ(t)), sin(θ(t))], from

Fig 6. Experimental set-up. (A) Overview of the experimental apparatus. (B,C) U shape-like honeycomb grids for

straightening the flow in the water channel. (D) Measurements of the flow velocity profile (black circles) and parabolic

fit (black dash line) at the mid-span using laser Doppler velocimetry, along with the parabolic fit of flow profile from

fish locomotion (solid red line).

https://doi.org/10.1371/journal.pcbi.1008644.g006
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which the heading angle and turn rate were calculated. For each experiment, we obtained time

series of centroid coordinates, heading, and turn rate, consisting of 9, 000 samples correspond-

ing to the total experimental time. All data can be found in the Supporting Information file S1

Data set.

Statistical analyses and behavioral scoring

All statistical analyses were performed with the statistics software R (version 3.6.1). We used

the Wilcoxon signed-rank test and the Mann-Whitney U test (Wilcoxon rank sum), with a sig-

nificance level of 0.050, for comparing one-sample and two-sample data, respectively [69]. For

testing the equality of two-sample data variances we use the Levene’s test [70] with a signifi-

cance level of 0.050. To study rheotaxis, we averaged the time series of −cos(θ(t)) in each trial,

and we scored RI, defined as the difference between the cumulative distribution functions of

the absolute value of the heading and a uniform random variable [27]. More specifically,

RI ¼ 1 � ð2=pÞ
R p

0
LðjyjÞ dy, with Λ(�) being the empirical cumulative distribution function.

Here, π/2 represents the area under the curve of an empirical cumulative distribution function

of a uniform random variable over the interval [0, π].

We further quantified the fish exploratory behavior in the test section through spatial

entropy. This quantity was measured by first dividing the test section in 10 × 4 squares of

approximately 3cm × 3.45cm each, corresponding to a grid of 1 BL in size. Then, using the

centroid trajectory (x(t), y(t)), we estimated the probability of occupying each boxes in the

grid, pi. The spatial entropy is then given by �
P40

i¼1
pi log 2ðpiÞ.

Comparisons of calibrated model parameters were conducted to elucidate the role of illumi-

nation thus reducing the number of model parameters and avoiding overfitting of the data.

Comparisons were performed using seven independent Mann-Whitney U tests. Because

hypotheses were not defined a priori on the parameter comparisons, we corrected for multiple

comparisons using a Bonferroni adjusted significance level of 0.05/7 [71].

In-silico experiments

We replicated the real experiment by considering 24 trials, 12 for Bright and 12 for Dark. We

numerically integrated Eqs (1), (2), (3), (5) and (7) using the Euler-Maruyama scheme with a

time step of 1/30 s [72], matching the sampling rate of the tracked data. To ensure convergence

to a steady state probability distribution, we chose a simulation time of six times the experi-

mental time (6 × 300 s), and we only considered the last 300 s. The parameter values α, σ, κ,

KR, λ1, and λ2 were taken from Gaussian distributions corresponding to the data shown in Fig

4 across all 24 trials (Bright and Dark). Because the parameter β was significantly different

between Bright and Dark, its value was drawn from two different Gaussian distributions corre-

sponding to the data of each condition shown in Fig 4B. Given that the test section is rectangu-

lar, unrealistic turns or oscillations might arise on the corners due to their discontinuous

nature [36]. To avoid this problem, we kept the angle to collision constant when the fish was

inside a square region of 1cm2 on the corners.

Derivation of the governing equations of the finite-dipole model

The zebrafish dipole representation is depicted in Fig 2. By adapting the equation set (2) from

[48], the centroid position and heading angle can be obtained by integrating the following set
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of ODEs:

dxðtÞ
dt
¼
GlðtÞ þ GrðtÞ

4pl
cos ðyðtÞÞ þ

UðyrðtÞÞ þ UðylðtÞÞ
2

; ð10aÞ

dyðtÞ
dt
¼
GlðtÞ þ GrðtÞ

4pl
sin ðyðtÞÞ; ð10bÞ

dyðtÞ
dt
¼

UðyrðtÞÞ � UðylðtÞÞ
l

cos ðyðtÞÞ þ
GlðtÞ � GrðtÞ

2pl2
; ð10cÞ

where

ylðtÞ ¼ yðtÞ þ
l
2
cos ðyðtÞÞ; yrðtÞ ¼ yðtÞ �

l
2
cos ðyðtÞÞ: ð11Þ

Considering that the animal thickness, l� 5 mm, is small with respect to the dimensions of

the water channel, we expand the velocity field at the location of the two vortices, U(yr(t)) and

U(yl(t)), around the centroid coordinate y(t) using a Taylor series, yielding

UðylðtÞÞ ¼ UðyðtÞÞ þ U 0ðyðtÞÞ
l
2
cos ðyðtÞÞ þ

U 00ðyðtÞÞ
2

l
2
cos ðyðtÞÞ

� �2

þ
U 000ðyðtÞÞ

6

l
2
cos ðyðtÞÞ

� �3

þOðl4Þ;

ð12aÞ

UðyrðtÞÞ ¼ UðyðtÞÞ � U 0ðyðtÞÞ
l
2
cos ðyðtÞÞ þ

U 00ðyðtÞÞ
2

l
2
cos ðyðtÞÞ

� �2

�
U 000ðyðtÞÞ

6

l
2
cos ðyðtÞÞ

� �3

þOðl4Þ;

ð12bÞ

where Oð�Þ is Landau’s symbol. By considering a first order approximation in Eqs (12a) and

(12b), we determine

UðyrðtÞÞ þ UðylðtÞÞ
2

’ UðyðtÞÞ; ð13aÞ

UðyrðtÞÞ � UðylðtÞÞ
l

’ � U 0ðyðtÞÞ cos ðyðtÞÞ: ð13bÞ

Finally, replacing Eqs (13a) and (13b) in Eqs (10a) and (10b) yields Eqs (1a)–(1c).

Estimation of the circulation strengths from experimental time series

To estimate the circulation strengths we used experimental data of the fish centroid position (x
(t), y(t)), heading angle θ(t), and turn rate ω(t). Using a first order approximation, Eqs (10a)
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and (10b) can be written as

~xðkTÞ ¼
T

4pl
ðGlðkTÞ þ GrðkTÞÞ cos ðyðkTÞÞ; ð14aÞ

~yðkTÞ ¼
T

4pl
ðGlðkTÞ þ GrðkTÞÞ sin ðyðkTÞÞ; ð14bÞ

~oðkTÞ ¼
1

2pl2
ðGlðkTÞ � GrðkTÞÞ: ð14cÞ

Here, k = 1, 2, . . ., N − 1 is the time step, T = 1/30 s is the video-camera sampling period,

N = 9000 is the total number of samples, and

~xðkTÞ ¼ xððk þ 1ÞTÞ � xðkTÞ �
ðUðyrðkTÞÞ þ UðylðkTÞÞÞT

2
; ð15aÞ

~yðkTÞ ¼ yððkþ 1ÞTÞ � yðkTÞ; ð15bÞ

~oðkTÞ ¼ oðkTÞ �
UðyrðkTÞÞ � UðylðkTÞÞ

l
cos ðyðkTÞÞ; ð15cÞ

with U(yr(kT)) and U(yl(kT)) being the flow velocities in correspondence of the right yr(kT) =

y(kT) − (l/2)cos(θ(kT)) and left yl(kT) = y(kT) + (l/2)cos(θ(kT)) vortices, respectively.

By squaring both sides of (14a) and (14b), we determine that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2ðkTÞ þ ~y2ðkTÞ

p
¼

T
4pl
ðGlðkTÞ þ GrðkTÞÞ; ð16Þ

Finally, from Eqs (14c) and (16) we obtain the sought expression of the circulations

strengths as function of fish motion

GlðkTÞ ¼ pl
2

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2ðkTÞ þ ~y2ðkTÞ

p
þ l~oðkTÞ

� �

; ð17aÞ

GrðkTÞ ¼ pl
2

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2ðkTÞ þ ~y2ðkTÞ

p
� l~oðkTÞ

� �

: ð17bÞ

Expansion of the line integral for the local circulation

The fish perimeter is approximated by a circle C around the fish centroid (x(t), y(t)) defined by

sx ¼ xðtÞ þ r cos ðφÞ; sy ¼ yðtÞ þ r sin ðφÞ; for all φ 2 ½0; 2p�: ð18Þ

The line integral in Eq (4) is thus given by

Z

⥀

C
UðsÞ ds ¼ � r

Z 2p

0

UðyðtÞ þ r sin ðφÞÞ sin ðφÞ dφ: ð19Þ

PLOS COMPUTATIONAL BIOLOGY Modeling multi-sensory feedback control of zebrafish in a flow

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008644 January 22, 2021 16 / 24

https://doi.org/10.1371/journal.pcbi.1008644


By a using a Taylor expansion of the velocity around y(t), we establish

Z

⥀

C
UðsÞ ds ¼ � r

Z 2p

0

UðyðtÞÞ sin ðφÞ dφ � r2

Z 2p

0

U 0ðyðtÞÞ sin 2ðφÞ dφ

�
r3

2

Z 2p

0

U 00ðyðtÞÞ sin 3ðφÞ dφþOðr4Þ:

ð20Þ

Finally, from the fact that
R 2p

0
sin ðφÞ dφ ¼ 0,

R 2p

0
sin 2ðφÞ dφ ¼ p, and

R 2p

0
sin 3ðφÞ dφ ¼ 0

we derive Eq (4).

Model calibration

We began by approximating the solutions of the stochastic differential equations in Eqs (2a)

and (2b) away from the wall (neglecting uw), using the Euler-Maruyama method, thereby

yielding the following Markov chain:

Glððkþ 1ÞTÞ ¼ GlðkTÞ þ ½aðb � GlðkTÞÞ þ kðGrðkTÞ � GlðkTÞÞ þ KðkTÞKRLcðkTÞ�T

þs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GlðkTÞT

p
xlðkTÞ;

ð21aÞ

Grððkþ 1ÞTÞ ¼ GrðkTÞ þ ½aðb � GrðkTÞÞ þ kðGlðkTÞ � GrðkTÞÞ � KðkTÞKRLcðkTÞ�T

þs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GrðkTÞT

p
xrðkTÞ;

ð21bÞ

where ξl and ξr are two independent standard Gaussian random variables, with zero mean and

unit variance. K(kT) is the experimental Boolean random variable taking value 1 if the fish fol-

lows the circulation Lc(kT) and 0 otherwise.

To estimate K(kT), we quantified the level of synchronization between the turn rate of the

fish ωa(kT) = Γl(kT) − Γr(kT) and Lc(kT). We first normalized both time-series on the interval

[−1, 1] by dividing each of them by the maximum absolute value over the entire time span

yielding ôaðkTÞ and L̂cðkTÞ. Next, we smoothed ôaðkTÞ utilizing a moving average filter in

Matlab (R2019b) to attenuate noise. Then, we assessed synchronization by defining the syn-

chronization error eðkTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðôaðkTÞ � sðkTÞÞ2 þ ðL̂cðkTÞ � sðkTÞÞ2
q

with sðkTÞ ¼

ðôaðkTÞ þ L̂cðkTÞÞ=2 being the average signal. By manually inspecting all 24 trials, we found

that e(kT)<0.35 over a time window greater than 2 s corresponded to instances in which the

fish tracked the local circulation, that is, it performed a complete turning maneuver following

the rotation indicated by the circulation. Hence, we imposed K(kT) = 1 if e(kT)<0.35 for all

the frames within any 2s-window containing instant kT. The use of a continuous window

allows for mitigating the effect of chance, whereby the fish may inadvertently follow the circu-

lation during its swimming, despite not using it for decision-making.

After some algebraic manipulations, Eqs (21a) and (21b) can be rewritten as

ZlðkTÞ≔f ðGlðkTÞ;Glððkþ 1ÞTÞ;GrðkTÞ; a;b; s; k;KRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s

K0

� �2

T

s

xlðkTÞ; ð22Þ

ZrðkTÞ≔f ðGrðkTÞ;Grððkþ 1ÞTÞ;GlðkTÞ; a;b; s; k;KRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s

K0

� �2

T

s

xrðkTÞ; ð23Þ
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where the scalar function f (X, Y, Z, α, β, σ, κ, KR) is given by

f ðX;Y;Z; a; b;s; k;KRÞ ¼
Y þ XðaT þ kT � 1Þ � abT � kTZ � KðkTÞKRLcðkTÞ

K0

ffiffiffiffi
X
p ; ð24Þ

with K0 being an arbitrary positive constant, introduced to avoid numerical issues when the

circulations strengths are close to zero. To calibrate the model we estimated the parameters Θ
= [α, β, σ/K0, κ, KR] using the maximum likelihood estimation method [73] by solving the fol-

lowing constrained optimization problem:

Θ̂ ¼ argmin
Θ
�

XN�

k¼1

log gðΘ;ZlðkTÞÞ þ log gðΘ;ZrðkTÞÞ

" #

ð25aÞ

such that s2 < 2ab; ð25bÞ

where N� < N is the total number of samples where the fish was swimming away from the

wall. The function g(Θ, Z) is the Gaussian distribution with zero mean and variance (σ/K0)2 T,

given by

gðΘ;ZÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pTð sK0

Þ
2

q e
� Z2

2Tð sK0
Þ2

: ð26Þ

Next, to estimate the parameters λ1 and λ2 of the continuous-time Markov chain in (6), we

counted the number of transitions of K(kT) from ignoring the circulation to following it and

vice versa. The estimated parameters are shown in Fig 4 for the 24 experimental trials.

Moreover, for calibrating the wall parameters in Eq (7), we implemented the following

steps:

(i). We first extracted instances when the fish turns according to the opposite sign of the

angle to collision ϕ, that is, blue points (Γl − Γr> 0) for ϕ< 0 and red points (Γl − Γr<

0) for ϕ> 0 as shown in Fig 7A. To undertake this step, we utilized a cutoff function,

which was informed by the following rationale. As the angle ϕ approaches ±π/2 or the

distance to collision d increases, fish turns becomes less predictable. Hence, we retained

pairs (ϕ, d) such that |gϕ(ϕ) − d|<δ and |ϕ|<ϕ0, where ϕ0 and δ are cutoff parameters

and g�ð�Þ ¼ ag þ bg e� ð�=cg Þ
2

(Black curve in 7a). By manually examining the 12 trials in

Bright, we found that setting ϕ0 = 1, ag = 2.8 cm, bg = 27.2 cm, cg = 0.26, and δ = 1 was a

valid choice to extract all relevant maneuvers.

(ii). To understand how fish turn based on the vicinity to a wall, we defined Gϕ as the quan-

tity collecting the values of the difference of circulation strengths (Γl − Γr), correspond-

ing to the points (ϕ, d) obtained from the previous step. For the example shown in Fig

7A, the points Gϕ correspond to black dots. Next, we used a non-parametric locally

weighted least squares (LOESS) filter in Matlab (R2019b) with a 5% span on the absolute

value of Gϕ to smoothen the data. The results are the green dots shown in Fig 7B;

(iii). The output of the LOESS filter, yd, was utilized as input to fit the wall function KW/(Cyd
+ 1) using the nonlinear least-squares solver of Matlab (R2019b). The fitted function cor-

responds to the red curve in Fig 7B and

(iv). Because we used the difference of circulation strengths for the fitting, the estimate of

KW should be corrected to obtain the true amplitude of turns corresponding to each
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circulation strengths. Hence, we computed the maximum value of Γl and Γr across all

time instances near a wall. KW was selected as the maximum between the values obtained

in (iii) and (iv). Results are reported in Table 1.

We remark that our model is calibrated by splitting our data set into two: (i) data of fish

interacting with the wall, and (ii) data of fish swimming away from walls. We set 1 BL of dis-

tance from the wall as a threshold to split the data set. This separation provides enough data

points for the condition of fish swimming away from the wall, needed to guarantee conver-

gence of the optimization problem in Eq (25). This distance, however, could be within the

capabilities of zebrafish to detect walls [74]. We verified that the calibrated parameters values

do not change considerably by slightly increasing this threshold to 1.2 BL (�4 cm) and 1.4 BL

(�5 cm).

Fig 7. Illustration of the wall calibration process. (A) Two-dimensional projection of the difference of vortex

strengths Γl − Γr, as a function of the projected distance, d, and angle to collision, φ, for one trial from Bright. The

black curve is a normal function utilized to select relevant values of (φ, d) associated with those instances when the fish

turns according to the angle to collision ϕ. (B) Example of calibration of the wall function. Black dots correspond to Gϕ
and green dots correspond to the filtered output of |Gϕ|. The red line is the fitted wall function.

https://doi.org/10.1371/journal.pcbi.1008644.g007

Table 1. Calibrated wall parameters for the 12 fish tested in standard illumination (condition Bright). For experi-

ments in the dark, KW is set to zero and this form of interaction is absent.

Trial KW [1/s] C [cm]

1 23.727 -

2 48.112 2.172

3 63.173 2.237

4 23.170 -

5 29.646 2.195

6 78.167 2.196

7 21.005 -

8 33.066 -

9 32.606 2.194

10 39.661 2.502

11 33.658 2.158

12 32.696 -

Mean 38.224 2.236

Median 32.881 2.195

https://doi.org/10.1371/journal.pcbi.1008644.t001
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Supporting information

S1 Data set.

(ZIP)

S1 Fig. Example of vortex strenghts estimated from real data. Example of estimated vortex

strengths Γl and Γr from real data of two different subjects in conditions Bright and Dark. (A,

B) Histograms and (C,D) phase plots of vortex strengths for conditions (A,C) Bright and (B,D)

Dark. In both cases, the distributions of Γl and Γr are highly correlated with R2 values of 0.848

and 0.779, for Bright and Dark, respectively.

(TIFF)

S2 Fig. Analysis of the wall interaction. (A) Illustration of the process to compute the pro-

jected distance and angle to collision. We have that ϕ = π/2 if the fish is heading straight to

the wall, and ϕ = 0 if it is perfectly aligned to the wall axis. In addition, ϕ> 0 (clockwise) and

ϕ< 0 (counterclockwise) indicate instances when a fish approaches the wall with its right or

left side, respectively. (B) Quantification of zebrafish tendency to make turns based on the

angle ϕ. We scored Fϕ as the percent of instances when the sign of turn rate ω(t) was the oppo-

site of the sign of ϕ, irrespective of the distance from it. The blue dashed-line represents the

random chance level of 50%. We compared the value of Fϕ for conditions Bright and Dark

with chance. We registered a significant difference for condition Bright (V = 75;p< 0.010)

while we fail to register a significant difference for Dark (V = 54;p = 0.067). (C) Quantification

of the ability of fish to turn away from a wall for distances to collision less than 1 BL. We docu-

ment a significant difference for both conditions Bright (V = 65;p< 0.010) and Dark (V = 62;

p< 0.010), this observation offers partial support in favor of the presence of other mechanisms

to detect walls when swimming in close proximity. The gray bar in each violin plot details

median (white dot), first and third quartiles, and lower and upper adjacent values. The colored

area of a violin plot corresponds to the probability density of the data. Symbol �� indicates a

significant difference from chance with p< 0.010.

(TIF)

S3 Fig. Simulation of the flow profile. We considered a 30 × 10 × 13.8 cm (length × height ×
width) parallelepiped, in which we solve static, incompressible, laminar Navier-Stokes equations

through the “Laminar Flow” environment in COMSOL Multiphysics. We set non-slip wall con-

ditions on the bottom, left, and right boundaries, and an open boundary on the top surface,

where no viscous stress is generated. Between the inlet and outlet, we imposed a pressure differ-

ence. For all our simulations, we used COMSOL built-in water material properties and a “Nor-

mal” size mesh. We first estimated the required pressure difference to generate the maximum

experimental fluid speed at the center of the section, assuming a Poiseuille flow within a circular

pipe, with a diameter equal to the hydraulic diameter of the rectangular section, yielding 0.038

Pa. By imposing this pressure, we obtained a larger speed for all the points but the central one.

To identify the correct value of the pressure drop to reconstruct the experimental profile, we

carried out a parametric analysis in which we varied the pressure drop between 0.0021 Pa and

0.038 Pa in 20 steps. We find that the sum of squared errors of fluid speed at the measurement

positions is minimized for a pressure difference of 0.0172 Pa. From these simulations, we con-

clude that the average fluid speed within the section is not equal to the maximum velocity

within the X � Y plane passing through the center of the test section, that is, the plane in which

fluid speed was experimentally measured. By computing the average speed on the plane parallel

to Y � Z passing through the section of the test section, we obtain a value of 2.3 cm/s, which is

approximately 70% of the maximum speed at the center of the section, 3.2 cm/s.

(TIF)
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S1 Video. Illustrative example of zebrafish turning maneuvers according to the local circu-

lation. Panels on the left illustrate the real experiment (top) and tracking (bottom). The right

upper panel illustrates how the turn rate is adjusted according to the local circulation of the

background fluid flow. The evolution of heading angle is shown in the bottom left panel.

(M4V)

S2 Video. Example of rheotaxis predicted by the proposed mathematical model in condi-

tion Bright.

(MOV)

S3 Video. Example of rheotaxis predicted by the proposed mathematical model in condi-

tion Dark.

(MOV)
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