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An automated method to assess the fetal physiological development is introduced

which uses the component intervals between fetal cardiac valve timings and the

Q-wave of fetal electrocardiogram (fECG). These intervals were estimated automatically

from one-dimensional Doppler Ultrasound and noninvasive fECG. We hypothesize that

the fetal growth can be estimated by the cardiac valve intervals. This hypothesis

was evaluated by modeling the fetal development using the cardiac intervals and

validating against the gold standard gestational age identified by Crown-Rump Length

(CRL). Among the intervals, electromechanical delay time, isovolumic contraction time,

ventricular filling time and their interactions were selected in a stepwise regression

process that used gestational age as the target in a cohort of 57 fetuses. Compared

with the gold standard age, the newly proposed regression model resulted in a mean

absolute error of 3.8 weeks for all recordings and 2.7 weeks after excluding the low quality

recordings. Since Fetal Heart Rate Variability (FHRV) has been proposed in the literature

for assessing the fetal development, we compared the performance of gestational age

estimation by our new valve-interval basedmethod, vs. FHRV, while assuming the CRL as

the gold standard. The valve interval-based method outperformed both the model based

on FHRV. Results of evaluation for 30 abnormal cases showed that the new method is

less affected by arrhythmias such as tachycardia and bradycardia compared to FHRV,

however certain types of heart anomalies cause large errors (more than 10 weeks) with

respect to the CRL-based gold standard age. Therefore, discrepancies between the

regression based estimation and CRL age estimation could indicate the abnormalities.

The cardiac valve intervals have been known to reflect the autonomic function. Therefore

the new method potentially provides a novel approach for assessing the development of

fetal autonomic nervous system, which may be growth curve independent.

Keywords: fetal development, gestational age, 1D Doppler ultrasound, cardiotocography (CTG), fetal

electrocardiography (fECG), autonomic nervous system (ANS), fetal monitoring, systolic and diastolic time

intervals
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1. INTRODUCTION

Estimation of the Gestational Age (GA) is crucial for antenatal
diagnosis, monitoring fetal growth and detecting Intra-Uterine
Growth Retardation (IUGR), predicting the delivery date
and management of pre-term and post-term pregnancies, to
ultimately prevent perinatal and neonatal mortality (Alexander
et al., 1996; Taipale and Hiilesmaa, 2001; Bhutta et al., 2014;
Chauhan et al., 2014). It is also a fundamental factor in ensuring
the safety and effectiveness of medications during pregnancy
(Reis and Källén, 2010; Andersen et al., 2013; Li et al., 2013). The
GA has been traditionally estimated based on the Last Menstrual
Period (LMP), which is the most affordable method specially for
low and middle income countries (Wang et al., 2011; Deputy
et al., 2017). However it is subject to human errors in recall or
data entry, as well as biologically associated errors (Dietz et al.,
2007; Lynch and Zhang, 2007). For example, the assumption of
a regular 28-day menstrual cycle and ovulation on 14 days after
the first day of LMP are not consistent and may vary from case
to case (Dietz et al., 2007). As reported in the literature, the
clinically estimated GA as collected on certificates of live birth
based on prenatal and neonatal clinical assessments, exceeds
the LMP-based GA by 2 weeks or more for more than 40%
of the cases (Alexander et al., 1995). A recent study found the
ovulation day as the most accurate predictor compared to LMP
and ultrasound-based methods (Mahendru et al., 2016).

A more accurate and reliable estimation of the GA
is provided through obstetric ultrasound which has been
clinically established as the gold standard (Lynch and Zhang,
2007; Papageorghiou et al., 2014). A variety of sonographic
measurements including Biparietal Diameter (BPD), Crown-
Rump Length (CRL), Head Circumference (HC), Abdominal
Circumference (AC) and Femur Length (FL) are used to estimate
the GA (Hadlock et al., 1982; Dietz et al., 2007; Lynch and Zhang,
2007; Papageorghiou et al., 2014). Although these measures
provide a more reliable estimation of GA compared to LMP,
they are all based on physical growth (mass or proportions),
which is affected by genetic variations (e.g., head size and
shape in fetuses), gender and inherent variability in the fetal
growth process (Hadlock et al., 1981; Sherwood et al., 2000;
Lynch and Zhang, 2007; Kullinger et al., 2016). These methods
may also systematically overestimate or underestimate the GA
of the fetuses which are respectively large or small for GA
(Sherwood et al., 2000; Lynch and Zhang, 2007). Unsuitable
positioning of the fetus during measurement also causes error
and the technique is subject to operator error, and the quality
of the images (Hunter, 2009; Callen, 2011). For example, 95%
confidence intervals of ±4 weeks were found for FL, which is
one of the most accurate estimators. The prediction interval
may be as large as ±7 weeks for the estimators with higher
standard errors, such as AC (Sherwood et al., 2000). The
error also increases with the gestational age and generally the
ultrasound methods are more precise when performed in the
first-trimester (Caughey et al., 2008; Falatah et al., 2014; Al-
Amin et al., 2015). Pathological conditions may also introduce
a high levels of inaccuracy or significant bias in many estimation
methods.

Although in high income countries routine skilled ultrasound
screening is performed, many factors limit its use in low income
countries, including high cost of the equipment, lack of trained
sonographers or physicians, as well as the skill required to
perform a GA estimation test (Wang et al., 2011; McClure et al.,
2014). We therefore propose an alternative technique to be used
as an adjunct in estimating the GA where ultrasound imaging
methods are unavailable or inadequate due to pathologies,
unsuitable positioning, limited skills and technical issues.

One promising alternative GA estimator is Fetal Heart Rate
(FHR) (Cha et al., 2001; Hoyer et al., 2013; Tetschke et al., 2016).
FHR can be measured with affordable apparatus and little need
for prior skill, and hence is a feasible approach in low income
countries (Tezuka et al., 1998; Stroux et al., 2014). Early studies
found a comparable accuracy of FHR-based method with CRL,
in early pregnancy (38–64 days) (Tezuka et al., 1998), and the
methods were further improved recently being more focused on
neurological development (Hoyer et al., 2013; Tetschke et al.,
2016). While ultrasound-based techniques are generally based on
the physical development and influenced by genetic variations,
FHR provides a marker for neuro-physiological development of
the fetus, since it reflects the Autonomic Nervous System (ANS)
control of the cardiovascular system, which matures through the
progress in pregnancy. Various linear, nonlinear and complexity-
based FHR variability (FHRV) parameters have been found to
be closely related to the fetal development (Van Leeuwen et al.,
2003; Hoyer et al., 2009; Wallwitz et al., 2012; Hoyer et al.,
2013; Tetschke et al., 2016). Vagal and sympathetic activity
rhythms and their interactions has been traditionally attributed
to different frequencies of FHR fluctuations and their ratios
(European Society of Cardiology, 1996) which can be evaluated
during fetal development. More recently, a “functional Fetal
Autonomic Brain Age Score” (fABAS) was introduced which
leverages the FHR patterns in a multivariate analysis (Hoyer
et al., 2013). However, FHR is influenced by arrhythmias, fetal
behavioral/sleep states and heart rate patterns such as FHR
accelerations and even maternal psychological and physiological
conditions, particularly in mid- and late-gestation (Mantel et al.,
1991; Monk et al., 2000; Ivanov et al., 2009; Marzbanrad
et al., 2015b). These factors complicate the assessment of fetal
development based on FHR.

Fetal cardiac valve intervals are alternative measures
which could be obtained from non-invasive, low cost and
easy-to-operate devices, and used as reliable markers for
fetal development and well-being (Shakespeare et al., 2001;
Khandoker et al., 2009; Marzbanrad et al., 2013b). These
intervals are based on the opening and closing time of the fetal
cardiac valves, namely the atrioventricular and semilunar valves.
Automated techniques for estimation of these intervals from
non-invasively recorded one-dimensional Doppler Ultrasound
(1-D DUS) signal (conventionally used as FHR monitor)
were proposed in our previous papers (Marzbanrad et al.,
2013b, 2014a). The valve intervals can also be used to assess
the ANS function, as an alternative to the FHRV, since the
cardiac mechanics are known to reflect the autonomic control
in the literature on adults (Berntson et al., 1994; Cacioppo
et al., 1994a,b; Di Rienzo et al., 2013). As an example, the
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Pre-ejection Period (PEP), which is the interval from the onset
of ventricular depolarization (the beginning of the QRS complex
on the electrocardiogram) to the opening of aorta, reflects
sympathetic influences on the heart (Cacioppo et al., 1994a;
Mensah-Brown et al., 2010). In previous studies we found
significant changes in the valve intervals with advancing GA
(Marzbanrad et al., 2013a,b). In the work presented here we
hypothesize that the fetal cardiac valve intervals, which are
estimated automatically, can be used as a novel alternative
measure of the GA, reflecting the physiological development of
fetus.

2. METHODS

2.1. Subjects and Data Acquisition
Doppler ultrasound and abdominal ECG signals were recorded
simultaneously at Tohoku University Hospital, Japan, from 57
pregnant women with healthy single pregnancy who were not
under any medication and 30 cases with fetal arrhythmia or
abnormalities. The type of abnormalities and the GA for these
30 cases are presented in Table 4 and more details about these
arrhythmia and abnormalities can be found in Murray (2007),
Allan et al. (2000), Allen et al. (2013), and Abuhamad and
Chaoui (2012). All 87 fetuses had a GA of between 16 and
41 (32 ± 6) weeks at the time of recording. The GA was
estimated using ultrasound imaging by a trained sonographer,
by measuring fetal CRL at about 10 weeks, which is the
length of embryos and fetuses from the head top (crown)
to the bottom of the buttocks (rump). The study protocol
was approved by Tohoku University Institutional Review
Board and written informed consent was obtained from all
participants. Table 1 summarizes the CRL-based gestational age,
maternal age, weight and height for the healthy and abnormal
cases.

The 1-D DUS signal was generated using a 1.5 MHz
Corometrics 5700 Ultrasound transducer and the abdominal
ECG signals were collected by a multichannel data acquisition
system (fetal monitor 116, Corometrics Medical Systems Inc)
with 1,000Hz sampling frequency and 16 bit resolution. Twelve
electrodes were used for abdominal ECG recordings, ten of which
were arranged on the mother’s abdomen, one reference electrode
on the back and one electrode was set at the right thoracic
position. The DUS transducer was placed on the lower abdomen
and the audio output was connected to the input channel of the
fetal monitor. All DUS and ECG recordings were 1 min in length
and sampled at 1 kHz with 16-bit resolution. More details about
the experimental set up can be found in Sato et al. (2007).

TABLE 1 | Maternal age (years), height (cm) and weight (kg) as well as the

CRL-based GA (weeks) for normal and abnormal groups are presented as

mean ± standard deviation.

Group Age (years) Weight (kg) Height (cm) GA (weeks)

Normal 26 ± 7 51.1 ± 5.7 152.7 ± 8.7 33 ± 6

Abnormal 35 ± 6 65.2 ± 12.1 162.6 ± 2.4 30 ± 6

2.2. fECG Extraction
Data from 12 channels were recorded bipolarly from the
electrodes placed on the maternal abdomen, sampled every
1 ms (1 kHz sampling) with 16-bit resolution and bandpass
filtered by 1–100 Hz finite impulse response filter. To separate
fECG from the composite abdominal signal, a combination of
maternal ECG cancellation and Blind Source Separation with
a Reference (BSSR) was employed (Sato et al., 2007). In brief,
electrical activities of the heart can be modeled as a vector in
the direction of excitation, which is sometimes called the heart
vector (Symonds et al., 2001). The maternal ECG component
was excluded by subtracting the linear combination of mutually
orthogonal projections of the heart vector. Subsequently, BSSR
was used to extract fECG from complex mixture using DUS
signal as a reference (Sato et al., 2007). Fetal QRS locations were
detected by amodified Pan and Tompkins peak detectionmethod
as described in Behar et al. (2013).

2.3. Evaluation of Data Quality
The quality of 1-D DUS and fECG signals were assessed to
exclude low quality signals and to evaluate the relationship of the
final error in the GA estimation with the quality scores.

2.3.1. fECG Signal Quality
A state of the art Signal Quality Index (SQI), known as “bSQI,”
was used. This metric evaluates the agreement between two QRS
detection methods with different robustness to noise (Clifford
et al., 2012). The bSQI metric takes a range between 0 (lowest
quality) and 1 (highest quality).

2.3.2. 1-D DUS Signal Quality
Quality assessment of the DUS signal was performed using
a method described in our earlier work (Marzbanrad et al.,
2015a). The method is based on various quality indices of
the high frequency component of the DUS signal. To isolate
the high frequency component which is linked to the valves’
movements, the DUS signal was decomposed by continuous
wavelet analysis, as described in our earlier work (Khandoker
et al., 2009; Marzbanrad et al., 2014a). Using a second order
complex Gaussian as the mother wavelet, the signal at scale 2
(∼ 200 Hz) was extracted and smoothed. The envelope of the
absolute value of this signal was then estimated by interpolating
the maxima and smoothing with a low pass filter. Each envelope
was segmented into cardiac cycles using the corresponding RR
intervals, estimated from fECG. The signal segments were then
normalized by subtracting the mean and dividing by the standard
deviation.
Twelve features were selected mainly based on the signal
properties in the valve motion ranges compared to the remaining
time intervals. The plausible valve motion ranges were defined
as: Mc: (9–44), Ao: (45–90), Ac: (200–260), Mo: (265–326), all
in msec following the segment onset (the preceding R-peak)
(Khandoker et al., 2009; Marzbanrad et al., 2013b). The features
selected were as follows and all were normalized to [0− 1]:

• The ratio of the power (SQI1), number of peaks (SQI2), mean
peak amplitude (SQI3) and variance (SQI4) in the valvemotion
range to the values in the remaining time intervals.
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• kurtosis (SQI5), skewness (SQI6), Hjorth parameters (SQI7)
and sample entropy (SQI8: m = 1, r = 0.1, SQI9: m =

1, r = 0.2, SQI10: m = 2, r = 0.1, SQI11: m = 2, r =

0.2), where m and r denote window length and tolerance,
respectively.

• Minimum ratio of the 2nd to 1st singular value (SQ12) from
Singular Value Decomposition (SVD) of a matrix containing
consecutive windows of the signal with various sizes: 10, 15,
20,...,100.

An overall quality metric was obtained from the features
SQI1,2,..,12 using a Naïve Bayes (NB) classifier with kernel density
estimate. The classifier was trained based on 345 cardiac cycles
of the DUS signals which were annotated for quality by four
independent annotators, as described in our previous paper
(Marzbanrad et al., 2015a). The NB classifier uses the training
data to estimate the conditional distribution of the features
given the classes and also distribution of the classes. Then it
estimates the posterior probability through the Bayes rule and
classifies each sample to the most probable class. The same
trained classifier was used in this study to classify the DUS
quality. In our previous paper we used 10-fold cross validation
and found the accuracy of 0.86 and 0.84 in train and test set,
respectively.

2.4. Estimation of Cardiac Valve Intervals
The cardiac valve intervals are illustrated in Figure 1. These
intervals were obtained based on the onset of the ORS complex
detected as described above, and the opening and closing of
the valves detected from the high frequency component of
the DUS signal. The valve motion events were detected using
a model-based method that was presented in our previous
work (Marzbanrad et al., 2014a). This latter method is now
summarized. The envelope of the high frequency component

of the DUS signal, which were normalized and segmented into
cardiac cycles (as described in Section 2.3.2), were clustered into
six different patterns using K-means clustering. The key idea
was to find the following events which correspond to the peaks
of the high frequency components: Aortic valve opening (Ao),
transitional event (T1), Aortic valve closing (Ac), transitional
event (T2), Mitral opening (Mo), transitional event (T3), Mitral
closing (Mc), transitional event (T4). The transitional events
are related to extra peaks that do not correspond to any valve
motion. A hybrid Support Vector Machine-Hidden Markov
Model (SVM-HMM) was trained for each cluster separately,
using the time (phase) and amplitude of the peaks of the
signal as features, corresponding to one of the valve motion or
transition events. The training and validation of this approach
were based on expert annotation and simultaneous fetal echo-
cardiography images, and were carried out in our earlier work
(Marzbanrad et al., 2014a). To identify the events, each segment
of the normalized envelope of the high frequency component
was matched to the clusters that for which it had the minimum
Euclidean distance to cluster’s centroid. Then the sequence of
events, which were attributed to the peaks of the signal, were
identified by the Viterbi algorithm using the trained SVM-HMM
specific to the corresponding cluster. The block diagram of this
method is shown in Figure 2 and more details can be found in
Marzbanrad et al. (2014a).

2.5. Estimation of the Gestational Age
Three sets of parameters were used to estimate the GA:

• Valve-timing parameters: From the parameters shown in
Figure 1, Electromechanical Delay Time (EDT), Isovolumic
Contraction Time(ICT), Ventricular Ejection Time (VET),
Isovolumic Relaxation Time (IRT) and Ventricular Filling
Time (VFT) were selected. Only Pre-Ejection Period (PEP)

FIGURE 1 | An illustrative example of fetal cardiac intervals. STI, Systolic Time Interval; EDT, Electromechanical Delay Time; ICT, Isovolumic Contraction Time;

PEP, Pre-Ejection Period; VET, Ventricular Ejection Time; IRT, Isovolumic Relaxation Time; VFT, Ventricular Filling Time.
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FIGURE 2 | Block diagram of the training and testing processes of the method used for automated identification of opening and closing of the valves

(Marzbanrad et al., 2014a).

and Systolic Time Interval (STI) were excluded as they were
linearly related to other intervals.

• FHR-related parameters: Time and frequency domain FHRV
parameters were used including: Mean and standard deviation
of RR intervals (mRR and SDRR), Root Mean Square of
the Successive Differences (RMSSD) between adjacent RR
intervals, low frequency (LF: 0.03–0.15 Hz) which is related to
the neural sympathetic activity, medium frequency (MF: 0.15–
0.5 Hz) corresponding to the fetal movements and maternal
breathing and high frequency (HF: 0.5–1 Hz) which marks
the presence of fetal breathing (typically present after 32nd
week of gestation), the ratio LF/(MF+HF) and Total Power
(TP). More details can be found in Signorini et al. (2003) and
Van Leeuwen et al. (2003).

• Combined parameters: A combination of the FHR-related
parameters and five valve timing parameters were used.

In order to estimate the GA from these parameters a stepwise
regression analysis was employed based on individual and
all combinations of parameters and the models including an
intercept, linear, squared terms and cross-products. Stepwise
regression automatically adds to or removes from the model in a
forward and backward process to determine a final model, using
an F-test applied to the sum of the squared error before and after
adding a parameter (p < 0.05) as the criterion for including
a parameter. Root Mean Squared Error, R-squared, adjusted R-
squared and the F-test results vs. constant model were calculated

for the regression of each set of parameters. An average leave-
one-out cross-validation error in GA estimation was calculated.
The difference between the CRL-based and regression-based GA
estimate was made at every stage to provide an estimate of out of
sample performance of the proposed approach.
The GA estimation error was compared for different parameters,
including: FHR, fECG quality score and DUS signal quality score.
The improvement of the GA estimation by applying threshold on
the quality of the signals was also evaluated. Finally the optimal
regression model which was obtained based on healthy cases was
then used to estimate the GA of abnormal cases.

3. RESULTS

3.1. Stepwise regression results
Using fetal heart valve timings as parameters, stepwise regression
resulted in the following regression model for all healthy fetuses,
without excluding the cases with low quality signals:

Estimated GA = a0 + a1EDT + a2ICT + a3VFT + a4EDT

∗ICT + a5ICT ∗ VFT

where a0, a1, ..., a5 are the coefficients. Table 2 shows the
estimated coefficients and the Standard Error (SE). It shows the
t-statistic for each coefficient to test the null hypothesis of the
coefficient being zero, given the other estimators in the model.
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The p-value of the F-statistic for the hypothesis of the coefficient
being zero is also shown.

The statistics for the F-test on the regression model vs.
constant model, showed significance of the model (F-statistics
15.1, p-value = 4.36 ∗ 10−9). Standard deviation of the error
distribution was 4.01 (weeks) and R-squared and adjusted R-
squared were 60 and 56%, respectively.

FHRV parameters were also used to estimate the GA. The
following regression model for all healthy fetuses, without
excluding the cases with low quality signals, were obtained using
stepwise regression:

Estimated GA = b0 + b1mRR+ b2SDRR

where b0, b1, and b2 are the coefficients. Therefore only the mean
and standard deviation of fetal RR-intervals significantly
contributed to the model. Table 3 shows the estimated
coefficients and SE of the coefficients. It shows the t-statistic for
each coefficient to test the null hypothesis of the coefficient being
zero, given the other estimators in the model. The p-value of the
F-statistic for the hypothesis of the coefficient being zero is also
shown.

The statistics for the F-test on the regression model vs.
constant model, showed significance of the model (F-statistics
6.08, p-value = 0.004). However the standard deviation of the
error distribution was 5.55 (weeks) which was larger than the SD

TABLE 2 | Results of Stepwise regression using valve intervals, including

estimated coefficients (a0,a1, ...,a5) and Standard Error (SE) of the

coefficients, t-statistic and p-value for the F-statistic of the hypothesis of

the coefficient being zero.

Estimate SE t-test p-value

Intercept −276.810 61.772 −4.481 4.218∗10−5

EDT 5.496 1.215 4.525 3.641∗10−5

ICT 7.897 1.743 4.530 3.574∗10−5

VFT 0.682 0.267 2.551 0.014

EDT*ICT −0.140 0.034 −4.142 1.295∗10−4

ICT*VFT −0.017 0.007 −2.273 0.027

The model was obtained based on the parameters in milliseconds and GA in weeks.

Other results include: F-statistics: 15.1, p-value = 4.36*10−9, Standard deviation of the

error distribution: 4.01 (weeks), R-squared: 60%, adjusted R-squared: 56%.

TABLE 3 | Results of Stepwise regression using FHRV parameters,

including estimated coefficients (b0,b1 and b2) and Standard Error (SE) of

the coefficients, t-statistic and p-value for the F-statistic of the

hypothesis of the coefficient being zero.

Estimate SE t-test p-value

Intercept 4.788 10.866 0.441 0.661

mRR 0.064 0.026 2.432 0.018

SDRR 0.120 0.058 2.044 0.046

The model was obtained based on the parameters in milliseconds and GA in weeks.

Other results include: F-statistics: 6.08, p-value: 0.004, standard deviation of the error

distribution: 5.55 (weeks), R-squared: 18%, adjusted R-squared 15%.

for the model with valve intervals, and R-squared and adjusted R-
squared were only 18 and 15%, respectively, which were smaller
than those of the model with valve intervals.

Using leave-one-out cross-validation, the mean absolute
difference between the CRL-estimated GA and the GA estimated
from the proposed model was found to be 5.1 weeks using FHRV
parameters and 3.8 weeks using valve timing intervals and 4.2
weeks when all parameters combined. When attempting to select
a combined model, none of the FHR parameters were selected
and therefore did not provide any additional value or increase
the GA estimation accuracy. In the leave-one-out process, a
new regression model is obtained when excluding each case.
Therefore the model from the combined parameters were not
necessarily the same as the model obtained based on all cases,
thus the mean absolute errors were different for the methods
using valve intervals and combined parameters.

3.2. The Effect of Signal Quality on GA
Estimation
The absolute error which was calculated using leave-one-out
approach, was not significantly correlated with the quality scores
while controlling for GA and FHR:

• Correlation with the fECG quality score: (r = −0.234, p =

0.088).
• Correlation with the DUS signal quality score: (r = −0.007,

p = 0.958).

However the error was decreased by applying a threshold on the
quality of the signals and excluding the cases with low quality
score. Figure 3 shows the changes in the absolute error for
various threshold values of fECG and DUS signal quality scores.
Minimum absolute error 2.7 weeks was obtained when only the
cases with fECG quality score > 0.4 and DUS quality score > 0.3

FIGURE 3 | Applying threshold for acceptable DUS and fECG signal

quality, the absolute error for GA estimation is reduced. The absolute

error (weeks) is plotted vs. the thresholds for fECG and DUS signal quality

scores. The number of excluded cases for different choices of the quality

thresholds are shown on the grid knots.
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(22 cases in total) were considered. Applying higher thresholds
would result in exclusion of more than 60% of cases. Figure 4
shows the estimated GA using cardiac valve timings compared to
the GA based on CRL as a gold standard for 22 fetuses with fECG
quality score > 0.4 and DUS quality score > 0.3. This figure also
shows the 1.96 × SD of the error as the 95% limits of agreement
between the estimated age by cardiac valve intervals and CRL.

Furthermore, the absolute error for estimating the GA based
on the FHR-related parameters could be reduced to theminimum
of 4.7 weeks by applying the threshold of 0.32 on the fECG
quality.

3.3. Changes of the Estimation Error with
GA and FHR
The correlation of the error (estimated GA using valve
intervals - CRL-based GA) using leave-one-out cross-validation,
with GA as well as FHR was calculated and the results are
summarized as follows:

• The error of GA estimation based on the valve timings was
inversely correlated with GA (r = −0.591, p < 0.001).
Stronger correlation with GA was found (r = −0.654,
p < 0.001) when it was controlled for other factors, such
as FHR, and quality score for DUS and fECG. The GA
was overestimated for the early gestation and underestimated
for late gestation fetuses. The error was more significantly
correlated with GA when the regression was based on FHR
parameters (r = −0.939, p < 0.001).

• The absolute value of the error for estimation using valve
timings was not significantly correlated with GA (r = −0.117,
p = 0.385), nor was it significant while controlling for FHR
and quality scores (r = −0.020, p = 0.884). The absolute error
of the regression based on the FHR parameters was inversely
correlated with GA (r = −0.422, p = 0.001), also when it was
controlled for the quality scores (r = −0.446, p = 0.001).

• The error of GA estimation based on the valve timings was
inversely correlated with FHR, when controlling for GA and
quality scores (r = −0.325, p = 0.017). However, the absolute
value of error was not significantly correlated to FHR (r =

0.1226, p = 0.3771).

3.4. Estimation of the GA for Abnormal
Cases
The regression model based on the cardiac valve intervals of the
healthy fetuses was used to estimate the GA of the fetuses with
various abnormalities and arrhythmia. Table 4 shows the GA
estimated by regression and CRL for each case.

The table shows that arrhythmia (for cases 1–5) results in
5 weeks or less error in estimating the GA using heart valve
intervals, while the FHR-based model failed to estimate the
GA for bradycardia and arrhythmia case. Figure 5 shows the
estimated GA using cardiac valve timings vs. the GA based on
CRL as a gold standard for the abnormal cases, compared to
the 95% Confidence Interval (CI) for healthy cases (as shown
in Figure 4). The specific abnormality types which resulted in
estimated GA being outside the 95% CI are specified. The GA
estimation using valve intervals clearly fails for some types of
heart abnormalities such as ASD, VSD, SA and AV block (cases
19–22), due to their influence on opening and closing of the heart
valves. FHR based model also failed for those anomalies as well as
for the case with Premature Atrial Contraction (PAC) which was
correctly estimated by the valve interval-based model.

4. DISCUSSION AND CONCLUSION

In this paper a new approach is proposed for estimation of the GA
using fetal cardiac valve intervals. These intervals were estimated
by a fully automated method from the raw recordings, therefore
is less affected by human errors compared to sonography or LMP
methods. Furthermore, the apparatus used to obtain the valve

FIGURE 4 | (A) The estimated GA using cardiac valve timings and the GA based on CRL as a gold standard were compared for 22 healthy fetuses with fECG quality

score > 0.4 and DUS quality score > 0.3. r, Pearson correlation r-value; r2, Pearson r-value squared; SSE, sum of squared error; n, number of fetuses. (B)

Bland-Altman plot (bias and 95% limits of agreement: 1.96 SD) for the estimated and CRL-based GA. RPC(%): reproducibility coefficient and % of mean values, CV:

coefficient of variation (SD of mean values in %).
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TABLE 4 | Comparison of the estimated GA (weeks) using regression model based on the cardiac valve intervals with the gold standard (identified by

CRL), for the cases with various types of anomalies and arrhythmias.

ID CRL GA Valve-based FHR-based FHR (bpm) DUS/fECG SQI Type of abnormality

Est. GA Error Est. GA Error

1 33 35 2 32 −1 202 0.8/0.5 Tachycardia

2 35 32 −3 29 −6 175 0.8/0.5 Tachycardia

3 38 33 −5 48† 10* 133 0.8/0.4 Arrhythmia

4 37 42 5 47† 10* 105 0.5/0.3 Bradycardia for SSS

5 38 41 3 76† 38* 104 0.6/0.3 Bradycardia for SSS

6 35 46† 11* 34 -1 138 0.8/0.4 WPW

7 37 37 0 118† 81* 117 0.9/0.3 PAC

8 32 36 4 33 1 142 0.7/0.4 Loss of FHRV-distress

9 30 36 6 33 3 149 0.4/0.4 Heart failure

10 33 33 0 34 1 132 0.1/0.5 Heart anomaly

11 36 33 −3 33 -3 145 0.9/0.5 Heart anomaly

12 30 32 2 35 5 135 0.3/0.3 Heart anomaly

13 34 35 1 30 -4 152 0.5/0.5 Heart anomaly

14 22 36 14* 41 19* 133 0.6/0.2 Heart anomaly

15 22 38 16* 54† 32* 122 0.6/0.3 Heart anomaly

16 36 32 −4 34 -2 144 0.9/0.3 Heart anomaly

17 28 29 1 32 4 147 0.7/0.3 TOF

18 28 30 2 43† 15* 145 0.5/0.3 TOF-VSD-PA-MS-PAC

19 23 70† 47* 63† 40* 67 0.5/0.2 VSD-ASD-CDH-CA

20 35 80† 45* 104† 69* 65 0.7/0.2 AV block

21 27 96† 69* 87† 60* 68 0.7/0.2 AV block-SA-CAV

22 24 82† 58* 86† 62* 62 0.6/0.3 PA-CAVC-SA-AV block-PS

23 26 35 9* 37 11* 127 0.3/0.3 Ebstein’s anomaly

24 33 39 6 57† 24* 122 0.6/0.3 Cardiac dilatation-CHD

25 20 67† 47* 89† 69* 78 0.3/0.2 NIHF

26 29 35 6 33 4 144 0.9/0.3 NIHF-Hydrops amnii

27 18 25 7 29 11* 158 0.8/0.4 TTTS Donner

28 35 36 1 31 −4 152 0.3/0.5 Acute crisis-placental abruption

29 24 32 8 31 7 147 0.9/0.3 Placental dysfunction

30 31 20 −11* 30 −1 163 0.6/0.3 History of intrauterine death

†
Marks the estimated GA > 42 weeks, where the abnormal condition affects the valve intervals or FHR, therefore the regression model fails to estimate the GA correctly. The difference

(estimated GA - CRL GA) for the cases marked with * is outside the confidence interval of the error of GA estimation for healthy cases.

SSS, Sick sinus syndrome; WPW, Wolff-Parkinson-White syndrome; PAC, Premature Atrial Contraction; TOF, Tetralogy of Fallot; VSD, Ventricular Septal Defect; PA, Pulmonary Atresia;

MS, Mitral Stenosis; ASD, Atrial Septal Defect; CDH, Congenital Diaphragmatic Hernia; CA, Chromosomal Aberration; AV block, Atrioventricular block; SA, Single Atrium; CAV, Cardiac

Allograft Vasculopathy; CAVC, Common Atrioventricular Canal; PS, Polysplenia Syndrome; CHD, Congenital Heart Disease; NIHF, Nonimmune Hydrops Fetalis; TTTS, Twin-to-Twin

Transfusion Syndrome Donor (Allan et al., 2000; Murray, 2007; Abuhamad and Chaoui, 2012; Allen et al., 2013).

intervals are easier to handle and require less skill to operate
compared to standard sonography techniques. Although in this
work we used non-invasive simultaneous recording of 1-D DUS
signals and fECGs, the latter are only required for estimation
of EDT which depends on the onset of QRS complex. It is also
possible to use only 1-DDUS signals to obtain ICT, VET, IRT, and
VFT using an automated technique that we proposed in previous
work (Marzbanrad et al., 2013b). Since a 1-DDUS device can cost
as little as $17 and can be performed by nonexperts with limited
training, it can be used to estimate the GA in resource limited
settings (Stroux et al., 2014).

Although we have not directly evaluated the ANS and
its relationship with valve intervals, the complex interplay
between autonomic control of the heart and cardiac mechanics

characterized by the valve intervals, has been previously reported
in literature and is consistent with the results of this study
(Berntson et al., 1994; Cacioppo et al., 1994a,b; Di Rienzo et al.,
2013). According to the studies on adult cases, PEP is attributed
to the sympathetic nervous system effect on the heart (Cacioppo
et al., 1994a). As shown in Figure 1, the PEP, which is the
duration from Q-wave to aorta opening, is comprised of two
intervals: the EDT, which is the Q-wave to mitral closing interval,
and the ICT, which is mitral closing to aorta opening interval.
Our results show that not only do the ICT and EDT contribute
to the GA estimate but their interaction is also a significant
contributor. According to the results of stepwise regression in
Table 2, VFT was also selected as a contributing term to the
estimate the GA. Although less emphasis has been placed on
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FIGURE 5 | The estimated GA using cardiac valve timings vs. the GA based on CRL as a gold standard are shown for 30 abnormal cases. The 95%

Confidence Interval (CI) for healthy cases (as shown in Figure 4) and y = x line are also shown for comparison. The abnormality types are specified for the cases with

estimated GA being outside the 95% CI. More details can be found in Table 4. (WPW, Wolff-Parkinson-White syndrome; VSD, Ventricular Septal Defect; PA,

Pulmonary Atresia; ASD, Atrial Septal Defect; CDH, Congenital Diaphragmatic Hernia; CA, Chromosomal Aberration; AV block, Atrioventricular block; SA, Single

Atrium; CAV, Cardiac Allograft Vasculopathy; CAVC, Common Atrioventricular Canal; PS, Polysplenia Syndrome; CHD, Congenital Heart Disease; NIHF, Nonimmune

Hydrops Fetalis).

fetal VFT than other intervals, both in the literature and clinical
practice, studies on adults found that VFT is controlled by
both sympathetic and parasympathetic activity (Pinsky, 2005;
Frazier et al., 2008; Khandoker et al., 2016). Therefore fetal
development can be assessed by the ICT, the EDT and the
VFT, as well as their interactions which evolve concomitantly
with the changes in sympathetic and parasympathetic activities
during fetal maturation. As discussed earlier, fetal autonomic
brain age can be assessed using FHRV parameters (Van Leeuwen
et al., 2003; Hoyer et al., 2013). The results of this current
work demonstrated that a new method based on valve intervals
outperforms the FHR-based method in estimating the GA
although only time and frequency domain parameters and
non identical populations were used. Furthermore, the valve
interval method was less influenced by arrhythmias, particularly
bradycardia, as shown in Table 4. FHR is also influenced by
other factors such as behavioral states of the fetus and maternal
physiological and psychological conditions, particularly in the
second and third trimesters (Mantel et al., 1991; Monk et al.,
2000; Ivanov et al., 2009; Marzbanrad et al., 2015b).While
FHR might change according to those factors, this may not
necessarily affect the estimation of GA by cardiac intervals.
Among the cardiac valve intervals which were found contributing
to estimation of gestational age, only VFT was correlated with
FHR; the correlation of beat-by-beat fetal RR-intervals with ICT,
EDT and VFT across 57 fetuses, were (−0.03 ± 0.13), (−0.02 ±
0.10) and (0.50± 0.21), respectively.

We note some limitations of the current study; first, the
recordings used in this study are short and may not thoroughly
represent the FHRV patterns which are used to evaluate the
fetal functional brain development (Hoyer et al., 2013). Longer

recordings would enable a better comparison of the effectiveness
of valve intervals vs. FHRV patterns to assess the development of
autonomic control. Further investigation using longer recordings
is also recommended to be able to assess the influence of
behavioral states and heart rate patterns on the valve intervals.
We also acknowledge the recommendation of 5 min ECG for
HRV analysis particularly for nonlinear measures. However,
short term FHR variability e.g., the variation of beat-to-beat
intervals for adjacent 3.75 s-epochs averaged over 1 min has
been shown promising for monitoring of fetal development and
surveillance of IUGR (Serra et al., 2008, 2009). On the other hand,
the fact that most of the nonlinear HRV measures require at last
5 min of heart rate recording, further highlights an advantage
of our proposed approach based on cardiac valve intervals,
over the FHR-based approaches for GA estimation. Different
from FHR-based approaches, the cardiac valve intervals require
significantly less recording and measurement time to acquire a
reliable estimation of the intervals to assess the fetal development.
In clinical practice using ultrasound imaging, the parameters
such as VET and PEP can be estimated by averaging over 30 s,
and have shown to be well correlated with the gestational age
(Mensah-Brown et al., 2010; Cruz-Martinez et al., 2012). This
significantly reduces the examination time and the discomfort for
the mothers.

The second limitation of our study is that our patient
population did not include growth-restricted fetuses. To fully test
our proposed technique, it would need to be evaluated on such
a population. Although we have not evaluated the cardiac valve
intervals for the fetuses with growth issues, this was studied in the
literature, for young children (Alkon et al., 2003; van Deutekom
et al., 2016). Van Deutekom et al., have shown that both
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birth weight and conditional height gain were independently
associated with PEP, but not with Respiratory Sinus Arrhythmia
(RSA).They discussed that as a shorter PEP indicates higher
cardiac Sympathetic Nervous System (SNS) activity, this finding
suggests that children with low birth weight have increased
SNS activity compared with normal-birth-weight children. They
associated the increased infant height gain with decreased
SNS activity. Similar results specially for female children were
observed by Feldt et al. (2011). Although these studies were not
on fetuses, it is consistent with our result, showing that it might
be extended to the fetal period. Furthermore, our study proposes
a new physiological growth estimation method for healthy
population, as the first step in identifying fetal development
abnormalities. Furthermore, we studied fetal cardiac anomalies
and arrhythmias which may confound the evaluation of GA,
and obscure the potential detection of growth abnormalities. The
third limitation is that the evaluation of the estimated GA using
the proposed method for abnormal conditions, shows that the
method fails to estimate the GA in presence of some, but not all,
heart anomalies. This was particularly noted for the anomalies
that affect operation of the valves. From another perspective,
these results show that the valve intervals could be used to detect
these anomalies that resulted in unrealistic GA estimates or large
errors, as also investigated in our recent studies (Marzbanrad
et al., 2014b; Khandoker et al., 2016). However, more cases with
a large variety of anomalies are required for a more rigorous
evaluation of their influence on the estimated GA.

Although in this study we have not considered the fetal gender,
it might have an influence on the fetal growth and development.
While some studies found no significant differences between
male and female FHR during the first and second trimester
(Neiger et al., 2004; McKenna et al., 2005), different intrapartum
FHR patterns have been reported for two genders (Porter
et al., 2016). Another study on term fetuses just before the
labor, reported significantly lower values of most linear HRV
measures for female fetuses compared to male fetuses, in both
IUGR and control groups, as well as higher entropy indices in
the control group (Gonçalves et al., 2013). Apart from FHR,
the cardiac function was also previously investigated for male
and female fetuses and no significant differences in cardiac
function were found for different genders, except tricuspid valve
E-wave velocity/time velocity integral for the entire tricuspid
valve inflow (E/TVI) and pulmonary valve Acceleration Time
(AT) (Clur et al., 2011). Based on the literature noted above,
further investigations are required to study the gender-specific
differences for GA estimation using valve intervals and FHRV.
However, we note that in our study, the assumption was made
that gender-determining technology would not be available. In
other words, we aimed tomake a system that could identify IUGR
based upon the one dimensional Doppler only. In this context,
the inclusion of gender into the algorithm would reduce the
applicability of the approach we present.

Results of this study demonstrate that, for acceptable quality
DUS and fECG recordings (determined automatically), the
average error in GA estimation can be as low as 2.7 weeks, which
is comparable to existing expert-driven methods. This proposed
approach to GA estimation could be also improved with more

accurate methods of quality assessment for 1-D DUS and fECG
signals. It should be also noted that the error was obtained
by comparing the estimated GA to the CRL estimates as gold
standard, while a more accurate way would be to prospectively
enroll the study subjects prior to conception and confirm the
day of conception. The CRL is however subject to error (95%
confidence interval of around 10 days), particularly in case of
pathologies or unsuitable positioning (Grange et al., 2000; Callen,
2011). Furthermore the valve intervals have the advantage that
they reflect physiological development of the fetus which is
not completely aligned with the physical growth of the fetus.
As discussed earlier, the sonography methods can be affected
by genetic variations, such as the head shape, positioning of
the fetus and pathologic conditions. While the error of the
ultrasound-based GA predictors increases with gestational
age (Caughey et al., 2008; Falatah et al., 2014; Al-Amin et al.,
2015), according to our results, the error of the valve-based
method does not change with gestational progression. The
accuracy of the FHR-based method even increased with
advancing gestation. Therefore our proposed physiological
measures can be used in second and third trimesters, when the
ultrasound imaging measures have a low accuracy and fail to
detect abnormal growth, particularly in late gestation (Al-Amin
et al., 2015). Overall, the proposed technique can be used as a
measure of the physiological development and an adjunct in
estimating the GA where ultrasound methods are unavailable
or inadequate due to pathologies, unsuitable positioning,
lack of skilled ultrasound operators, or other technical
issues.

In conclusion, we proposed a novel and automated
method for estimation of the GA, which could be performed
using low cost, easy to operate devices that requires lower
skills/training compared to sonography methods. In contrast
to the sonography methods that are based on the physical
growth, our proposed method provides assessment of the
fetal physiological development. Compared to CRL-based GA
estimates as gold standard, our method resulted in 2.7 weeks
error for acceptable quality of recordings and also outperformed
the GA estimation by FHRV parameters. The GA estimation
based on valve intervals was affected by certain heart anomalies
which influence the performance of the valves, but less affected
by arrhythmias. Remaining errors in estimating the GA could
be used as a marker to detect fetal abnormalities. Considering
that the valve intervals reflect the autonomic control of the
fetal heart, the new method provides automated assessment
of the fetal ANS development that could be independent of
the fetuses’ locations on the growth curve (since our measure
reflects neural development and not physical size). As a result
the method proposed in this work might provide indications
of growth-related issues, such as IUGR, early in pregnancy and
potentially lead to early interventions.
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