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Abstract

Motivation: Signal-transduction networks are often aberrated in cancer cells, and new anti-cancer

drugs that specifically target oncogenes involved in signaling show great clinical promise.

However, the effectiveness of such targeted treatments is often hampered by innate or acquired

resistance due to feedbacks, crosstalks or network adaptations in response to drug treatment.

A quantitative understanding of these signaling networks and how they differ between cells with

different oncogenic mutations or between sensitive and resistant cells can help in addressing this

problem.

Results: Here, we present Comparative Network Reconstruction (CNR), a computational method to

reconstruct signaling networks based on possibly incomplete perturbation data, and to identify

which edges differ quantitatively between two or more signaling networks. Prior knowledge about

network topology is not required but can straightforwardly be incorporated. We extensively tested

our approach using simulated data and applied it to perturbation data from a BRAF mutant,

PTPN11 KO cell line that developed resistance to BRAF inhibition. Comparing the reconstructed

networks of sensitive and resistant cells suggests that the resistance mechanism involves re-

establishing wild-type MAPK signaling, possibly through an alternative RAF-isoform.

Availability and implementation: CNR is available as a python module at https://github.com/NKI-

CCB/cnr. Additionally, code to reproduce all figures is available at https://github.com/NKI-CCB/

CNR-analyses.

Contact: l.wessels@nki.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Aberrations in cellular signal-transducing networks are one of the

hallmarks of cancer (Hanahan and Weinberg, 2011), and many new

anti-cancer drugs specifically target genes involved in signaling

(Roberts and Der, 2007). Unfortunately, the effectiveness of tar-

geted therapies is often limited by unexpected feedbacks or cross-

talks (Klinger et al., 2013; Prahallad et al., 2012; Sun et al., 2014a),

and resistance typically emerges due to network adaptations that re-

activate inhibited pathways (Ahronian et al., 2015; Sun et al.,

2014b). A better and more quantitative understanding of the inter-

actions in such networks, and how these are remodeled under drug

exposure, could potentially aid in the design of effective treatments.

Several types of computational approaches have been developed

to characterize signaling networks. Ordinary differential equation-

based models give detailed, dynamic and quantitative descriptions

of a system (Fey et al., 2015). However, such models typically have

many parameters that need to be estimated. Fitting these requires

vast amounts of measurements and is computationally very expen-

sive, limiting the scope to small systems of which the topology is al-

ready well known. Because of their relative simplicity, logic (or

Boolean) models are suitable for larger systems (Saez-Rodriguez

et al., 2009), and have been used to predict synergistic drug interac-

tions (Flobak et al., 2015) and to identify differences in signaling

network topologies between cell lines (Saez-Rodriguez et al., 2011).
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However, these models are not quantitative and require discret-

ization of the data.

Modular response analysis (MRA) is a framework that strikes a

balance between the level of detail and scope of a model

(Bruggeman et al., 2002; Kholodenko et al., 2002). MRA is a math-

ematical framework that quantifies the interaction strengths be-

tween network nodes based on perturbation data. It only considers

interactions between ‘modules’, characterized by a single output

affecting other modules. In the context of signaling networks, this

means that only the active form of the kinase needs to be considered.

MRA is considerably simpler than ODE-based models while retain-

ing the relevant information about how network nodes influence

each other. In its original formulation, MRA and similar methodolo-

gies (Gardner et al., 2003) require perturbations of all nodes, which

is always not feasible, for instance, because not all proteins are

druggable. This problem can be solved by a maximum-likelihood

(Klinger et al., 2013; Stelniec-Klotz et al., 2012) or Bayesian (Halasz

et al., 2016; Santra et al., 2013) reformulation of MRA, or similar

methods (Korkut et al., 2015), but these methods typically require a

defined network topology as input.

While all existing approaches model a specific given signaling

network, one is often specifically interested in the quantitative dif-

ferences between signaling networks. For instance, how signaling

networks in wild-type cells are transformed by oncogenic muta-

tions or revealing resistance mechanisms that appear under drug

exposure by comparing the treatment-naive and resistant net-

works. Here, we present Comparative Network Reconstruction

(CNR), a reformulation of MRA as a Mixed Integer Quadratic

Programming (MIQP) problem that allows for efficient network

reconstruction and quantification of networks in multiple cell lines

simultaneously, allowing the identification of the most relevant

differences between them. As input, CNR uses possibly incomplete

perturbation data in combination with annotation of the nodes

that are directly affected by the perturbations. CNR does not re-

quire a predefined network topology, but prior information can be

included straightforwardly.

We first extensively test CNR on simulated perturbation data,

exploring how noise and incomplete perturbation data affect the

quality of network reconstructions. We then demonstrate our ap-

proach using perturbation data from a BRAF mutant, PTPN11 KO

colorectal cell line that acquired resistance resistance to BRAF in-

hibition. The resistant cells are less sensitive to BRAF inhibition,

more sensitive to growth-factor stimulation, and have a negative

feedback from ERK to MEK, suggesting that the resistance mech-

anism involves re-establishing wild-type MAPK signaling.

2 Materials and methods

2.1 Formulation of the Comparative Network

Reconstruction algorithm
Here, we briefly describe the CNR formalism. For more background

information and details, please consult the Supplementary

information.

CNR is based on MRA (Kholodenko et al., 2002), a mathematic-

al framework to identify and quantify the interactions in a network

based on perturbation experiments. MRA links the measured re-

sponse Rij (defined as the log2-fold change in the steady-state activ-

ity of node xi after perturbation j) to the unobserved physical

interaction strengths rkl (defined as the logarithmic partial derivative

of xk with respect to xl) and direct perturbation effects smn (the

scaled direct effect of perturbation n on xm). The matrices of local

and global response coefficients and the direct perturbation effects

are related through the equation

r � R ¼ �s: (1)

CNR aims to find a network model that solves these equations

for multiple cell lines simultaneously while minimizing model com-

plexity and the number of differences between the reconstructed net-

works of the different cell lines.

Formally, given Nn nodes in the network, Np perturbations and

Nc cell lines, and for i; j 2 f1; 2; . . . ;Nng; n 2 f1; 2; . . . ;Npg and

x 2 f1; 2; . . . ;Ncg, the MIQP problem reads as follows:

minimize :
X

n;i;j;x

f�x 2
in þ g � Iedge

ij þ h � ðIdiff
ij þ Isdiff

in Þg

subject to :
XNn

k¼1

rx
ik � Rx

kn þ sx
in ¼ �xin 8i; j; n; x

Iedge
ij ¼ 0) rx

ij ¼ 0 8i; j; x

Idiff
ij ¼ 0) rx

ij � rmean
ij ¼ 0 8i; j; x

Isdiff
in ¼ 0) sx

in � smean
in ¼ 0 8i; n; x

rmean
ij ¼

X

x

rx
ij=Nc 8i; j

smean
in ¼

X

x

sx
in=Nc 8i; n

Iedge; Idif ; Isdiff 2 f0; 1g

where the �s represents the degree to which Equation (1) is satisfied,

g and h are hyper parameters to tune the degree of penalization on

the number of edges and difference between cell lines, respectively.

Iedge
ij ; Idiff

ij and Isdiff
in are indicator variables indicating whether an

edge is present or not, and whether and edge or pertubation strength

is allowed to differ between cell lines, respectively.

Prior information about network topology can be added as con-

straints of the form Iedge
ij ¼ 0 or Iedge

ij ¼ 1 for edges that are known

to be absent or present, respectively. Similarly, information about

the sign of an edge or perturbation can be added as a constraint of

the form rx
ij � 0 or sin � 0.

The optimization problem is solved using IBM ILOG CPLEX

solver (Version 12.7.1), which is freely available for academic use.

Importantly, the MIQP solver guarantees optimal solutions (within

small numerical tolerances). In some cases, we also want to obtained

close-to-optimal solutions. For this, we use the CPLEX solution-

pool functionality.

2.2 Simulating perturbation data
To generate simulated perturbation data, we used an ODE model of

EGFR signaling developed by Orton et al. (2009). We calculated the

steady state by integrating the model over a suitably long time-

interval. All proteins were in their inactive state in the initial condi-

tions. Activating mutations in BRAF, RAS and EGFR were modeled

by setting all these proteins to the active state in the initial condi-

tions, and setting the conversion rate to the inactive state to zero.

We simulated perturbations as knockdowns of a protein by reducing

the total amount of that protein by 50%, and recalculating the

steady state. We calculated the global response coefficient for pro-

tein i in response to perturbation p as Rip ¼ log 2ðXi;p=Xi;0Þ, where

Xi;p and Xi;0 are the perturbed and unperturbed steady-state concen-

trations of the active state of protein i, respectively. We added noise
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to the global response coefficients by multiplying them with a ran-

dom number drawn from a normal distribution with mean (l) set to

1 and standard deviation (r) set to the noise level. To calculate the

true local response coefficients for each interacting pair of proteins,

we numerically calculated the partial derivatives of the steady-state

concentration of the downstream active protein with respect to a

perturbation in the concentration of the upstream active protein (by

keeping the concentration of all other active proteins fixed). To ob-

tain the true direct perturbation effects of knockdown a protein, we

reduced its total amount by 50%, fixed the concentrations of all

other proteins, and calculated the new steady-state concentration of

that protein in its active state.

2.3 Cells and cell culture
All cell lines were derived from the BRAFV600E mutant VACO432

colorectal cancer cell line. Generation of the VACO432 PTPN11

KO clones is described by Prahallad et al. (2015). Persister cells

were generated by prolonged culturing of VACO432 PTPN11 KO

cells in the presence of 2mM Vemurafenib and selecting surviving

colonies. Cell lines were cultured in RPMI supplemented with 10%

fetal calf serum (FCS) 1% Glutamine and 1% Penicillin/

Streptomycin (Gibco). The persister cell line was not maintained.

2.4 Perturbation experiments
Prior to the perturbation experiments, cells were synchronized by

serum starvation during 24 hours. During this period, the persister

cells were kept exposed to Vemurafenib. At t ¼ �60 minutes, cells

were treated with an inhibitor (BRAF: Vemurafenib at 2mM, MEK:

Selumetinib at 1 mM, ERK: SCH772984 at 1mM, AKT: MK2206 at

1mM or PI3Ki: GDC0941 at 1mM; All SelleckChem). At t¼0, cells

were stimulated with growth factor (EGF at 20 ng ml�1, HGF at

25 ng ml�1 or NRG1 at 25 ng ml�1; all R&D systems) and at

t¼30 minutes were harvested by washing with ice-cold PBS and

lysing with Bio-Plex Pro Cell Signaling Reagent Kit (Bio-Rad)

lysis buffer. Cell lysate was analyzed with the Bio-Plex Protein

Array system (Bio-Rad, Hercules, CA) according to the suppliers

protocol as described previously (Klinger et al., 2013). The follow-

ing phospho-sites were measured: EGFRY1068, MEKS217,S221, ERK1/

2T202,Y204/T185,Y187, p90RSKS380, RPS6S235/S236, PI3K p85S15,

AKTS473, mTORS2448 and GSK3A/BS21/S9.

3 Results

3.1 An efficient method for network reconstruction from

perturbation data
We have developed CNR, a computational framework to (i) recon-

struct and quantify interactions between signaling proteins based on

potentially incomplete perturbation experiments; (ii) doing so in

multiple cell lines simultaneously and (iii) with the possibility to use

prior data on the network topology and edge signs (Fig. 1). CNR is

a reformulation and extension of MRA (Kholodenko et al., 2002) as

an MIQP problem.

Reconstruction of a network using MRA requires each node of

the network to be perturbed, because otherwise the problem is

under-determined. This is typically not feasible, for instance due to

cost constraints or simply because not all nodes can be perturbed by

e.g. applying a drug. Furthermore, in the classical formulation, it is

not possible to simultaneously reconstruct the networks of several

cell lines, which complicates their comparison. CNR solves these

problems.

CNR takes the log2-fold changes of signaling proteins in

response to perturbations as input, together with annotations of

which nodes are perturbed (Fig. 1). Optionally, information about

the presence, absence or signs of interactions can also be supplied

(Fig. 1). CNR then tries to find a network model that (i) fits the per-

turbations data; (ii) maintains the same topology for all cell lines;

(iii) penalizes model complexity (i.e. the number of edges in the net-

work) to prevent over-fitting and (iv) penalizes the number of edges

that differ between cell lines to facilitate identification of the most

relevant differences. The latter has the additional advantage of

reducing the number of parameters, since most edges are described

by the same parameter in all cell lines.

The output of CNR is a network quantification for each cell line,

in combination with a quantification of the strengths of the effects

of perturbations on their direct targets (Fig. 1). The interaction

strength between a pair of nodes consisting of a source and target

node is referred to as the local response coefficient. This coefficient

is interpreted as the percentage change in the target node activity in

response to a 1% change in the source node activity.

3.2 In-silico evaluation
To test our method, we simulated perturbation experiments using

an ODE-based dynamic model of the EGFR signaling developed by

Orton et al. (2009) (Supplementary Fig. S1). Following Orton et al.,
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Fig. 1. Schematic illustration of CNR. CNR requires perturbation data (log2-fold changes of node activity compared to a reference state) of one or multiple cell

lines as input. Optionally, information on the network topology or edge signs can be included. Based on this data, an MIQP problem is formulated that aims to

find a network model that fits the data the while penalizing the number of edges in the network and the number of quantitative differences between the cell lines.

The output is a network quantification and identification of which edges differ between the cell lines. Edge-weights indicate how strongly a target node responds

to a change in the activity in the source node
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we also generated BRAF, KRAS or EGFR mutant versions of the

model by forcing these proteins to all be in their active state. We

simulated network perturbations by ‘knocking down’ all the rele-

vant nodes in the network, one by one, and using the resulting meas-

urements as input to CNR.

We tested the performance of CNR by comparing network

reconstructions to the known model from which the data

were simulated. Note that since CNR aims to quantify the effect of

a perturbation on the steady-state concentration of the active form

of a protein only, the CNR network reconstruction will be much

simpler than the original model. Nevertheless, the true interactions

between active proteins are unambiguously defined (Fig. 2A).

Specifically, we wanted to test how noise in the data, the penalty on

differences between cell line, or incomplete data affect the ability to

reconstruct or quantify the network interactions. In the following

sections, unless stated otherwise, we did not employ any informa-

tion about the model topology for the reconstructions, and we

added 10% noise to the input data.

Fig. 2. Orton model simulation and CNR results. For all results presented here, 10% noise was added to the simulated data. (A) Network topology of the modules

in the Orton model. (B) Receiver-operator-curves of network reconstructions using noisy data of the wild-type model, the BRAF model and both combined, with

h¼0. (C) Fitting error versus number of differing edges between cell lines indicate that most edges can be set to the same value without affecting model fit. (D)

Network reconstructions of the wild-type and BRAF mutant model. Left: Network topology. Edges that differ between the model-reconstructions are highlighted.

Green edges are positive, red ones negative. Right: Correlation between reconstructed and actual model parameters. (E) True (top) and False (bottom) positive

rates of network reconstruction as function of the number of perturbations in the input data. (F) Spearman correlation between predicted and simulated model

parameters (top) and response for perturbations that were not used in reconstructing the network (bottom)
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3.2.1 The effect of measurement noise on topology reconstructions

We first tested the ability of our method to reconstruct the network

topology when the data is noisy. To this end, we performed recon-

structions with different levels of noise added to the input data, for

different values of the g-hyperparameter (using h¼0). By starting

with a large g and gradually lowering it, we get solutions with an

increasing number of edges. From these solutions we calculated the

true-positive rate (number of true-positive edges/total number of

real edges) and the false-positive rate (number of false-positive

edges/total number of real-negative edges). Figure 2B shows the

receiver-operating characteristic (ROC) curve for reconstructions of

the BRAF mutant (light blue) and the wild-type (gray) cell lines, and

simultaneous reconstruction of both together (dark blue), when

10% noise is added to the data. A true-positive rate of >0.8 is

attained while keeping the false-positive rate well below 0.05, so

despite noisy data, a large majority of the edges can be correctly

identified. (This is attained when using g ¼ 0:005.) The performance

of the wild-type þ BRAF-mutant and wild-type alone reconstructions

are comparable, and better than that of the BRAF-mutant alone. This

is presumably because due to constitutive BRAF-activation nodes

downstream of BRAF are nearly unresponsive to perturbations up-

stream of BRAF, making these less informative for identifying down-

stream edges. Similar results were obtained for the other mutants

(Supplementary Fig. S2). As expected, increasing the noise levels

reduces the performance, but even at 100% noise, the reconstruction

performs much better than randomly reconstructing the network, rep-

resented by the dotted gray line where the true-positive rate equals the

false-positive rate (Supplementary Fig. S2). Interestingly, the perform-

ance of the BRAF and the RAS mutant cell line reconstructions suffer

less from increasing noise than that of the wild-type.

3.2.2 The effect of the penalty on cell line differences on model fit.

Next, we first tested how the penalty on the differences between cell

lines affects the model fit to the data by performing reconstructions

using different values for the h-hyperparameter (using a fixed

g ¼ 0:005). We performed this analysis by pairing the wild-type

with the BRAF, RAS and EGFR mutants, respectively. In addition,

we performed the analysis for all cell lines combined (Fig. 2C). For

each of these analyses, a model with only a small number of differ-

ences (�10, attained when h ¼ 0:01) between the cell lines fits the

data nearly as well as a model where all edges differ between the cell

lines. The number of edges that differ between cell lines can thus be

strongly decreased without affecting the fitting error, which is what

one would expect when comparing isogenic cell lines that only differ

by a single mutation. Adding a non-zero h-value does not influence

the ROC-curves (Supplementary Fig. S2).

3.2.3 Example reconstructions

Having established that CNR is capable of accurately reconstructing

networks while strongly reducing the differences between cell lines,

we next wanted to assess how interpretable the obtained differences

between networks are. To this end, we reconstructed the wild-type

and BRAF mutant models together, using g ¼ 0:005 and h ¼ 0:01,

and visualized the resulting networks (Fig. 2D, left). The thickness

of the arrows represents the magnitude of the reconstructed local re-

sponse coefficients. The edges that differ between the cell lines are

highlighted in color. As expected, in the BRAF-mutant, BRAF acti-

vation is unresponsive to RAP1 and more responsive to knockdown

of BRAF itself. Furthermore, all other differences between the cell

lines are downstream of BRAF. (In the mutant, the nodes down-

stream of BRAF are less responsive to changes in their direct

upstream kinases due to saturation effects.) Similar results are

obtained for the other mutants (Supplementary Fig. S3). This illus-

trates that a comparative reconstruction can identify where in the

network two cell lines differ. Importantly, the reconstructed local re-

sponse coefficients and direct perturbation effects correlate very well

with their true value directly obtained from the Orton model

(Fig. 2D, right). This indicates that CNR can be used to obtain

quantitatively accurate model reconstructions from noisy data.

3.2.4 The effect of incomplete perturbation data

It is always not feasible to perturb each node in the network. To test

how incomplete perturbation data affects the accuracy of network

reconstruction, we performed reconstructions based on a reduced

number of input perturbations. To this end, we randomly selected

between 2 and 10 nodes to perturb, added 10% noise to the data,

and performed the network reconstruction. (Because we expect the

total fitting error to scale with the number of perturbations Np, we

scaled g and h using g ¼ 0:01 �Np=Nn and h ¼ 0:01 �Np=Nn,

where Nn ¼ 12.) We repeated this 50 times for each number of per-

turbations. Figure 2E and Supplementary Figure S4 show the true-

and false-positive rates of these reconstructions. As expected, the

performance decreases with decreasing numbers of perturbations.

However, with as few as two or four perturbations, we still attain

performance levels well above random guessing. With low numbers

of perturbations used as input, there is a clear benefit of combining

multiple cell lines, as the panel combining all cell lines consistently

has among the highest true-positive and lowest false-positive rates.

3.2.5 Predicting the effect of new perturbation

Sometimes one is more interested in network quantification and predic-

tion of the effect of new perturbations from a systems were the top-

ology is known, rather than identifying which edges are present. We

therefore next tested how well CNR is capable of quantifying the

model parameters—local response coefficients and direct perturbation

effects—based on incomplete perturbation data. We again randomly

selected between 2 and 10 perturbations, added 10% noise to the data,

performed reconstructions this time with the correct network topology

supplied, and compared the fitted parameters with the true parameters

directly obtained from the Orton model (Fig. 2F and Supplementary

Fig. S5, top). With as few as 6 perturbations, the median Spearman

correlation is roughly 0.5, and for 8 perturbations it approaches 1.

We then used the obtained network-quantifications to predict

the response to perturbations that were not used in quantifying the

network. To quantify the predictive accuracy of these networks, we

calculated the Spearman correlation between the predicted and true

response for each perturbation. In calculating the correlation, we

excluded the perturbed node itself since the direct-perturbation effect

is not part of the prediction. Perturbations where none of the nodes re-

spond are also excluded. Figure 2F and Supplementary Figure S5 (bot-

tom) show that for as few as four or six perturbations, the median

Spearman correlation between the predictions and the simulated

responses is very close to 1. Interestingly, while the performance in

edge reconstruction of the BRAF and RAS mutants were slightly bet-

ter than those of the wild-type and EGFR mutants, their quantitative

predictions are slightly worse (Supplementary Fig. S5).

3.3 Network quantification of PTPN11 KO cells with and

without acquired resistance to BRAF inhibition
To test the ability of CNR in a real-world setting, we set out to iden-

tify the cause of resistance to targeted anti-cancer drugs by elucidat-

ing how the signaling network changed in resistant cells.
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Specifically, we wanted to understand how a PTPN11 KO colorectal

cancer (CRC) cell line harboring an activating BRAFV600E mutation

become resistant to BRAF inhibition with Vemurafenib.

3.3.1 PTPN11 KO and sensitivity to BRAF inhibition

Normally, BRAFV600E mutated CRC cells are unresponsive to BRAF

inhibition due to a feedback loop that activates the receptor tyrosine

kinase (RTK), EGFR, upon BRAF inhibition (Klinger et al., 2013;

Prahallad et al., 2012). Recently, Prahallad et al. showed that knock-

out of PTPN11—which is required to transduce signals from RTKs to

the MAPK pathway—prevents this feedback loop from reactivating

the MAPK signaling pathway (Prahallad et al., 2015) (Fig. 3A).

However, when PTPN11 KO cells are cultured in the presence of a

BRAF inhibitor, they eventually become resistant to this inhibitor.

3.3.2 Generation of persisters

To test how resistance to the BRAF inhibition in PTPN11 KO CRC

cells emerges, we generated ‘persister’ cells by culturing a PTPN11

KO clone of the BRAFV600E mutated CRC cell line VACO432 in the

presence of the BRAF inhibitor Vemurafenib. After roughly 2 weeks,

persister cells emerged that were able to grow in the presence of

Vemurafenib at a growth rate comparable to that of the parental

line in the absence of drug (Fig. 3B).

3.3.3 Perturbation experiments

We systematically perturbed VACO432 parental, PTPN11 KO and

the derived persister cells with combinations of growth factors and

inhibitors targeting proteins in the PI3K-AKT and MAPK pathway,

and measured the steady-state responses of the phosphorylation sta-

tus of main proteins in the pathways (Fig. 3A and C). The log2-fold

changes, relative to their unperturbed (i.e. uninhibited an unstimu-

lated) state, were used as input to the CNR optimization problem.

As the MAPK and AKT pathways are relatively well characterized,

we did not focus on the reconstruction of the pathway topology.

Instead, we restricted the model to consist of known interactions

and feedbacks obtained from the literature (Fig. 3A).

3.3.4 Modeling of perturbations

Some kinase inhibitors prevent activation of their target by blocking

the phosphorylation of the kinase itself, whereas other work by pre-

venting the kinase activity of the phosphorylated protein. We model

the latter type of inhibitor as perturbing the substrates of its direct

target. Specifically, the MEK and PI3K inhibitors are preventing the

kinase activity of their targets and are thus modeled to perturb ERK

and AKT, respectively. Since we did not measure BRAF, we cannot

model the direct effect of BRAF inhibition on BRAF, but instead

model it as a perturbation of MEK. Similarly, we did not measure

activity of HER2 and MET, so we model HGF and NRG1 stimula-

tion as affecting MEK, PI3K and AKT directly.

3.3.5 Network reconstruction

Figure 4A shows the network reconstruction of the three cell lines,

and how they differ. We allowed for six differences between net-

works as it gives a good balance between model-fit and model-

complexity (Supplementary Fig. S6). As expected, the response of

MEK activation to BRAF inhibition is much smaller in the persisters

compared to the parental and the PTPN11 KO cells. Furthermore,

in the persisters the feedback from ERK to MEK is stronger and

MEK is more responsive to receptor stimulation. Finally, the effect

of EGFR on AKT is weaker in both the PTPN11 KO and the per-

sister cells, indicating that PTPN11 might be involved in signaling to

the AKT pathway as well as the MAPK pathway.

3.3.6 Robustness of network reconstruction

To test how robust these results are, we generated a large pool of

solutions by varying the allowed number of differences between 0

and 16, and also considering close-to-optimal solution (with an ob-

jective value at most 1.5 times the best possible given the number

of differences between cell lines). We counted how often each edge

Fig. 3. Perturbation experiments in PTPN11 WT, KO and BRAF inihibitor resistant cells. (A) Schematic of role of PTPN11 in signal transduction. (B) Overview of

the cell-lines used. VACO432 cells are insensitive to BRAF inhibition, but can be sensitized by knocking out PTPN11. Prolonged culturing VACO432 PTPN11 KO

cells in the presence of BRAF inhibitor gives rise to resistant VACO432 PTPN11 KO cells. (C) Results of the perturbation experiments. The color scale indicates

log2-fold change relative to unstimulated, uninhibited controls
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differed between cell lines in the 168 solutions in the solution-

pool. There are a limited number of edges that occur in the major-

ity of these solutions (Fig. 4B). These are (i) the response of MEK

to BRAF inhibition; (ii) the effects of EGFR on MEK and AKT;

(iii) the feedback from ERK to MEK and (iv) the responsiveness of

MEK to growth-factor stimulation. Furthermore, the often-

occurring differences were also quantitatively consistent in most

solutions (Fig. 4C), and in agreement with the observations we

made earlier: (i) MEK activity in persisters is less responsive to

BRAF inhibition; (ii) more responsiveness to growth factor stimu-

lations; (iii) persisters have a negative feedback from ERK to MEK

and (iv) the connection between EGFR and AKT is stronger in the

(PTPN11 WT) parental cells. This indicates that these results are

robust and do not depend on the detailed settings in the network

reconstruction.

3.3.7 Interpretation

The CNR results suggest a model in which the persister cells

became resistant by re-establishing normal (RAF-wild-type) MAPK

signaling, by, for instance, using an alternative RAF-isoform

(Fig. 4D). Such a model explains the reduced response of MEK to

Vemurafenib, which specifically targets BRAFV600E and not wild-

type RAF. It explains the stronger negative feedback from ERK to

MEK, which is mediated through RAF and thus weak if BRAF is con-

stitutively active. It also explains the increased responsiveness of MEK

to EGFR and other growth factors, which are also mediated through

RAF and thus weak if BRAF is constitutively active. Consistent with

this hypothesis, pERK is activated in the persisters and RAS is consti-

tutively loaded with GTP (Fig. 4E). This hypothesis suggests that the

persister cells might be sensitive to pan-RAF inhibition.

4 Discussion

Understanding which targeted therapies are effective in what con-

text, and how cells adapt to become resistant, requires a quantitative

understanding of signaling networks and how they differ between

cells. In this study we developed CNR, a computational method to

reconstruct signaling networks based on perturbation data. CNR

focuses on identifying quantitative differences between a set of cell

lines (or other experimental models), as this is often the relevant bio-

logical question. Using simulated data we showed that CNR works

well with noisy and incomplete data.

We applied CNR to perturbation data we generated from

BRAFV600E mutated, PTPN11 KO colorectal cancer cells that were

Fig. 4. Model reconstruction of sensitive and persister VACO432 cells. (A) Network reconstruction from perturbation data. (B) Overview of parameters that differ

in many of the solutions. (C) Boxplots of selected parameters indicating that the differences are quantitatively similar in different solutions. (D) Hypothesis:

Resistance is due to re-establishment of normal MAPK signaling. (E) Consistently, pERK is activated and GTP constitutively loaded with GTP
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made resistant to the BRAF inhibitor Vemurafenib through continu-

ous exposure to sub-lethal doses of the drug. The network recon-

structions suggested a reversion to RAF wild-type-like MAPK

signaling in the resistant cells that would likely make them sensitive

to pan-RAF inhibition. This hypothesis is consistent with the obser-

vation that both in vitro and in patients resistance to combined

BRAF/EGFR inhibition is mediated by alterations that reactivate

MAPK pathway activity (Ahronian et al., 2015; Hazar-Rethinam

et al., 2018). It also raises a number of other interesting questions,

such as how RAF can be activated and respond to growth factor

stimulation in the absence of PTPN11.

CNR is formulated as an MIQP problem. Theoretically, such

problems are NP-hard, and the search space increases exponentially

with the number of nodes in the network. In practice the MIQP

problem associated with CNR can typically be efficiently solved.

For example, a typical reconstruction for the 12-node Orton model

is optimized in under a second on a standard laptop computer.

Parameter-setting that lead to highly connected networks are some-

what slower (Supplementary Fig. S7), but since most proteins inter-

act with a limited set of other proteins, biological networks are

sparse and the highly connected solutions are not relevant. In

addition, the run time can be strongly reduced by incorporating

prior information, for instance by providing a starting network with

well-known interactions and allowing for a limited number of add-

itional edges.

Some other quantitative network reconstruction approaches, not-

ably those based on maximum-likely optimization (Dorel et al., 2018;

Klinger et al., 2013) and Bayesian statistics (Halasz et al., 2016;

Jastrzebski et al., 2018; Thijssen et al., 2018), are statistically more

rigorously defined than CNR. However, the main advantages of CNR

compared to these approaches is its flexibility regarding prior know-

ledge of the network topology or edge signs. CNR does not require

such knowledge, but it can straightforwardly be incorporated when it

is available. An additional benefit of CNR is the efficiency, making it

scalable to much larger networks than other quantitative approaches.

In this work we focused on signaling networks, but CNR can be

applied to any perturbation dataset were the targets of the perturba-

tions are known. We used a L0-penalty for the differences between

networks (an edge is either different or not) because such results

are convenient to interpret as only a subset of edges need to be

inspected. However, the penalty can be replaced with an L1 or L2-

penalty (The absolute or square of the difference between two edges,

respectively), which in some cases better resembles the biological

problem, and is expected be faster to solve.

To conclude, CNR provides a flexible and efficient way to recon-

struct networks from perturbation data. Using simulations, we demon-

strated its ability to accurately reconstruct networks when data is noisy

and incomplete. Application to a real-world problem showed its robust-

ness and potential in formulating hypotheses on biological problem.
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