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Abstract

Simultaneous recording of electroencephalography (EEG) and functional magnetic

resonance imaging (fMRI) is a very promising non-invasive neuroimaging technique.

However, EEG data obtained from the simultaneous EEG–fMRI are strongly

influenced by MRI-related artefacts, namely gradient artefacts (GA) and bal-

listocardiogram (BCG) artefacts. When compared to the GA correction, the BCG cor-

rection is more challenging to remove due to its inherent variabilities and dynamic

changes over time. The standard BCG correction (i.e., average artefact subtraction

[AAS]), require detecting cardiac pulses from simultaneous electrocardiography (ECG)

recording. However, ECG signals are also distorted and will become problematic for

detecting reliable cardiac peaks. In this study, we focused on a beamforming spatial

filtering technique to attenuate all unwanted source activities outside of the brain.

Specifically, we applied the beamforming technique to attenuate the BCG artefact in

EEG–fMRI, and also to recover meaningful task-based neural signals during an atten-

tional network task (ANT) which required participants to identify visual cues and

respond accurately. We analysed EEG–fMRI data in 20 healthy participants during

the ANT, and compared four different BCG corrections (non-BCG corrected, AAS

BCG corrected, beamforming + AAS BCG corrected, beamforming BCG corrected).

We demonstrated that the beamforming approach did not only significantly reduce

the BCG artefacts, but also significantly recovered the expected task-based brain

activity when compared to the standard AAS correction. This data-driven

beamforming technique appears promising especially for longer data acquisition of

sleep and resting EEG–fMRI. Our findings extend previous work regarding the recov-

ery of meaningful EEG signals by an optimized suppression of MRI-related artefacts.
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1 | INTRODUCTION

Electroencephalography (EEG) and functional magnetic resonance

imaging (fMRI) are two non-invasive neuroimaging techniques that are

often used to investigate human brain function, so that their multi-

modal integration has been actively considered (Jorge, van der Zwaag, &

Figueiredo, 2014; Laufs, 2012; Moeller, Siniatchkin, & Gotman, 2020;

Murta, Leite, Carmichael, Figueiredo, & Lemieux, 2015). fMRI measures

hemodynamic blood oxygen level-dependent (BOLD) responses driven

by increased metabolic demands during neuronal activation, which

results in indirect measurements of brain activity (Logothetis, Pauls,

Augath, Trinath, & Oeltermann, 2001), whereas EEG measures the elec-

trical potentials generated by the cooperative action of neurons provid-

ing a more direct measure of neuronal activity (Buzs�aki, Anastassiou, &

Koch, 2012). Furthermore, fMRI has a high spatial resolution (in order

of millimetre) with a poor temporal resolution (in order of seconds) due

to slow hemodynamic responses, while EEG generally has a high tem-

poral resolution (in order of milliseconds) with a poor spatial resolution.

Simultaneous recording of EEG and fMRI is a very promising non-

invasive technique, provides a wide range of complementary informa-

tion, and can be advantageous for improving our understanding of

human brain function.

Studies have demonstrated that simultaneous EEG–fMRI can pro-

vide greater specificity and sensitivity when compared to a single neu-

roimaging modality (EEG or fMRI alone) regarding the spatial

arrangement (Goldman et al., 2009; Novitskiy et al., 2011) and the

temporal sequence (Eichele et al., 2005; Mayhew, Li, & Kourtzi, 2012)

of brain response. For instance, simultaneous EEG–fMRI has been

successfully used to investigate epileptic networks in patients with

drug-resistant focal epilepsy undergoing pre-surgical evaluation

(Gotman, Kobayashi, Bagshaw, Bénar, & Dubeau, 2006; Gotman &

Pittau, 2011; Grova et al., 2008; Heers et al., 2014; Ives, Warach,

Schmitt, Edelman, & Schomer, 1993; Lemieux et al., 2001; LeVan &

Gotman, 2009; Murta, Leal, Garrido, & Figueiredo, 2012), and sleep

(Cross et al., 2021; Dang-Vu et al., 2011, 2008; Fultz et al., 2019; Hale

et al., 2016) enabling spatial localization of the hemodynamic

responses elicited by temporally dynamic specific EEG features/

events. Recently, the application of EEG–fMRI has been extended to

investigate the spatiotemporal dynamics of neural activity (for a

review, see Huster, Debener, Eichele, & Herrmann, 2012), and also to

study the underlying neurophysiological origins of the measured

responses by comparing neural and hemodynamic signals (Mullinger,

Mayhew, Bagshaw, Bowtell, & Francis, 2013). The primary advantage

of simultaneous EEG–fMRI acquisition over separate recordings is

that it enables the investigation of unpredictable or spontaneous brain

activity, and the study of the trial-by-trial covariation in brain

processing as measured by the two techniques (Bagshaw et al., 2004;

Becker, Reinacher, Freyer, Villringer, & Ritter, 2011; Debener,

Ullsperger, Siegel, & Engel, 2006; Eichele et al., 2008; Goldman, Stern,

Engel Jerome, & Cohen, 2002; Horovitz et al., 2008; Mayhew, Ost-

wald, Porcaro, & Bagshaw, 2013; Mobascher et al., 2009; Mullinger,

Mayhew, Bagshaw, Bowtell, & Francis, 2014; Olbrich et al., 2009;

Scheibe, Ullsperger, Sommer, & Heekeren, 2010; Uji, Wilson, Francis,

Mullinger, & Mayhew, 2018). EEG–fMRI analysis has demonstrated

specific BOLD correlates of distinct neurophysiological components

including the auditory oddball (Bénar et al., 2007; Eichele et al., 2005)

and the error-related negativity (Debener et al., 2005), as well as spe-

cific neural activity in specific frequency bands (Goldman et al., 2002;

Laufs et al., 2003; Tyvaert, LeVan, Grova, Dubeau, & Gotman, 2008).

However, EEG data obtained from the simultaneous EEG–fMRI

recording are strongly influenced by MRI-related artefacts (Allen,

Josephs, & Turner, 2000; Allen, Polizzi, Krakow, Fish, & Lemieux, 1998;

Niazy, Beckmann, Iannetti, Brady, & Smith, 2005), which are gradient

artefacts (GA) and ballistocardiogram (BCG) artefacts. The GA is induced

by temporally varying magnetic field gradients used for MR imaging

causing large voltage fluctuations in the EEG traces through Faraday's

law of induction, 10–100 times larger when compared to EEG signals

induced by brain signal (Allen et al., 2000), therefore completely obscur-

ing the measured EEG signal. Since it is generated by the fMRI sequence

itself, such artefact is highly reproducible and removal of the GA can be

accurately achieved by subtracting averaged GA waveforms measured

at each EEG electrode across fMRI volume acquisitions from each

corresponding electrode using the average artefact subtraction (AAS)

approach.

Compared to the GA, BCG artefacts are definitely more challenging

to cope with due to their inherent variabilities and dynamic changes

over time (Laufs, Daunizeau, Carmichael, & Kleinschmidt, 2008). The

BCG artefact is produced by cardiac pulse driven head motion in the

strong magnetic field of the MRI scanner (Debener, Mullinger, Niazy, &

Bowtell, 2008; Mullinger & Bowtell, 2011). Therefore, this artefact will

be present even when no fMRI acquisitions are performed. Typically,

the BCG artefacts obscure the EEG signals below 20 Hz (Bonmassar

et al., 2002; Xia, Ruan, & Cohen, 2014, 2013), and this remains prob-

lematic especially when the frequency of interest of EEG signals is

below 20 Hz, such as alpha (8–13 Hz) and beta (13–30 Hz) band EEG

activity, or sleep spindle (11–16 Hz) and slow-wave oscillations (<1 Hz)

during sleep. In order to overcome this complexity, both software (inde-

pendent component analysis [ICA]: Debener et al., 2007; optimal

basis set (OBS): Niazy et al., 2005) and hardware (reference layer arte-

fact subtraction: Chowdhury, Mullinger, Glover, & Bowtell, 2014;
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Carbon-wire loop: Masterton, Abbott, Fleming, & Jackson, 2007; Opti-

cal Motion tracking system: LeVan et al., 2013) based solutions have

been suggested for the BCG artefact correction. Although these differ-

ent methods have successfully corrected the BCG artefacts, the most

commonly used approach is still AAS approach (see a review Abreu,

Leal, & Figueiredo, 2018). However, this AAS approach requires high

precisions of cardiac pulse (R-peak) event detections in the MRI scan-

ner which are used for subtracting averaged BCG artefact templates.

R-peak events are normally detected from simultaneous electrocardiog-

raphy (ECG) recording, although facial and temporal electrodes of high-

density EEG can also be used for the detection (Iannotti, Pittau, Michel,

Vulliemoz, & Grouiller, 2015). The ECG signal in the MRI scanner is also

often distorted, which makes automatic detection of R-peaks problem-

atic (Chia, Fischer, Wickline, & Lorenz, 2000; Mullinger, Morgan, &

Bowtell, 2008), and requires manual correction which is significantly

time-consuming. Detecting R-peak events from the ECG is thus diffi-

cult, so that this procedure may sometimes become unreliable, although

vectorcardiogram (VCG) instead of the ECG recording is more suited

and recommended to use for the R-peak detections when available

(Mullinger & Bowtell, 2011).

Adapted from the context of EEG and also magnetoencephalogra-

phy (MEG) source imaging, beamforming technique (Robinson &

Vrba, 1999; Sekihara, Nagarajan, Poeppel, Marantz, & Miyashita, 2001;

van Drongelen, Yuchtman, Van Veen, & van Huffelen, 1996; van

Veen & Buckley, 1988; van Veen, van Drongelen, Yuchtman, &

Suzuki, 1997) is a well-known adaptive spatial-filtering approach that

also appears as a promising denoising technique, and only recently con-

sidered in the context of EEG–fMRI studies (Brookes et al., 2009;

Brookes, Mullinger, Stevenson, Morris, & Bowtell, 2008; Mullinger &

Bowtell, 2011). The beamforming technique is highly efficient when

attenuating artefactual signals which have different spatial origins from

the underlying signal of interest, such as eye movements (Cheyne,

Bakhtazad, & Gaetz, 2006) and orthodontic metal braces (Cheyne,

Bostan, Gaetz, & Pang, 2007) in MEG, and MRI-related artefacts of

EEG signal in EEG–fMRI (Brookes, Mullinger, et al., 2008), although the

beamforming technique has been initially introduced as a source imag-

ing technique in MEG and EEG studies (Robinson & Vrba, 1999;

Sekihara et al., 2001; van Drongelen et al., 1996; van Veen et al., 1997;

van Veen & Buckley, 1988). Specifically, the beamforming spatial filter

rejects sources of signal variance that are not concordant in pre-

determined source locations in the brain based on the forward model.

Consequently, it attenuates all unwanted source activities outside of

the predetermined source location of interest in the data (e.g., eye

movements) without having to specify the location or the configuration

of these unwanted underlying source signals.

The residual artefacts from the GA and BCG are especially atten-

uated since their spatial topographies differ from the one

corresponding to a dipolar current source located in the brain

(Brookes, Mullinger, et al., 2008; Mullinger & Bowtell, 2011). The

advantages of the beamforming denoising technique reside in the fact

that it is a data-driven approach, which does not require identifying

noise and signal components, and does not rely on the detection of

ECG R-peaks. The beamforming denoising technique in EEG–fMRI

(Brookes, Mullinger, et al., 2008; Mullinger & Bowtell, 2011) has ini-

tially been designed to minimize the residual GA, and normally applied

after correcting MRI-related GA and BCG artefact as a post-

processing procedure. However, Brookes, Mullinger, et al. (2008) and

Brookes, Vrba, et al. (2008) tried the beamforming approach to correct

the BCG artefacts without the conventional AAS BCG correction after

the GA correction, and demonstrated that the beamforming technique

indeed attenuated the BCG artefacts even though this previous work

was preliminary and not extensive. In their previous study, this

beamforming BCG denoising was examined in the EEG–fMRI data

from two healthy adults when they were passively viewing 8.6 Hz

flashing checkerboard visual stimuli, and the performance of the

beamforming denoising was evaluated by only successfully recovering

the second harmonic signals (17.2 Hz) in the source space in the pri-

mary visual cortex, when compared to the occipital sensor space sig-

nal. With the limited number of participants in the previous study,

they did not extend their analysis to examine how much BCG artefact

was corrected by the beamforming BCG denoising technique, and did

not investigate how much alpha event-related desynchronization

(ERD) was observed during the visual stimuli after the proposed

beamforming BCG denoising.

In the present study, we proposed to systematically investigate

the performance of this data-driven beamforming BCG denoising

technique in EEG–fMRI. Therefore, the aim of this work was to inves-

tigate whether the BCG artefacts can be attenuated by only using

beamforming technique, that is, without taking into account the ECG

signal, and also to examine how this technique would preserve

expected task-based-induced brain signal in the source space while

attenuating the BCG artefacts. To clearly demonstrate the effects of

the beamforming BCG artefact correction on EEG task activities, we

assessed the effects of beamforming on ERD (reflecting a power

decrease) in occipital alpha (8–13 Hz) during the presentation of visual

stimuli and motor beta (13–30 Hz) during movement preparation

before response onset during an attentional network task (ANT) (Fan

et al., 2007; Fan, McCandliss, Fossella, Flombaum, & Posner, 2005).

Specifically during the ANT, the visual alpha ERD would be expected

during the visual attention before the movement execution cue onset,

whereas the motor beta ERD would be expected during the move-

ment preparation/planning before the movement execution (Fan

et al., 2007; Marshall, Bergmann, & Jensen, 2015), although the ANT

would also induce higher cognitive and attentional processing

(alerting, orienting and executive control), which was beyond the

scope of this article. In this study, we analysed EEG–fMRI data in

20 healthy participants when they were performing the ANT, and

compared the four following BCG correction approaches: non-BCG

corrected, AAS BCG corrected, beamforming + AAS BCG corrected,

beamforming BCG corrected. We chose to investigate alpha ERD in

the visual cortex and beta ERD in the motor cortex since the BCG

artefacts typically obscure EEG signal below 20 Hz (Bonmassar

et al., 2002; Xia et al., 2014, 2013). Moreover, visual alpha ERD has

been well documented during visual stimulations (Brookes

et al., 2005; Scheeringa et al., 2011; Wilson, Mullinger, Francis, &

Mayhew, 2019), whereas reliable motor beta ERD has been reported
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during planning/preparation of the movement (Cheyne &

Ferrari, 2013; Darvas et al., 2010; Hall et al., 2011;

Muthukumaraswamy, 2010; Pfurtscheller & Lopes da Silva, 1999;

Pfurtscheller, Stanc�ak, & Neuper, 1996; Takemi, Masakado, Liu, &

Ushiba, 2013; Uji et al., 2018). We hypothesized that the

beamforming BCG corrected data would recover visual alpha ERD

and motor beta ERD to a similar extent, when compared to the con-

ventional AAS BCG artefact correction and beamforming + AAS BCG

corrected data. Furthermore, we also hypothesized that both

beamforming approaches would increase the signal-to-noise ratios

(SNRs) in the source space when compared to those in the sensor

space (Brookes et al., 2009; Hill et al., 2020; Sekihara, Nagarajan,

Poeppel, & Marantz, 2004), which should be another advantage of

using beamforming technique in EEG–fMRI.

2 | METHODS

The EEG–fMRI data were acquired using a protocol previously publi-

shed in Cross et al. (2021), and reused for our specific aim to investi-

gate the performance of beamforming denoising technique in

simultaneous EEG–fMRI. The original study aimed to examine the

effect of sleep deprivation and a subsequent recovery nap on func-

tional connectivity patterns across cognitive tasks of attention, vigi-

lance, and working memory. More details of the study designs and

findings can be found in the previous article (Cross et al., 2021).

2.1 | Participants

In this section, 20 young healthy participants (12 females, 8 males,

age = 21.3 ± 2.5 years) took part in the study, and were screened for

the absence of sleep disorders (insomnia, sleep apnoea syndrome,

hypersomnolence, restless legs syndrome, and parasomnias), neuro-

logical or psychiatric conditions (e.g., epilepsy, migraine, stroke,

chronic pain, major depression, anxiety disorder, psychotic disorder)

and current use of psychotropic medications or cannabis. All subjects

provided written informed consent prior to the start of the study that

was approved by the Central Research Ethics Committee of the Que-

bec Ministry of Health and Social Services. More details about the

participants' characteristics can be found in the previous study (Cross

et al., 2021).

2.2 | Experimental procedures

The original experimental procedures can be found in Supplementary

Figure S1a. All participants completed three runs of three different

cognitive tasks (ANT: Fan, McCandliss, Sommer, Raz, & Posner, 2002;

Fan et al., 2005; Mackworth Clock Task: Lichstein, Riedel, &

Richman, 2000; Loh, Lamond, Dorrian, Roach, & Dawson, 2004;

N-back task: Kirchner, 1958; Sweet, 2011) during the EEG–fMRI

acquisition. Out of these three different tasks, the ANT was chosen as

the most suitable task in order to investigate the performance of

beamforming technique in the EEG–fMRI, because it has clear base-

line periods and clear event onsets. We predicted that this would

induce alpha ERD in the visual cortex and beta ERD in the motor cor-

tex respectively (Fan et al., 2007; Marshall et al., 2015) that would be

obscured by the BCG artefacts in the alpha and beta frequency band.

2.3 | ANT paradigm

This task probes different attentional processes, such as alerting,

orienting, and executive control (Fan et al., 2002, 2005, 2007) (see

Figure 1). The ANT consisted of a series of trials in which the partici-

pants were required to identify the direction (left or right) of the mid-

dle arrow (target cue) in an array of five arrows within an upper or

lower panel of the screen. The middle arrow was either congruent

or incongruent to the direction of the other arrows (target cue). Dif-

ferent probing conditions (probe cue) were displayed immediately

prior to the appearance of the target cue, including both panels flash-

ing (double cue; alerting), either panel flashing (valid or invalid spatial

cues; orienting), or no cue preceding the target cue (no cue). One run

of the ANT contained 145 trials in total consisting of 24 double cue

trials, 73 valid cue and 24 invalid spatial cue trials, and 24 no cue trials.

These trials were also divided into 73 congruent and 72 incongruent

trials for the target cue. One run of the task lasted 13 min in duration,

with each trial lasting around 1 s with a random jitter (range = 2–12 s,

mean = 5 s) between each trial (see more details in Figure 1). In this

study, all three runs of the ANT were put together, and all probe cue

conditions were treated as the same trials epoching to the target

cue onsets (visual epoched trials) and movement onsets (movement

epoched trials). The movement epoched trials included both correct

and incorrect responses.

The ANT was run on a laptop computer using Inquisit software

(Millisecond Software LLC, Seattle, WA), displayed to the participant

via a projector screen behind the MRI scanner. The participants

responded via button presses made using a response pad attached to

the fingers of the left hand. Behavioural outcomes of reaction time

(ms) and accuracy (%; correct trials/number of trials) can be found in

the supplementary Figure S1b.

2.4 | Simultaneous EEG–fMRI data acquisition

2.4.1 | MRI data acquisition

MRI data were acquired with a 3T GE scanner (General Electric Medical

Systems, Milwaukee, WI) using an eight-channel head coil in the PER-

FORM Centre of Concordia University. Functional MRI were acquired

using a gradient-echo echo-planar imaging sequence (repetition time

(TR) = 2,500 ms; TE = 26 ms; FA = 90�; 41 transverse slices; 4-mm

slice thickness with a 0% inter-slice gap; FOV = 192 � 192 mm; voxel

size = 4 � 4 � 4mm3; and matrix size = 64 � 64). High-resolution

T1-weighted anatomical MR images were acquired using a 3D BRAVO

3996 UJI ET AL.



sequence (TR = 7,908 ms; TI = 450 ms; TE = 3.06 ms; FA = 12�;

200 slices; voxel size = 1.0 � 1.0 � 1.0 mm, FOV = 256 � 256 mm).

During all EEG–fMRI sessions, the helium compression pumps used for

cooling down MR components were switched off to reduce MR envi-

ronment related artefacts infiltrating the EEG signal (Mullinger, Brookes,

Stevenson, Morgan, & Bowtell, 2008; Rothlübbers et al., 2015). To mini-

mize movement-related artefacts during the scan, MRI-compatible foam

cushions were used to fix the participant's head in the MRI head coil

(Mullinger & Bowtell, 2011).

2.4.2 | EEG data acquisition

EEG data were acquired using an MR compatible 256 high-density

geodesic sensor EEG array (Electrical Geodesics Inc. (EGI), Magstim-

EGI, Eugene, OR). The EEG cap included 256 sponge electrodes

referenced to Cz that covered the entire scalp and part of the face.

EEG data were recorded using a battery-powered MR-compatible

256-channel amplifier shielded from the MR environment that was

placed next to the participant inside the scanning room. The imped-

ance of the electrodes was initially maintained below 20 kΩ and kept

to a maximum of 70 kΩ throughout the recording. Data were sampled

at 1,000 Hz and transferred outside the scanner room through fibre-

optic cables to a computer running the Netstation software (v5, EGI).

The recording of EEG was phase-synchronized to the MR scanner

clock (Sync Clock box, EGI), and all scanner TRs and participant

responses were recorded in the EEG traces. Especially, the onset of

every TR period was marked in the EEG data to facilitate MR GA cor-

rection. ECG was also collected via two MR compatible electrodes

placed between the fifth and seventh ribs and above the heart close

to the sternum, and recorded at 1,000 Hz through a bipolar amplifier

(Physiobox, EGI). After the EEG–fMRI data acquisition, EEG electrode

locations were digitized using the EGI Geodesic Photogrammetry Sys-

tem (GPS) to facilitate individualized co-registration of electrode posi-

tions with each subject's anatomical image (Russell, Jeffrey Eriksen,

Poolman, Luu, & Tucker, 2005).

2.5 | Data analysis

In this study, EEG–fMRI data during the ANT in 20 healthy partici-

pants were pre-processed, and compared with four different BCG cor-

rection approaches (non-BCG corrected, AAS BCG corrected,

beamforming + AAS BCG corrected, beamforming BCG corrected) to

examine how the beamforming technique would attenuate BCG arte-

facts and preserve expected brain signal, notably visual alpha ERD and

motor beta ERD, induced by the ANT. The four different datasets

consisting of non-BCG corrected and AAS BCG corrected sensor level

data and beamforming source level datasets from either non-BCG

corrected (beamforming BCG corrected) or AAS BCG corrected data

(beamforming + AAS BCG corrected) were created in the manner

described below.

F IGURE 1 Schematic of attentional network task (ANT). In each trial, a fixation cross appears in the centre of the screen all the time.
Depending on probe cue conditions, a probe cue (either no cue, double cue, or spatial cue) appears for 100 ms. After a fixed duration (500 ms), a
target cue (the centre arrow) among other arrows (congruent or incongruent cue condition) is presented for 500 ms at either an upper or lower
panel of the screen, and participants are required to respond via button presses made using a response pad attached to the fingers of the left
hand as quickly as possible, but no longer than 1,900 ms after the target cue onset. If participants respond with the correct direction of the
middle arrow (left or right) within the time-window, the response is considered as a correct response. A post-target fixation period lasts for a
variable duration (inter-trial intervals from the offset of the target cue to the onset of the probe cue during the next trial are randomly jittered
between 2,000 and 12,000 ms, mean = 5 s) between each trial. One run of the ANT contained 145 trials in total consisting of 24 double cue
trials, 73 valid cue and 24 invalid spatial cue trials, and 24 no cue trials. These trials are also divided into 73 congruent and 72 incongruent trials
for the target cue. One run of the ANT lasts around 13 min in duration
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For both EEG and ECG data, GA were first corrected in

BrainVision Analyzer2 (Version 2.2.0, Brain Products GmbH, Gilching,

Germany) with the standard AAS method, using sliding window tem-

plates formed from the averages of 21 TRs, which were subtracted

from each occurrence of the respective artefacts for each electrode

(Allen et al., 2000; Wilson et al., 2019). GA corrected data were subse-

quently band-pass filtered (EEG: 1–100 Hz with notch filter of 60 Hz),

and downsampled (500 Hz). Following the GA correction, cardiac R-

peaks were automatically detected from the ECG recording in

BrainVision Analyzer2, checked visually and corrected manually if nec-

essary, since the ECG signal in the MRI scanner is distorted and has

proven to be problematic (Chia et al., 2000; Mullinger, Morgan, &

Bowtell, 2008) (Supplementary Figure S2). These R-peak events were

used to inform BCG correction of data recording inside the scanner.

From the same GA corrected datasets, two different datasets for

each subject were created: non-BCG corrected and AAS BCG

corrected data to investigate the effect of beamforming technique on

the BCG artefacts or remaining BCG artefacts after AAS BCG correc-

tion (Brookes, Mullinger, et al., 2008). The AAS BCG artefact

correction was performed using sliding template average-artefact sub-

traction (11 R-peak events per template) in BrainVision Analyzer2

(Mullinger et al., 2014).

For both non-BCG corrected and AAS BCG corrected data, two

lowest rows of electrodes around the neck and face (69 electrodes)

and ECG electrode were removed keeping 187 electrodes for further

analysis (Supplementary Figure S3). On the remaining 187 electrodes,

noisy and bad electrodes, which were identified when the SD of the

normalized time-course of each electrode exceeded 5 SD (Delorme &

Makeig, 2004; Uji, Jentzsch, Redburn, & Vishwanath, 2019), were

removed and interpolated using neighbour electrodes. Resulting data

were then further downsampled into 250 Hz and re-referenced to an

average of all non-noisy channels, using EEGLAB software (https://

sccn.ucsd.edu/eeglab) (Delorme & Makeig, 2004). After common

average reference, all timepoints before and after the MRI scanning

were removed, and further analyses were conducted on EEG data

specifically during the MRI scanning.

2.5.1 | EEG beamforming

To examine how the beamforming technique would attenuate BCG

artefacts and preserve task-induced brain signals, we considered a line-

arly constrained minimum variance (LCMV) beamforming analysis

(Brookes, Mullinger, et al., 2008; Uji et al., 2018; van Veen et al., 1997),

using Fieldtrip toolbox (Fieldtrip-20191014, http://www.ru.nl/

neuroimaging/fieldtrip) (Oostenveld, Fries, Maris, & Schoffelen, 2011).

EEG electrode locations were first accurately digitized using the

EGI GPS to facilitate individualized co-registration of electrode posi-

tions with each subject's anatomical image (Russell et al., 2005). The

digitized EEG electrode positions were co-registered with the sub-

jects' T1-weighted anatomical image using fiducials and scalp surface

fitting. A four-layer (scalp, skull, cerebrospinal fluid [CSF], and brain),

anatomically realistic volume conduction boundary element model

(BEM) (Fuchs, Kastner, Wagner, Hawes, & Ebersole, 2002;

Oostendorp & van Oosterom, 1991) was created by segmenting each

subject's T1-weighted images into skin, skull, CSF, and brain compart-

ments. In the four-layer BEM head model, the electrical conductivity

of the scalp, the skull, CSF, and the brain was set to 0.33, 0.0042,

1 and 0.33 S/m, respectively (Gramfort, Papadopoulo, Olivi, &

Clerc, 2010; Kybic, Clerc, Faugeras, Keriven, & Papadopoulo, 2006). A

template grid (5 mm spacing) covering the whole brain volume was

created from the MNI template brain (Colin27) and transformed to

each subject's anatomical space. The lead-field matrix at each location

on the template grid in individual subject space was then calculated

using their BEM, not constraining the orientation of the dipolar source

placed on that point of the grid (Sekihara et al., 2004). The full details

of mathematical information behind the beamforming spatial filtering

technique can be found in the previous article (van Veen et al., 1997).

Using the LCMV beamforming spatial filtering, an estimate of the

source amplitude vector Q̂ r,tð Þ at source space location, r, and time, t,

is made using a weighted sum of the electrical measurements

recorded at each of the n electrodes such that:

Q̂ r,tð Þ¼W rð ÞTV tð Þ ð1Þ

where V(t) is an n-dimensional column vector of electric potential

measurements made at time t, and W(r) is a 3 � n matrix of weighting

parameters that are tuned specifically to the location r. Superscript

T indicates a matrix transpose. The weighting parameters are calcu-

lated such that they minimize the total variance in the output signal

Q̂ r,tð Þ , which will result in minimizing the influence of signals origi-

nated from any other location than the one of interest in r, while

maintaining a constraint that any activity originating at the specific

location r must remain in Q̂ r,tð Þ.

minW rð Þ ε Q̂
��� ������ ���2

� �� �
subject toW rð ÞTL rð Þ¼ I ð2Þ

minW rð Þ W rð ÞT CþλIð ÞW rð Þ
h i

subject toW rð ÞTL rð Þ¼ I ð3Þ

W rð ÞT ¼ L rð ÞT CþλIf g�1L rð Þ
h i�1

L rð ÞT Cþ λIf g�1 ð4Þ

where L(r) represents a 3 � n matrix in which the first, second and

third columns of the lead field matrix for the position r, consisting of

the electrical fields that would be measured at each of the

n electrodes in response to a source of unit amplitude sited at location

r and orientated in the x, y, and z directions respectively. L(r) was

therefore based on an EEG forward solution, (Sekihara et al., 2004;

van Veen et al., 1997). ε denotes the mathematical expectation,

whereas the matrix I represents the identity matrix. Here, C = ε(V(t)V

(t)T) representing the n � n data covariance matrix calculated over a

time–frequency window of interest using the entire epoched trials

after removing noisy trials contaminated with large motion artefacts. λ

is a regularization parameter and the regularized covariate matrix was

calculated as (C + λI). By the reducing the regularization parameters
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it is possible to make the beamforming filter more spatially selective

(Brookes, Vrba, et al., 2008), and this would result in substantial sup-

pression of the artefact (Litvak et al., 2010). Therefore, especially in

the context of EEG–fMRI, a small regularization parameter of 0.01% is

recommended to be used, therefore allowing more artefact suppres-

sions (Brookes, Vrba, et al., 2008; Litvak et al., 2010).

Both non-BCG corrected and AAS BCG corrected data were

epoched from �2 to 3 s relative to the probe cue events for identify-

ing the alpha ERD VE location in the visual region (visual epoched

data), and epoched from �4 to 2 s relative to the movement onsets

for the beta ERD VE location in the motor region (movement epoched

data). To achieve cleaner EEG data, around 5–10% trial rejection rate

is usually recommended (Delorme, Sejnowski, & Makeig, 2007), and

by applying amplitude threshold of ±500 μV on the AAS BCG

corrected data, noisy EEG trials, that were contaminated with large

motion artefacts, were detected and removed (Delorme et al., 2007;

Uji et al., 2019). This resulted in a group mean (±SD) number of

remaining trials of 132 ± 7 trials for each run for the visual epoched

trials and 117 ± 15 trials for each run for the movement epoched trials

for further analysis. The same numbers of trials were used for both

AAS BCG corrected and non-BCG corrected data analysis.

In order to improve SNRs of the beamforming spatial filtering, an

optimum source orientation/direction needs to be calculated instead

of using 3D vector (x, y, z) at the source space location r (Sekihara

et al., 2004). The optimal orientation opt(r) at the position r can be

computed by the eigenvector corresponding to the minimum general-

ized eigenvalue of the matrix [L(r)T(C + λI)�2L(r)] with the metric [L

(r)T(C + λI)�1L(r)] (Sekihara et al., 2004; Sekihara & Nagarajan, 2008).

Once opt(r) is obtained, the beamforming weight vector (1D vector)

can be calculated.

A scalar LCMV beamforming (Sekihara et al., 2004; Sekihara &

Nagarajan, 2008) with individual BEM head models using the regulari-

zation parameter of 0.01% (Brookes, Vrba, et al., 2008; Litvak

et al., 2010) was carried out for each subject to calculate beamforming

weights (weights of each EEG channel at each lead-field virtual elec-

trode [VE] position r in the brain) derived from the entire broadband

data (1–100 Hz) and a covariance matrix calculated using the entire

clean dataset of either visual or movement epoched trials after remov-

ing noisy trials (Brookes, Mullinger, et al., 2008). For every VE location

within the source grid space, the estimated VE trial time-courses were

then band-pass filtered using sixth-order Butterworth filters in the

frequency band of interest (alpha: 8–13 Hz; beta: 13–30 Hz).

To identify the VE locations of interest, related to the induced

task neural activity, that is, visual alpha ERD and motor beta ERD, a

pseudo-T statistic can be calculated by the following:

T¼ Q̂ rð Þ2� v̂ rð Þ2
Q̂ rð Þ2þ v̂ rð Þ2

ð5Þ

where Q̂ rð Þ2 represents the beamformer power estimated in r during

an active time window, whereas v̂ rð Þ2 represents the beamformer

power estimated in r during a control baseline time window (Brookes, Mul-

linger, et al., 2008; Hillebrand & Barnes, 2005; Robinson & Vrba, 1999).

Specifically, to detect the alpha ERD VE location following visual

stimuli, we calculated alpha power during the active time window of

0.1–1.1 s after the probe cues, and the baseline period was defined

between �1.5 and �0.5 s prior to the probe cues. We then identified

the minimum peak of the pseudo-T statistic map reflecting the largest

alpha band power decrease, as the alpha VE location for each subject.

To detect the beta ERD VE location during movement preparation/

planning, we calculated beta power during the active time window

between �1.25 and�0.25 s prior to the movement onsets, whereas

the baseline time window was defined between �3.0 and�2.0 s prior

to the movement onsets. We then identified the minimum peak of the

pseudo-T map reflecting the largest beta band power decrease, as the

beta VE location in the brain for each subject. From these pseudo-T

maps, VE locations were separately identified for each subject. The

alpha ERD VE location was indeed detected in the visual cortex (visual

alpha VE) from the visual epoched data, whereas the beta ERD VE

location was identified in the motor cortex (motor beta VE) from the

movement epoched data.

A broadband (1–100 Hz) time-course of neural activity during the

whole MRI scanning period was then also calculated from these two

subject-specific VE locations, using Equation (1). The beamforming

weights of the visual alpha VE and motor beta VE were applied to the

entire time-course of the whole 187 scalp electrodes during MRI

scanning for R-peak locked analysis and ANT task-based analysis.

For further event-locked analysis, namely R-peak locked analysis

and then ANT task-based analysis, we considered four data sets

(non-BCG corrected; AAS BCG corrected; beamforming BCG

corrected; beamforming + AAS BCG corrected) consisting of non-

BCG corrected and AAS BCG corrected sensor level data and broad-

band (1–100 Hz) source level time-courses in the visual and motor

beamforming VEs estimated from either non-BCG corrected or AAS

BCG corrected data.

2.5.2 | R-peak locked analysis

Sensor-level analysis

To investigate the effects of BCG artefacts on the EEG data at the

sensor level, both non-BCG corrected and AAS BCG corrected data

were epoched from -5 to 5 s relative to every detected R-peak event

(group mean number [±SD] of R-peak events for each run = 870

± 126 events). Two main analyses were conducted: (a) R-peak locked

time-course analysis and (b) R-peak locked time–frequency analysis.

For the R-peak locked time-course analysis, each R-peak locked

time-course for each electrode was extracted, and each 10s epoch

was demeaned by subtracting the mean value of the 10s epoch and

divided by the SD of the 10s epoch for normalized z-score transfor-

mation, for each selected epoch. This z-score transformation allowed

us to make comparisons in the same scale since there would be differ-

ences in the amplitudes and SNR in the sensor and source level sig-

nals. Then, calculated z scores were averaged across epochs first and

then across subjects, for each electrode in both non-BCG corrected

and AAS BCG corrected data.
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In the R-peak locked time–frequency analysis, time–frequency

spectrograms of each 10s epoch for each channel were calculated

using a multitaper approach (Scheeringa et al., 2011; Uji et al., 2018)

using the Fieldtrip toolbox. Windows of 0.8 s duration were moved

across the data in steps of 50 ms, resulting in a frequency resolution

of 1.25 Hz, and the use of three tapers resulted in a spectral smooth-

ing of ±2.5 Hz. The calculated time–frequency representations (TFRs)

were then transformed in the scale of dB by 10*log10, then

demeaned by subtracting the mean power in each frequency during

the 10s epoch to calculate power fluctuations around a single R-peak,

and averaged across epochs first and then across subjects for each

electrode in both non-BCG corrected and AAS BCG corrected data.

Source-level analysis

The same R-peak locked time-course analysis and time–frequency

analysis was conducted on the beamforming estimated time-course

signals from the AAS BCG corrected (beamforming + AAS BCG

corrected) and non-BCG corrected (beamforming BCG corrected)

data. The whole time-course signals during the MRI scanning were

estimated from the two VE locations using Equation (1). We then

epoched the whole visual VE and motor VE signals from �5 to 5 s rel-

ative to every R-peak event from the AAS BCG corrected data. Both

R-peak locked time-courses and TFRs were averaged across epochs

and then across subjects for both VE locations estimated from both

the AAS BCG corrected (beamforming + AAS BCG corrected) and

non-BCG corrected data (beamforming BCG corrected).

2.5.3 | ANT task-based analysis

The time–frequency analysis was chosen to investigate the effects of

the BCG artefacts in the time–frequency domains, which normally

obscure the EEG signals below 20 Hz. This analysis was conducted on

both visual and movement epoched data separately for both non-

BCG corrected and AAS BCG corrected data. In the sensor space,

using the same multitaper approach described above, we calculated

the TFRs in the visual epoched data for each channel, and the time–

frequency spectrograms were converted to display power change in

the task-induced neural activity relative to baseline in the scale of dB

(10*log10[signal/baseline]) with the baseline period between �1.5

and �0.5 s prior to the probe cues. For the movement epoched data,

the same analysis was conducted using the baseline period between

�3.0 and �2.0 s prior to the movement onsets.

In the source-space analysis, both visual and movement

epoched trial time-courses were estimated from the two VE loca-

tions using Equation (1) with respective beamforming spatial filter

and epoched EEG signals from the AAS BCG corrected and non-

BCG corrected data. The same time–frequency analysis was con-

ducted for the visual alpha VE signals using the baseline period

between �1.5 and �0.5 s prior to the probe cues, whereas the

motor beta VE signals were analysed using the baseline period

between �3.0 and �2.0 s prior to the movement onsets in the same

time–frequency analysis.

2.5.4 | Statistical analysis

Non-parametric cluster-based permutation tests (Fieldtrip) (Maris, 2012;

Maris & Oostenveld, 2007; Nichols & Holmes, 2002) were used to

examine significant differences comparing the absolute power of TFRs

in the sensor and source space from the R-peak locked and ANT task-

based analysis. To do so, when comparing two BCG correction strate-

gies among the four proposed investigations (e.g., beamforming + AAS

BCG corrected vs. AAS BCG corrected), we considered all normalized

TFR maps from all 20 subjects to build a time–frequency t-map of the

difference between the two approaches, therefore taking into account

inter-subject variability. For each combination of methods to be tested,

statistical inference was based on a non-parametric cluster-based per-

mutation test, which resulted in time–frequency t-map clusters

obtained when first applying a threshold of alpha level of .001. From

this thresholded time–frequency t-map, the t-values were summed per

cluster and then used as the test statistic. A randomization distribution

of this test statistic was determined by randomly exchanging 1,000

times, through permuting the two conditions among the N = 20 sub-

jects and the permutation p-value of the cluster of interest was approxi-

mated by a Monte Carlo estimate. This was done by building a null

distribution considering all possible permutations given the number of

subjects (N = 20), and for each randomization only the maximal test sta-

tistic was retained. An observed cluster was deemed significant if it fell

outside the central 95% of this randomization null distribution,

corresponding to a two-sided random effect test with 5% false posi-

tives, corrected for the multiple comparisons across times and frequen-

cies. The significant spectral-temporal cluster masked the raw TFR

difference. The permutation test has advantages over the Bonferroni

correction for multiple comparisons because the Bonferroni correction

assumes that all measures are independent, an assumption that is too

strong and weakens the power of the statistical test. In contrast, the

permutation test considers the true dependency among all of the mea-

sures. Additionally, if there were any significant clusters, effect sizes in

the TFRs were calculated by mean difference divided by the SD using

Cohen's d (Cohen, 1988; Gross et al., 2013; Sawilowsky, 2009). Then,

the Cohen's d values were averaged within the significant cluster to

estimate the effect size of the cluster-based permutation test

(Cohen, 1962, 1988; Sawilowsky, 2009). Based on Sawilowsky (2009),

the effect size can be categorized as d (0.01) = very small,

d (0.2) = small, d (0.5) = medium, d (0.8) = large, d (1.2) = very large,

and d (2.0) = huge, and the effect sizes are directional having positive

and negative in terms of the direction of the comparison (Cohen, 1962).

2.5.5 | SNR comparisons during ANT

SNR¼
Mean TFR Q̂ rð Þ

h i� �
�Mean TFR ν̂ rð Þ½ �ð Þ

��� ���
std TFR ν̂ rð Þ½ �ð Þ ð6Þ

where TFR Q̂ rð Þ
h i

denotes the time–frequency power at either EEG

electrode or VE location of interest, within the frequency range of
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interest during the active time window, whereas TFR ν̂ rð Þ½ � represents
the time–frequency power at either EEG electrode or VE location of

interest, within the frequency range of interest during the control base-

line time window. Mean and std denotes, respectively, the mean and SD

computed over all coefficients of the selected time–frequency area.

Since the alpha and beta ERD exhibits power reduction when com-

pared to the baseline, SNRs at the sensor and source levels were calcu-

lated as the absolute value of the difference. Then, group mean SNR

value was calculated by averaging SNR value across all trials first and

then across subjects as suggested in Hill et al. (2020), for each electrode

(non-BCG corrected; AAS BCG corrected) and each VE location

(beamforming + AAS BCG corrected; beamforming BCG corrected).

The active and control baseline time windows were consistent through-

out the data analysis. For the visual alpha (8–13 Hz) ERD, the active

window was the time period between 0.1 and 1.1 s as compared with

the baseline window of �1.5 to �0.5 s relative to the probe cue onset,

whereas for the motor beta (13–30 Hz) ERD, the active window was

the time period between �1.25 and �0.25 s as compared with the

baseline window of �3 to �2 s relative to the movement onset.

3 | RESULTS

3.1 | BCG artefact attenuation

3.1.1 | BCG artefact corrections in the sensor space

The group mean R-peak locked time-courses from the non-BCG

corrected data were represented on 17 electrodes selected from the

EGI geodesic electrodes, which have the equivalent locations from

the international 10–20 EEG system (see Figure 2). The group mean

R-peak locked time-courses from the AAS BCG corrected data on the

same 17 electrodes, are represented in Figure 3. The fluctuations of

the non-BCG artefact time-courses resulted in z-scores values ranging

between 0.5 and 1 at the time of R-peaks (Figure 2). When consider-

ing the resulting residual BCG artefact after applying the standard

AAS correction method, we obtained peak z-score values ranging

between 0.05 and 0.1 (Figure 3), demonstrating that the conventional

AAS approach enabled around 10-fold improvement in the suppres-

sion of BCG artefacts.

The group mean TFRs time-locked at the individual R-peak

events, when applied on non-BCG corrected data, are presented in

Figure 4 on the selected 17 electrodes. The group mean TFRs time-

locked at the individual R-peak events from the AAS BCG corrected

data, are presented in Figure 5. When considering non-BCG

corrected data, the power fluctuations of the BCG artefact were

observed at the peak power of around 1 dB, especially below 20 Hz,

at the time of R-peaks (Figure 4). After applying the standard AAS

BCG correction, these power fluctuations were reduced to the peak

power of around 0.2 dB at the time of R-peaks especially below

20 Hz (Figure 5). In Figure 6, the cluster-based permutation tests rev-

ealed significant differences (p < .05) between the AAS BCG corrected

and non-BCG corrected data for all the selected 17 electrodes, con-

firming that the standard AAS technique removed the BCG artefacts

significantly. The effect sizes of the cluster-based permutation tests

on the sensor level were ranged from d = 1.11 to d = 1.18, which rev-

ealed the large effect (Figure 6). Although some of the residual arte-

facts can still be observed above 20 Hz, the AAS method, in general,

F IGURE 2 Group mean ± SD (N = 20 participants) z-scores of ballistocardiogram (BCG) artefact related time-courses time-locked at
individual R-peak events from electrocardiography (ECG) recording during each run (three runs of 13 min in total). The time-courses were
measured from no BCG corrected data on 17 electrodes selected from an Electrical Geodesics Inc (EGI) geodesic 256 electroencephalography
(EEG) system. Specifically, E2 (F8), E21 (Fz), E36 (F3), E47 (F7), E59 (C3), E87 (P3), E94 (M1), E96 (P7), E101 (Pz), E116 (O1), E126 (Oz), E150
(O2), E153 (P4), E170 (P8), E183 (C4), E190 (M2), and E224 (F4) electrodes have the equivalent locations in an international 10–20 EEG system
from the EGI geodesic 256 EEG system. It needs to be noted that the scales of y-axis at the sensor level are within ±1.5 z-scores
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F IGURE 3 Group mean ± SD (N = 20 participants) z-scores of ballistocardiogram (BCG) artefact corrected time-courses time-locked at
individual R-peak events from electrocardiography (ECG) recording during each run (three runs in total). The time-courses were measured from
the BCG corrected data (average artefact subtraction [AAS] approach) on 17 electrodes selected from an Electrical Geodesics Inc (EGI) geodesic
256 electroencephalography (EEG) system. Specifically, E2 (F8), E21 (Fz), E36 (F3), E47 (F7), E59 (C3), E87 (P3), E94 (M1), E96 (P7), E101 (Pz),
E116 (O1), E126 (Oz), E150 (O2), E153 (P4), E170 (P8), E183 (C4), E190 (M2), and E224 (F4) electrodes have the equivalent locations in an
international 10–20 EEG system from EGI geodesic 256 EEG system. It needs to be noted that after the AAS BCG corrections, the scales of y-
axis at the sensor level are within ±0.2 z-scores

F IGURE 4 Group mean (N = 20) time–frequency representations (TFRs) of ballistocardiogram (BCG) artefact related signals time-locked at
individual R-peak events from electrocardiography (ECG) recording during each run (three runs in total). The TFRs were calculated from non-BCG
corrected data on selected 17 electrodes from an Electrical Geodesics Inc (EGI) geodesic 256 electroencephalography (EEG) system. Specifically,
E2 (F8), E21 (Fz), E36 (F3), E47 (F7), E59 (C3), E87 (P3), E94 (M1), E96 (P7), E101 (Pz), E116 (O1), E126 (Oz), E150 (O2), E153 (P4), E170 (P8),
E183 (C4), E190 (M2), and E224 (F4) electrodes have the equivalent locations in an international 10–20 EEG system from EGI geodesic 256 EEG
system. It needs to be noted that the scales of colour bars in this figure are within ±1 dB
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demonstrated overall good suppression of BCG artefacts in time–

frequency domains by comparing the TFRs of the non-BCG corrected

and AAS BCG corrected data.

3.1.2 | Beamforming approach

Figure 7 (left column) shows the group average T-statistic map of

alpha power changes during the active time-window (0.1–1.1 s after

the probe cue onset) compared to the baseline time-window (�1.5 to

�0.5 s prior to the probe cue onset) from the BCG corrected and

non-BCG corrected data. Alpha power decrease (ERD, negative T

values) was observed in the visual cortex in both beamforming + AAS

BCG corrected and beamforming BCG corrected datasets. Figure 7

(right column) shows the group average T-statistic map of beta power

changes during the active time-window (�1.25 to �0.25 s before the

movement onset) compared to the baseline time-window (�3 to �2 s

prior to the movement onset) from the beamforming + AAS BCG

corrected and beamforming BCG corrected data. Beta power

decrease (ERD, negative T values) was observed in the motor cortex

in both data set. Based on the pseudo-T statistic map (Figure 7, cross-

hairs), the MNI coordinates of the group mean visual alpha VE loca-

tion (±SE) was [�25 ± 4, �75 ± 1, �8 ± 3] mm [MNI:x,y,z] for the AAS

BCG corrected data and [2 ± 4, �96 ± 1, 9 ± 3] mm [MNI:x,y,z] for

the non-BCG corrected data. The MNI coordinates of the group mean

motor beta VE location (±SE) was [45 ± 5, �44 ± 3, 54 ± 2] mm [MNI:

x,y,z] for the AAS BCG corrected data and [55 ± 7, �35 ± 3, 50 ± 2]

mm [MNI:x,y,z] for the non-BCG corrected data.

The group mean VE time-courses time-locked at the individual R-

peak events were also calculated from the AAS BCG artefact

corrected data in Figure 8. It is important to mention that the fluctua-

tions of the remaining BCG artefact on the VE time-courses from the

beamforming BCG corrected data, resulted in the peak z-score values

around 0.05 (Figure 8), when compared to the original BCG artefacts

which had the peak z-scores between 0.5 and 1 at the R-peak events

in the sensor space of the non-BCG corrected data (Figure 2). More-

over, the fluctuations of the remaining BCG artefact from the

beamforming BCG corrected data was similar to those of the -

beamforming + AAS BCG corrected data showing the peak z-score

values around 0.05 (Figure 8), suggesting that whether or not the AAS

was considered at the sensor level, spatial filtering using beamforming

was able to reach the similar amount of BCG artefact removal.

The power fluctuations of the remaining BCG artefact from the

VE signals of the non-BCG corrected data were observed at the peak

power of around 0.2 dB at the time of R-peaks (Figure 8), resulting in

a large attenuation of the BCG artefacts which were originally

exhibiting a peak power of around 1 dB at the R-peak events, espe-

cially below 20 Hz (Figure 3). In Figure 9b, the cluster-based permuta-

tion tests revealed significant reduction (p < .05) of the BCG artefact

between the beamforming BCG corrected data (visual alpha VE,

F IGURE 5 Group mean (N = 20) time–frequency representations (TFRs) of ballistocardiogram (BCG) artefact corrected signals time-locked at
individual R-peak events from electrocardiography (ECG) recording during each run (three runs in total). The TFRs were calculated from the BCG
corrected data (average artefact subtraction [AAS] approach) on selected 17 electrodes from an Electrical Geodesics Inc (EGI) geodesic
256 electroencephalography (EEG) system. Specifically, E2 (F8), E21 (Fz), E36 (F3), E47 (F7), E59 (C3), E87 (P3), E94 (M1), E96 (P7), E101 (Pz), E116
(O1), E126 (Oz), E150 (O2), E153 (P4), E170 (P8), E183 (C4), E190 (M2), and E224 (F4) electrodes have the equivalent locations in an international
10–20 EEG system from EGI geodesic 256 EEG system. It needs to be noted that the scales of colour bars in this figure are within ±1 dB
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motor beta VE) and corresponding non-BCG corrected electrodes (Oz,

C4), confirming that the beamforming technique significantly removed

the BCG artefacts, even from non-corrected data.

By comparing the standard AAS approach (AAS BCG corrected

data) and beamforming + AAS BCG corrected data (Figure 9a), the

cluster-based permutation tests revealed significant differences (p < .05)

between the beamforming + AAS BCG corrected data (visual alpha VE,

motor beta VE) and corresponding AAS BCG corrected electrodes (Oz,

C4), suggesting the beamforming spatial filtering could also further

improve the BCG artefact suppressions even after the standard AAS

approach in the sensor space. Furthermore, the cluster-based permuta-

tion tests (Figure 9c) revealed significant differences (p < .05) between

the beamforming BCG corrected data (visual alpha VE, motor beta VE)

and corresponding AAS BCG corrected electrodes (Oz, C4), demonstrat-

ing that the performance of this beamforming BCG denoising for the

non-BCG corrected data (Figure 8) was significantly greater than the

level of the conventional AAS approach (Figure 5). This finding indicates

that the proposed data-driven beamforming denoising approach allows

significantly attenuating the BCG artefacts without relying on R-peak

detections from ECG recording. Finally, by comparing the performance

of both beamforming approaches (beamforming + AAS BCG corrected,

beamforming BCG corrected), the permutation tests revealed that the

beamforming + AAS BCG corrected data contained significantly less

BCG artefacts than the beamforming BCG corrected data in the motor

beta VE (p < .05), although there was no significant difference between

them in the visual alpha VE, indicating some advantages of applying the

beamforming technique on the corrected data, when compared to solely

applying beamforming on the uncorrected data (Figure 6). The effect

sizes of the significant clusters were ranged from d = 1.05 to d = 1.17,

which revealed the large effect (Figures 6 and 9).

3.2 | ANT task activity

3.2.1 | Visual alpha ERD

Analysis at the sensor level

Figure 10 shows the group mean TFRs measured in selected occipital

and parietal electrodes, reporting alpha (8–13 Hz) power change in

response to the target cues which occurred at 600 ms after the probe

F IGURE 6 The t-maps of differences in the time–frequency representations (TFRs) between the average artefact subtraction (AAS)
ballistocardiogram (BCG) corrected and non-BCG corrected data in both sensor and source levels (visual and motor virtual electrodes (VEs)).
Figures demonstrate t-values (“non-BCG corrected” minus “AAS BCG corrected”) and black contour representing the significant clusters from
cluster-based permutation tests (p < .05), and if there is a significant cluster, Cohen's d is calculated as the effect size. Yellow denotes a positive t-
value showing greater power in the non-BCG corrected data when compared to the AAS BCG corrected data, whereas blue denotes a negative t-
value revealing greater power in the AAS BCG corrected data when compared to the non-BCG corrected data. The figures indicate a significant
reduction of the BCG artefacts when applying AAS, as opposed to non-BCG correction, and overall significant improvement of AAS method for
signals below 20 Hz
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cue onset (either no cue, double cue, or spatial cue). Results are

reported when considering results obtained for the AAS BCG

corrected data (top row) and non-BCG corrected data (bottom row).

Despite the large broadband increases in power (red vertical stripes

occurred after around 1 s in response to the probe cue onset) demon-

strated the motion artefacts caused by the button press for the task

responses (see Supplementary Figure S4), alpha power decrease

(alpha ERD) was still observed within the time window before 1 s

when compared to baseline time-window (�1.5 to �0.5 s prior to the

probe cue onset) in the AAS BCG corrected data (see top row in

Figure 10). However, this alpha ERD was difficult to identify in the

same electrodes from the non-BCG corrected data (see bottom row in

Figure 10) as the alpha power within the active time-window (0.1–

1.1 s after the probe cue onset) was reduced from �0.91 ± 0.45 dB

(AAS BCG corrected data) to �0.71 ± 0.29 dB (non-BCG corrected

data) in the Oz electrode, revealing that the BCG artefacts, which are

typically below 20 Hz, masked the alpha power change related to the

visual stimuli. In Figure 11, the cluster-based permutation tests dem-

onstrated significant differences (p < .05) between the AAS BCG

corrected and non-BCG corrected data in the occipital electrodes (O1,

Oz, O2), confirming that the visual alpha ERD can be observed at the

occipital electrodes in the standard AAS BCG corrected data, when

compared to the non-BCG corrected data at the sensor level. Further-

more, the significant clusters revealed the large to very large effect

sizes ranged from d = 1.11 to d = 1.24 (Figure 11).

Beamforming source reconstructions

Figure 14 (left column) shows the group average TFRs measured in

the visual alpha VE for alpha (8–13 Hz) power change in response to

the target cues which occurred at 600 ms after the probe cue onset

(either no cue, double cue, or spatial cue) from the AAS BCG

corrected data (top row) and non-BCG corrected data (bottom row).

Although the broadband increases in power (red vertical stripes

occurred after around 1 s in response to the probe cue onset) was

F IGURE 7 Group average (N = 20) pseudo-T statistic beamforming maps showing (left column) regions exhibiting power decreases in alpha
frequency (8–13 Hz) during the active window (0.1–1.1 s) as compared with the baseline window (�1.5 to �0.5 s) relative to the probe cue onset

from the average artefact subtraction (AAS) ballistocardiogram (BCG) corrected (top) and non-BCG corrected data (Bottom), whereas (Right
column) regions exhibiting power decrease in beta frequency (13–30 Hz) during the active window (�1.25 to �0.25 s) as compared with the
baseline window (�3 to �2 s) relative to the movement onset from the AAS BCG corrected (top) and non-BCG corrected data (bottom). The
crosshairs represent the group average of the individual virtual electrode (VE) locations found in visual cortex for the alpha frequency activity (left
column) and in the motor cortex for the beta frequency activity (right column). The group mean visual alpha VE locations across subjects (±SE)
was found at [�25 ± 4, �75 ± 1, �8 ± 3] mm [MNI:x,y,z] for the beamforming + AAS BCG corrected data and [2 ± 4, �96 ± 1, 9 ± 3] mm [MNI:
x,y,z] for the beamforming BCG corrected data (see crosshairs), whereas the group mean motor beta VE locations (±SE) was found at [45 ± 5,
�44 ± 3, 54 ± 2] mm [MNI:x,y,z] for the beamforming + AAS BCG corrected data and [55 ± 7, �35 ± 3, 50 ± 2] mm [MNI:x,y,z] for the
beamforming BCG corrected data, both of which were contralateral to the left hand button presses (see crosshairs)
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caused by motion artefacts occurring at the time of the button press

for the task responses, alpha power decrease (alpha ERD) was

observed within the time window before 1 s as compared to baseline

time-window (�1.5 to �0.5 s prior to the probe cue onset) in both

AAS BCG corrected and non-BCG corrected data (see left column in

Figure 14). The alpha ERD within the active time-window (0.1–1.1 s

after the probe cue onset) from the BCG corrected data was �1.26

± 0.48 dB with the peak alpha frequency of 11 Hz (see top row in

Figure 14, left column), whereas the alpha ERD from the non-BCG

corrected data was �1.32 ± 0.56 dB with the peak alpha frequency

of 11 Hz (see bottom row in Figure 14, left column). In Figure 15b

(left column), the cluster-based permutation test revealed signifi-

cant differences (p < .05) between the beamforming BCG corrected

data (visual alpha VE) and corresponding non-BCG corrected elec-

trodes (Oz), indicating that the beamforming technique better

recovered the meaningful task-induced activity (visual alpha ERD)

which was not present at the sensor level. The significant cluster

also revealed the large effect size (d = 1.06) (Figure 15b, left

column).

By comparing the standard AAS approach (AAS BCG corrected

data) and beamforming + AAS BCG corrected data (Figure 15a, left

column), the cluster-based permutation test revealed significant dif-

ferences (p < .05) between the beamforming + AAS BCG corrected

data (visual alpha VE) and corresponding AAS BCG corrected

electrodes (Oz), suggesting the beamforming spatial filtering could

improve the SNR of the meaningful task-induced activity (visual alpha

ERD), when compared to the standard AAS approach in the sensor

space. Furthermore, the cluster-based permutation test (Figure 15c,

left column) revealed significant differences (p < .05) between the

beamforming BCG corrected data (visual alpha VE) and corresponding

AAS BCG corrected electrodes (Oz), demonstrating that the task-

induced activity of this beamforming BCG denoising data (Figure 14)

had significantly greater SNR when compared to that of the conven-

tional AAS approach (Figure 10). These significant clusters also rev-

ealed the small to medium effect sizes ranged from the non-

directional d = 0.14 to d = 0.71 (Figure 15, left column). By compar-

ing the task-induced activity of both beamforming approaches

(beamforming + AAS BCG corrected, beamforming BCG corrected),

the permutation test revealed no significant difference between them

in the visual alpha VE (Figure 11).

Signal-to-noise ratios

The group mean SNR of the visual alpha VE from the beamforming

BCG corrected data was 1.03 ± 0.42 (mean ± SD), whereas the group

mean SNR of the visual alpha VE from the beamforming + AAS BCG

corrected data was 0.99 ± 0.40 (mean ± SD). Both SNRs obtained the

source level after beamforming spatial filtering was more than twice

as large as the SNRs in the occipital and parietal electrodes ranging

F IGURE 8 Group mean (N = 20) time-courses (±SD) and time–frequency representations (TFRs) of ballistocardiogram (BCG) artefact related

signals time-locked at individual R-peak events from two virtual electrodes (VEs) in the visual and motor cortex after applying beamforming
techniques on either average artefact subtraction (AAS) BCG corrected (beamforming + AAS BCG corrected) or non-BCG corrected data
(beamforming BCG corrected). It needs to be noted that the scales of the y-axis in the time-course amplitude are within ±0.15 z-scores, whereas
those of the colour bars in the TFR are within ±0.3 dB
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between 0.30 and 0.43 in the sensor level of the BCG corrected sig-

nals (see Figure 16), which is consistent with the permutation test

results.

3.2.2 | Motor beta ERD

Analysis at the sensor level

Figure 12 shows the group average TFRs measured in the central

electrodes (frontal, central, and parietal) for beta (13–30 Hz) power

change during the motor preparation/planning before the move-

ment onset for the AAS BCG corrected data (top row) and non-BCG

corrected data (bottom row). Although the broadband increases in

power (red vertical stripes occurred at the time of 0 s which was the

button press for the task responses) revealing the motion artefacts

caused by the button press for the task responses can be observed

(see Supplementary Figure S5), beta power decrease (beta ERD) was

observed within the time window before the movement onset as

compared to baseline time-window (�3 to �2 s prior to the move-

ment onset) in the AAS BCG corrected data (see top row in

Figure 12). However, this beta ERD was difficult to identify in the

same electrodes from the non-BCG corrected data (see bottom row

in Figure 12) as the beta power within the active time-window

(�1.25 to �0.25 s before the movement onset) was reduced from

�0.92 ± 0.23 dB (AAS BCG corrected data) to �0.78 ± 0.25 dB

(non-BCG corrected data) in the C4 electrode and from �1.03

± 0.21 dB (AAS BCG corrected data) to �0.91 ± 0.30 dB (non-BCG

corrected data) in the P4 electrode, revealing that the BCG arte-

facts, which are typically below 20 Hz, were masking the beta

power change related to the movement preparation/planning. In

Figure 13, the cluster-based permutation tests demonstrated that

significant differences (p < .05) between the AAS BCG corrected

and non-BCG corrected data were observed in the frontal, central,

and parietal electrodes (F4, C4, P4) particularly in the right hemi-

sphere which is contralateral to the left-hand button press, con-

firming that the motor beta ERD was visible at the contralateral

F IGURE 9 R-peak locked analysis: The t-maps of differences between the time–frequency representations (TFRs) for various comparisons,
(a) between beamforming + average artefact subtraction (AAS) ballistocardiogram (BCG) corrected and corresponding AAS BCG corrected
electroencephalography (EEG) electrodes (Oz for visual, C4 for motor) (“AAS BCG corrected” minus “beamforming + AAS BCG corrected”),
(b) between beamforming BCG corrected and corresponding non-BCG corrected EEG electrodes (“non-BCG corrected” minus “beamforming BCG
corrected”), (c) between beamforming BCG corrected and corresponding AAS BCG corrected EEG electrodes (“AAS BCG corrected” minus
“beamforming BCG corrected”), (d) between beamforming + AAS BCG corrected and corresponding non-BCG corrected EEG electrodes (“non-
BCG corrected” minus “beamforming + AAS BCG corrected”), in the visual alpha virtual electrode (VE) in the left column and the motor beta VE
in the right column. Figures demonstrate t-values masked by the significant clusters from cluster-based permutation tests (p < .05), and if there is
a significant cluster, Cohen's d is calculated as the effect size. Yellow denotes a positive t-value showing greater power in the sensor-level data as
compared to the source-level data, whereas blue denotes a negative t-value revealing greater power in the source-level data as compared to the
sensor-level data
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frontal, central, and parietal electrodes in the standard AAS BCG

corrected data when compared to the non-BCG corrected data at

the sensor level. Furthermore, the significant clusters revealed the

large to very large effect sizes ranged from d = 1.08 to d = 1.21

(Figure 13).

Beamforming source reconstructions

Figure 14 (right column) shows the group average TFRs measured in

the motor beta VE for beta (13–30 Hz) power change during the

motor preparation/planning before the movement onset for the AAS

BCG corrected data (top row) and non-BCG corrected data (bottom

row). Although the broadband increases in power (red vertical stripes

occurred at the time of 0 s which was the button press for the task

responses) revealed the motion artefacts caused by the button press

for the task responses, beta power decrease (beta ERD) was observed

within the time window before the movement onset as compared to

baseline time-window (�3 to �2 s prior to the movement onset) in

both AAS BCG corrected and non-BCG corrected data (right column

in Figure 14). The beta ERD within the active time-window (�1.25 to

�0.25 s before the movement onset) from the AAS BCG corrected

data was �0.95 ± 0.23 dB with the peak beta frequency of 18.5 Hz

(see top row in Figure 14, right column), whereas the beta ERD from

the non-BCG corrected data was �1.04 ± 0.21 dB with the peak beta

frequency of 18 Hz (see bottom row in Figure 14, right column). In

Figure 15b (right column), the cluster-based permutation test revealed

significant differences (p < .05) between the beamforming BCG

corrected data (motor beta VE) and corresponding non-BCG corrected

electrodes (C4), indicating that the beamforming technique recovered

the meaningful task-induced activity (motor beta ERD) which was not

present at the sensor level. The significant clusters also revealed the

small effect sizes (d = �0.28) (Figure 15b, right column).

By comparing with the standard AAS BCG corrected data, the

cluster-based permutation tests revealed significant differences

(p < .05) between the beamforming + AAS BCG corrected data

(motor beta VE) and corresponding AAS BCG corrected electrodes

(C4) (Figure 15a, right column), as well as significant differences

(p < .05) between the beamforming BCG corrected data (motor beta

VE) and corresponding AAS BCG corrected electrodes

(C4) (Figure 15c, right column), indicating that both beamforming

approaches data (Figure 14) increased SNR significantly when com-

pared to that of the conventional AAS approach (Figure 12). These

significant clusters also revealed the large to very large effect sizes

F IGURE 10 Group mean (N = 20) time–frequency representations (TFRs) of visual alpha (8–13 Hz) event-related desynchronization (ERD) in
response to the target cues which occurred at 600 ms after the probe cue onset (either no cue, double cue, or spatial cue) from six electrodes in
the occipital and parietal regions for the average artefact subtraction (AAS) ballistocardiogram (BCG) corrected data (top row) and non-BCG
corrected data (bottom row). These TFRs demonstrated �2 to 0.75 s relative to the probe cue onset removing a period of the motion artefacts
caused by the button press for the task responses occurring at around 1 s. Open dashed rectangles represent the a priori time (0.1–0.75 s) and
frequency (alpha: 8–13 Hz) of interest for our analysis. The whole trial epoch (�2 to 3 s relative to the probe cue onset) can be seen in
Supplementary figure (Figure S4)
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ranged from non-directional d = 0.92 to d = 1.49 (Figure 15, right col-

umn). By comparing the task-induced activity of both beamforming

approaches (beamforming + AAS BCG corrected, beamforming BCG

corrected), the permutation test revealed a significant difference

(p < .05) between them in the motor beta VE (Figure 13), demonstrat-

ing that the beamforming BCG corrected data had significantly larger

beta ERD than the beamforming + AAS BCG corrected data. This sig-

nificant cluster also revealed the large effect size of d = �1.17

(Figure 13).

Signal-to-noise ratios

The group average SNR of the motor beta VE from the non-BCG

corrected data was 1.31 ± 0.29 (mean ± SD), whereas the group mean

SNR of the motor beta VE from the AAS BCG corrected data was

1.21 ± 0.32 (mean ± SD). Both SNRs in the source level were more

than 1.3 times as large as the SNRs in the sensor level for frontal, cen-

tral, and parietal electrodes, ranging between 0.68 and 0.88 in the

sensor level of the AAS BCG corrected signals (see Figure 16), which

is consistent to the permutation test results.

4 | DISCUSSION

In this study, we first investigated the effect of the beamforming tech-

nique to attenuate BCG artefacts in EEG–fMRI data, even without

detecting cardiac pulse (R-peak) events from simultaneous ECG

recordings. In a second step, we also quantified how this technique

would preserve expected brain activity induced by the ANT task,

while suppressing the BCG artefacts. The beamforming technique is

an adaptive spatial filtering technique scanning independently each

location in a predefined region of interest (ROI) within the source

space, proposed for source localization of EEG and MEG data (Gross

et al., 2001; Robinson & Vrba, 1999; Sekihara et al., 2001; van

Drongelen et al., 1996; van Veen et al., 1997; van Veen &

Buckley, 1988). Moreover, several studies have demonstrated that

beamformer is highly efficient when attenuating artefactual signals

which have different spatial origins from the underlying signal of inter-

est such as eye movements (Cheyne et al., 2006) and orthodontic

metal braces (Cheyne et al., 2007) in MEG. Specifically, the

beamforming spatial filter rejects sources of signal variance that are

F IGURE 11 Alpha event-related desynchronization (ERD) induced during ANT: The t-maps of differences in the time–frequency
representations (TFRs) between the average artefact subtraction (AAS) ballistocardiogram (BCG) corrected and non-BCG corrected data at six
electrodes selected from the occipital and parietal regions, and visual alpha virtual electrode (VE). Figures demonstrate t-values and black contour
representing the significant clusters from cluster-based permutation tests (p < .05), and if there is a significant cluster, Cohen's d is calculated as
the effect size. Yellow denotes a positive t-value showing greater power in the AAS BCG corrected data as compared to the non-BCG corrected
data, whereas blue denotes a negative t-value revealing greater power in the non-BCG corrected data as compared to the AAS BCG corrected
data. The figures suggest that AAS BCG corrected data were able to identify a significantly larger ERD decrease in alpha power, when compared
to non-BCG corrected data on the occipital electrodes
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not concordant in predetermined source locations in the brain based

on the forward model, and attenuates all unwanted source activities

outside of the predetermined source location of interest in the data

(e.g., eye movements) without having to specify the location or the

configuration of these unwanted underlying source signals (Brookes

et al., 2007; Huang et al., 2004; van Veen et al., 1997). Since the

beamforming spatial filtering appears another promising denoising

technique in the context of EEG–fMRI studies (Brookes et al., 2009;

Brookes, Mullinger, et al., 2008; Mullinger & Bowtell, 2011), we

hypothesized that the beamforming technique would attenuate the

BCG artefacts to a similar extent as compared to the conventional

AAS BCG artefact corrections.

4.1 | BCG corrections in EEG–fMRI

In the sensor space using time-course (Figures 2 and 3) and time–

frequency analysis (Figures 4 and 5), we first showed that generally

the standard AAS method demonstrated significant suppression of

BCG artefacts by comparing the AAS BCG corrected and non-BCG

corrected data, while some of the residual BCG artefacts were still

observed above 20 Hz (Figure 6). We then evaluated the impact of

beamforming spatial filtering, when applied to both AAS BCG

corrected (beamforming + AAS BCG corrected) and non-BCG

corrected (beamforming BCG corrected) data, comparing with sensor

level data (AAS BCG corrected data).

The VE locations were determined by the ANT task activity,

resulting in one VE in the visual cortex (visual alpha VE) to monitor

alpha power decrease induced by visual cues, and one VE in the motor

cortex (motor beta VE) to monitor beta power decrease induced by

finger tapping preparation/planning. The location of these VEs was

estimated specifically for each subject and was found overall concor-

dant at the group level (Figure 7). Based on the two VE locations, we

demonstrated that the VE time-courses from both beamforming

approaches (beamforming BCG corrected; beamforming AAS + BCG

corrected) contained less BCG artefacts when compared to the origi-

nal uncorrected data in the sensor level (Figure 9b,d). Moreover, both

beamforming approaches revealed significantly less BCG artefacts as

compared to the standard AAS BCG corrected data (Figure 9a,c). Fur-

thermore, when applying the beamforming to the AAS BCG corrected

data, this approach was significantly better than solely applying the

beamforming to the uncorrected data (Figures 6 and 8). Overall, our

findings demonstrated that the denoising performance of the

beamforming BCG corrections was significantly better than the level

F IGURE 12 Group mean (N = 20) time–frequency representations (TFRs) of motor beta (13–30 Hz) event-related desynchronization (ERD)
during motor preparation/planning before the movement onset from six electrodes in the frontal, central and parietal regions for the average
artefact subtraction (AAS) ballistocardiogram (BCG) corrected data (top row) and non-BCG corrected data (bottom row). These TFRs
demonstrated �4 to �0.25 s relative to the movement onset removing a period of the motion artefacts caused by the button press for the task
responses occurring at 0 s. Open dashed rectangles represent the a priori time (�1.25 to �0.25 s) and frequency (beta: 13–30 Hz) of interest for
our analysis. The whole trial epoch (�4 to 2 s relative to the movement onset) can be seen in Supplementary figure (Figure S5)
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of the standard AAS approach. Our results support and extend the

previous findings of Brookes, Mullinger, et al. (2008) and Brookes,

Vrba, et al. (2008) which had a limited number of participants (N = 2)

and did not use any statistical analysis. Our findings revealed that this

data-driven beamforming denoising approach even without detecting

R-peak events from ECG recording is promising when attenuating the

BCG artefacts in EEG–fMRI.

Although the AAS BCG correction is commonly used and

reported in the EEG–fMRI literature, there are several different

approaches to correct the BCG artefacts considering both software

(ICA: Debener et al., 2007; OBS: Niazy et al., 2005) and hardware

(Reference layer artefact subtraction: Chowdhury et al., 2014;

Carbon-wire loop: Masterton et al., 2007; Optical Motion tracking

system: LeVan et al., 2013) based solutions. In the software solutions,

the ICA technique has been suggested to remove independent com-

ponents (ICs) corresponding to the BCG artefacts. In the context of

the ICA approaches, several different approaches have been

suggested, and the selection of the ICs varies based on

(a) thresholding the correlation coefficients (i.e., > 0.2) between each

IC and the simultaneously acquired ECG signal (Mantini et al., 2007)

or a pulse artefact/BCG template (Srivastava, Crottaz-Herbette, Lau,

Glover, & Menon, 2005), (b) applying the autocorrelation function of

each IC to find a repeating pattern in EEG (Vanderperren et al., 2010),

(c) identifying ICs that exhibit spectral peaks at cardiac-related fre-

quencies (Vanderperren et al., 2007), (d) thresholding averaged peak-

to-peak amplitudes of ICs reconstructed signals (i.e., 15 and 25%)

when epoched around the cardiac peak (Vanderperren et al., 2010),

and (e) identifying ICs explaining the largest amount of variance of the

evoked BCG artefacts (Debener et al., 2008). Although the ICA-based

approach demonstrated successful BCG suppressions, this method

needs more fined parameter tuning. Therefore, in the ICA approaches,

the objective and accurate classifications/selections of BCG-related

ICs remain a major concern (Abreu et al., 2016; Vanderperren

et al., 2010).

The OBS approach is another software solution, which uses prin-

cipal component analysis (PCA) to remove the principal components

(PCs) representing the BCG artefacts. The OBS relies on the assump-

tion that each BCG artefact occurrence in each channel is

F IGURE 13 Beta event-related desynchronization (ERD) induced during ANT: The t-maps of differences in the time–frequency
representations (TFRs) between the average artefact subtraction (AAS) ballistocardiogram (BCG) corrected and non-BCG corrected data at six
electrodes selected from the frontal, central and parietal regions, and motor beta virtual electrode (VE). Figures demonstrate t-values and black
contour representing the significant clusters from cluster-based permutation tests (p < .05), and if there is a significant cluster, Cohen's d is
calculated as the effect size. Yellow denotes a positive t-value showing greater power in the AAS BCG corrected data as compared to the non-
BCG corrected data, whereas blue denotes a negative t-value revealing greater power in the non-BCG corrected data as compared to the AAS
BCG corrected data. The figures suggest that AAS BCG corrected data were able to identify a significantly larger ERD decrease in beta power,
when compared to non-BCG corrected data in the frontal, central, and parietal electrodes. Furthermore, beamforming BCG corrected data
exhibited larger beta ERD than beamforming + AAS corrected data
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independent of any previous occurrence, and OBS of PCs is used for

the template creation and subsequent BCG artefact subtractions

(Niazy et al., 2005). In comparison to ASS, PCA considered in OBS will

allow modelling some variability in the BCG artefact, as opposed to

considering the mean effect only. In the OBS approach, one

parameter needs to be determined, which is the number of PCs used

to create the artefact template. Most studies use the recommended

value of 3 or 4 for this parameter (Niazy et al., 2005; Vanderperren

et al., 2010), although there is no consensus on whether this number

can yield satisfactory corrections for all channels of all datasets (Jorge,

Bouloc, Bréchet, Michel, & Gruetter, 2019; Marino et al., 2018; Van-

derperren et al., 2010). As different from the ICA approach, the OBS

method requires the detections of cardiac peak timing similarly to the

AAS approach. Although both ICA and OBS approach have success-

fully removed the BCG artefacts, using some arbitrary classifications/

selections in necessary parameters of both approaches remains a

major concern, since both approaches have some risk of aggressively

suppressing the meaningful signals too much (Abreu et al., 2016; Van-

derperren et al., 2010). Moreover, the common application of the ICA

and OBS approach have been proposed after the AAS BCG correction

to remove the residual BCG artefacts and successfully improved the

AAS BCG correction (Abreu et al., 2018).

Considering these software solutions (ICA and OBS), the AAS

approach has still been commonly used and reported in the EEG–fMRI

literature. Additionally, this approach has still been recognized as the

standard approach (Abreu et al., 2018). However, this AAS approach

requires high precisions of the cardiac pulse (R-peak) event detections

in the MRI scanner which are used for subtracting averaged BCG arte-

fact templates. Normally R-peak events are detected from simulta-

neous ECG recordings (see Supplementary Figure S2), although facial

and temporal electrodes of high-density EEG can also be used for the

detection (Iannotti et al., 2015). ECG signals in the MRI scanner are

often distorted (see Supplementary Figure S2), which may prove to be

even more problematic when difficulties in obtaining an adequate

quality ECG trace occur (i.e., high field MRI, ECG saturation) (Chia

et al., 2000; Mullinger, Morgan, & Bowtell, 2008), and significantly

time-consuming when additional manual correction is required.

Detecting R-peak events from the ECG is thus difficult, so that this

procedure may sometimes become unreliable, although VCG instead

of ECG recording is more suited and recommended to use for the R-

peak detections if available (Mullinger & Bowtell, 2011) because the

VCG signals are not distorted as compared to the ECG signals in

the MRI. Moreover, there is also inter- and intra-subject variabilities

of the latency between the ECG and BCG events (Iannotti

F IGURE 14 Group mean (N = 20) time–frequency representations (TFRs) of visual alpha (8–13 Hz) event-related desynchronization (ERD) in
response to the target cues which occurred at 600 ms after the probe cue onset (either no cue, double cue, or spatial cue) from the visual alpha
virtual electrode (VE) location for the average artefact subtraction (AAS) ballistocardiogram (BCG) corrected data (top row) and non-BCG
corrected data (bottom row) in the left column, whereas group mean (N = 20) TFRs of motor beta (13–30 Hz) ERD in response to the movement
onset from the motor beta VE location for the AAS BCG corrected data (top row) and non-BCG corrected data (bottom row) in the right column.
The broadband increases in power (yellow-red vertical stripes) revealed the motion artefacts caused by the button press for the task responses.
The open dashed rectangles in the left column represent the a priori time (0.1–1.1 s) and frequency (alpha: 8–13 Hz) of interest for our analysis,
whereas the open dashed rectangles in the right column represent the a priori time (�1.25 to �0.25 s) and frequency (beta: 13–30 Hz) of interest
for our analysis
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et al., 2015), which will have negative impact on the AAS perfor-

mance. Despite known limitations of the AAS approach, the AAS

approach has been used as some ground truth in EEG–fMRI to dem-

onstrate the denoising performance of new techniques. Considering

the difficulty and imprecise R peak detections, our proposed data-

driven beamforming denoising technique is promising, demonstrating

the advantages of neither relying on ECG signals nor needing to

determine some parameters as compared to the other correction

techniques (ICA, OBS). In this study, solely applying the beamforming

spatial filtering technique to the uncorrected data demonstrated supe-

rior denoising performance than the standard AAS BCG correction.

This data-driven beamforming technique could be well suited for lon-

ger EEG–fMRI data acquisition, such as sleep or resting-state data or

epilepsy monitoring, where varieties of cardiac responses would be

expected to be large and the risk of losing or saturating ECG signals

would be high. Under these conditions, the AAS and other software

solutions might not be efficient. Based on our findings, this data-

driven approach could be applied to suppress the BCG attracts with-

out having to use the detected R-peak events from ECG recordings

during the long acquisition.

4.2 | Task-based-induced neural activity in
EEG–fMRI

Having successfully demonstrated the effect of the beamforming

technique to suppress the BCG artefacts, it was crucial to also demon-

strate that this technique would not significantly suppress meaningful

EEG signals, but rather preserve them. In this study, we investigated

whether this beamforming technique could recover the meaningful

task-based-induced neural activities indicated by visual alpha (8–

13 Hz) ERD during observing visual stimuli and motor beta (13–

30 Hz) ERD during movement preparation/planning before the move-

ment onset during ANT (Fan et al., 2005, 2007). First, we demon-

strated that the standard AAS BCG corrected data indeed exhibited

greater alpha ERD during the visual stimuli in the occipital electrodes

(Figures 10 and 11), and greater beta ERD during the movement prep-

aration in the central electrodes contralateral to the left hand button

press as compared to the non-BCG corrected data (Figures 12 and

13). Applying the beamforming technique to both AAS BCG corrected

and non-BCG corrected data, we then demonstrated that both

beamforming approaches (beamforming + AAS BCG corrected,

F IGURE 15 Alpha and beta event-related desynchronization (ERD) induced during ANT: The t-maps of differences between the time–
frequency representations (TFRs) for various comparisons, (a) between beamforming + average artefact subtraction (AAS) ballistocardiogram
(BCG) corrected and corresponding AAS BCG corrected electroencephalography (EEG) electrodes, (b) between beamforming BCG corrected and
corresponding non-BCG corrected EEG electrodes, (c) between beamforming BCG corrected and corresponding AAS BCG corrected EEG
electrodes, (d) between beamforming + AAS BCG corrected and corresponding non-BCG corrected EEG electrodes, in the visual alpha ERD in
the left column and the motor beta ERD in the right column. Figures demonstrate t-values and black contour representing the significant clusters
from cluster-based permutation tests (p < .05), and if there is a significant cluster, Cohen's d is calculated as the effect size. Yellow denotes a
positive t-value showing greater power in the source-level data as compared to the sensor-level data, whereas blue denotes a negative t-value
revealing greater power in the sensor-level data as compared to the source-level data
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beamforming BCG corrected) exhibited greater alpha ERD with the

peak alpha frequency of 11 Hz during the visual stimuli in the visual

alpha VE, and greater beta ERD with the peak beta frequency of

around 18 Hz during the movement preparation in the motor beta VE

as compared to the non-BCG corrected data (Figures 14 and 15b,d).

Furthermore, as compared to the AAS BCG corrected data, both

beamforming approaches demonstrated clearer alpha ERD and beta

ERD by suppressing any residual artefacts caused by fMRI acquisition

(Figure 15a,c). Considering the effect of the data-driven beamforming

approaches, the beamforming BCG corrected data revealed signifi-

cantly greater motor beta ERD as compared to the beamforming

+ AAS BCG corrected data (Figure 13), whereas there was no signifi-

cant difference in the visual alpha ERD (Figure 11). Additionally, the

locations of visual alpha VEs in the visual cortex were consistent with

the previous findings when the visual stimuli were used to trigger

movement executions (Brookes et al., 2005; Scheeringa et al., 2011;

Wilson et al., 2019), whereas the locations of motor beta VEs were

found as expected in the right motor cortex contralateral to the left-

hand button presses (Hill et al., 2020; Wilson et al., 2019). Based on

these robust visual alpha ERD and motor beta ERD and VE locations,

our findings revealed that our data-driven beamforming approach did

not only suppress the BCG artefacts, but also recovered meaningful

task-based neural signals induced by the ANT task (Fan et al., 2007;

Marshall et al., 2015).

4.3 | SNRs between sensor and source space

Findings of the visual alpha and motor beta ERDs together demon-

strated both beamforming approaches (beamforming + AAS BCG

corrected and beamforming BCG corrected data) successfully recov-

ered the expected task-based-induced neural activity during visual

stimuli or preparation/planning of the movement execution respec-

tively, while minimizing the effects of the BCG artefacts. Further-

more, SNR analysis revealed that the group mean SNRs of the visual

alpha VEs from both beamforming approaches in the source level

increased the SNRs by more than twice when compared to the SNR

measured at the sensor level (Figure 16, top row). The group mean

SNRs of the motor beta VEs from both beamforming approaches in

the source level increased the SNRs by more than 1.3 times as com-

pared to those in the sensor level, which are consistent with the per-

mutation test results in the TFRs (Figure 16, bottom row).

Indeed, in a recent MEG study, Hill et al. (2020) reported similar

beamforming source reconstruction approach improving the SNRs by

over 1.5 times for the motor beta frequency activity during finger

abduction movements and by over 1.5 times for the visual gamma

(55–70 Hz) frequency activity during the visual stimuli when com-

pared to those in the sensor space. As expected, our SNR findings

were also consistent with the previous findings suggesting that

beamforming source reconstruction will improve the SNRs when

F IGURE 16 Group mean (N = 20) signal-to-noise ratios (SNRs) (±SD) of visual alpha (8–13 Hz) event-related desynchronization (ERD) for the
six electrodes of occipital and parietal regions and visual alpha virtual electrode (VE) location from both average artefact subtraction (AAS) BCG
corrected and non-BCG corrected data in the top row, and group mean (N = 20) SNRs (±SE) of motor beta (13–30 Hz) ERD for the six electrodes
of frontal, central, and parietal regions and motor beta VE location from both AAS BCG corrected and non-BCG corrected data in the bottom
row. SNRs were calculated by dividing mean signal in the frequency of interest within the active time window by the SD of signals in the
frequency of interest within the baseline time window, then group mean SNR was calculated averaging averaged individual subject's SNRs across
trials (in a similar approach to Hill et al. (2020))
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compared to the sensor level (Brookes et al., 2009; Hill et al., 2020;

Sekihara et al., 2004), and this approach will be beneficial especially in

the EEG–fMRI (Brookes et al., 2009; Mullinger & Bowtell, 2011),

which is indeed the advantage of using the beamforming technique in

EEG–fMRI.

Another advantage of applying the beamforming technique in

EEG–fMRI is to improve the sensitivity and specificity of fMRI BOLD

general linear model (GLM) analysis, although the EEG–fMRI data

fusion analysis was beyond the aim of this study. This can be achieved

by extracting source activities from a selected VE location, calculating

the Hilbert transformed envelope of source neural activities in a spe-

cific frequency band, and parameterizing regressors with the Hilbert

envelope amplitude fluctuations instead of using consistent fixed

binary boxcar (i.e., 0 or 1) for the fMRI GLM analysis (Brookes, Mul-

linger, et al., 2008; Mullinger et al., 2014). This is based on the findings

demonstrating that the amplitudes and variabilities of BOLD

responses have been better explained by this parameterized GLM

(single-trial/event correlation analysis) which takes account of source

neural variability in EEG responses than by a conventional GLM of

consistent amplitude responses (Grouiller et al., 2011; Mullinger

et al., 2014). This Hilbert transformed envelope has been used in the

different frequency bands (alpha 8–13 Hz: Mullinger et al., 2013,

2014; Mullinger, Cherukara, Buxton, Francis, & Mayhew, 2017; beta

13–30 Hz: Pakenham et al., 2020; Wilson et al., 2019; and gamma

55–80 Hz: Uji et al., 2018). For example, this parameterized GLM

analysis successfully improved the specificity and sensitivity to iden-

tify the neurophysiological origin of the negative BOLD response to

unilateral median nerve stimulation (Mullinger et al., 2014) and nega-

tive BOLD responses between stimulated and unstimulated sensory

cortex (Wilson et al., 2019). Furthermore, this GLM analysis revealed

that a significant positive correlation between single trial gamma band

variability and BOLD responses over the contralateral primary motor

cortex during finger abduction movements, indicating that tight cou-

pling of neurovascular coupling between the gamma band activity and

BOLD responses (Uji et al., 2018). We assume that such fMRI GLM

approach can be used to better localize the neurovascular coupling of

sleep specific neural activities (i.e., slow-wave, spindle) in sleep

research, after the data-driven beamforming denoising technique sup-

presses the BCG artefacts which remain problematic for the fre-

quency of sleep specific neural activities.

4.4 | Limitations of beamforming techniques

In this article, we demonstrated that this data-driven beamforming

approach did not only significantly attenuate the BCG artefacts with-

out having to use the detected R-peak events from ECG recordings,

but also significantly recovered the expected task-based-induced

brain activity indicated by alpha and beta ERDs when compared to

the conventional AAS BCG corrections. However, this beamforming

approach also has some limitations. For the construction of the

beamforming spatial filters, realistic head volume conductor modelling

is required for accurately computing the EEG and MEG lead-fields

(Brookes, Mullinger, et al., 2008; Neugebauer, Möddel, Rampp, Bur-

ger, & Wolters, 2017). The limitation of the beamforming technique

comes from the difficulty in accurately calculating the EEG forward

solution. More accurate head models based on realistic head geome-

try obtained from anatomical MR images and knowledge of the accu-

rate location of the EEG electrodes on the head can provide a more

accurate forward solution. Whereas access to such information is not

always straightforward, in this article, we did consider a realistic head

model, consisting of a four-layer (scalp, skull, CSF, and brain) BEM

head model from individual anatomical images, with digitized EEG

electrode locations using the EGI GPS to facilitate individualized accu-

rate co-registration of electrode positions with each subject's anatom-

ical image.

Another limitation is that better suppressions of MRI-related arte-

facts require the use of high-density EEG electrodes (at least 64 EEG

channels). Brookes et al. (2009) demonstrated that using high-density

EEG electrodes improved the level of artefact attenuations increasing

SNRs by a factor of around 1.6 if the number of EEG electrodes was

increased from 32 to 64 channels when the data was acquired at 7 T

MRI. Another major limitation of beamforming technique is that this

approach cannot properly reconstruct two spatially separate but tem-

porally correlated sources (Brookes et al., 2007; Huang et al., 2004;

Quraan & Cheyne, 2010; van Veen et al., 1997). For example,

beamforming cancels each other when spatially far from each other

(i.e., auditory steady-state response) (Brookes et al., 2007) or merge

when they are spatially placed close to each other (Huang

et al., 2004), although a modified source model instead of a standard

single source model allows for beamforming reconstruction of the

spatially separate but temporally correlated sources (Brookes

et al., 2007).

Another important limitation is the selection of an accurate VE

location in beamforming source space. Future research first needs to

investigate what extent selecting an inaccurate VE location would

influence the performance of beamforming approach. In most EEG–

fMRI studies, the timing of the EEG events/features is considered

more important than its localization, when associated with an fMRI

GLM analysis (e.g., detection of epileptic discharges, sleep specific dis-

charges). A commonly used approach for the beamforming technique

to select the VE location is to identify a maximum/minimum T score

value location in the ROI for any task-based data. Although this

approach to select VEs has been used for resting-state data

(Hillebrand et al., 2016; Hillebrand, Barnes, Bosboom, Berendse, &

Stam, 2012), this way might not be optimal in the sleep research due

to the propagation of signals of interest and lack of a clear baseline.

This issue could be solved statistically using bootstrapping techniques

and permutation tests of source images. The validation of these

approaches first needs to be fully investigated and addressed to

improve beamforming approaches. Furthermore, since the

beamforming technique has been initially introduced for the source

imaging technique in MEG and EEG studies (Gross et al., 2001; Robin-

son & Vrba, 1999; Sekihara et al., 2001; van Drongelen et al., 1996;

van Veen et al., 1997; van Veen & Buckley, 1988), future study needs

to investigate the source localization performance (VE selections) of
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the beamforming approach comparing with any other source imaging

technique in the context of EEG–fMRI.

In our findings, there were variances in the VE locations (38 mm

in the visual cortex; 14 mm in the motor cortex) between the

beamforming + AAS BCG corrected and beamforming BCG corrected

data. Therefore, using the same VE locations from the beamforming

+ AAS BCG corrected data ([�25 ± 4, �75 ± 1, �8 ± 3] mm [MNI:x,y,

z] for the visual alpha VE; [45 ± 5, �44 ± 3, 54 ± 2] mm [MNI:x,y,z]

for the motor beta VE), the same data analysis was conducted to

investigate how much the selection of VEs would influence the

beamforming performance. This analysis revealed that a similar level

of the beamforming BCG denoising performance was observed (see

Supplementary Figures S6 and S7), although the effect of visual alpha

ERD and motor beta ERD for the beamforming BCG corrected data

during the ANT was reduced (see Supplementary Figures S8 and S9)

due to the suboptimal selection of the VEs for the beamforming BCG

corrected data. Although our results can at least demonstrate the con-

sistent and similar performance of the beamforming technique on the

BCG correction when similar VE regions (i.e., within the range of

38 mm in the visual cortex and 14 mm in the motor cortex) are

selected, imprecise detections of the R-peaks might have caused dis-

torted EEG sensor-level signals and therefore influenced the

beamforming spatial filtering performance. Consequently, VE selec-

tions resulted in the different VE locations between the beamforming

+ AAS BCG corrected and beamforming BCG corrected data

(Figure 7). In general, if a clear and clean ECG trace is acquired and

precise R-peak detection is obtained, denoising and cleaning EEG data

before applying the beamforming technique should be recommended

as observed from the smaller amplitude at the time of R peaks in the

time-course signals (see Figure 8) and smaller power fluctuations (see

Figures 6 and 8) from the R-peak analysis when compared to the

beamforming BCG corrected data. The problem remains to be how to

achieve precise R-peak detections, as the ECG signals are distorted in

the MRI scanner (see Supplementary Figure S2). Considering these

issues, the data-driven beamforming approach would be a promising

alternative to correct the BCG artefacts without relying on ECG sig-

nals. However, using a simpler and better control study design

(i.e., visual checkerboard stimulation, medium nerve stimulation, finger

tapping), future research needs to investigate how much benefit can

be achieved by further cleaning and denoising the EEG data

(e.g., using ICA or OBS) before applying the beamforming technique.

The ANT was chosen as a more suitable task consisting of expected

clear baseline periods and clear event onsets in order to investigate the

performance of the beamforming technique in EEG–fMRI when com-

pared to the Mackworth Clock Task (Lichstein et al., 2000; Loh

et al., 2004) and N-back task (Kirchner, 1958; Sweet, 2011) in this

dataset studying the impact of sleep deprivation (Cross et al., 2021).

However, the current ANT task design with a fixed duration from the

probe cue to the target cue might not be optimal to have a true baseline

period, which might have reduced some robust effects of the visual

alpha and motor beta ERD, when compared to a simple visual or motor

task (visual alpha ERD: Brookes et al., 2005; Scheeringa et al., 2011; Wil-

son et al., 2019; Motor beta ERD: Cheyne & Ferrari, 2013; Darvas

et al., 2010; Hall et al., 2011; Muthukumaraswamy, 2010; Pfurtscheller

et al., 1996; Pfurtscheller & Lopes da Silva, 1999; Takemi et al., 2013;

Uji et al., 2018). Despite this potential limitation, our results still demon-

strated the benefit of the beamforming BCG correction during a more

challenging cognitive task.

4.5 | Implications

Our beamforming BCG artefact correction approach is a data-driven

method neither requiring identifying noise and signal components nor

relying on the simultaneous ECG recording, which makes it promising

especially for long data acquisition of sleep or resting-state EEG–

fMRI. However, pseudo-T statistic maps between the active and pas-

sive contrast to identify VE locations might not be feasible and reliable

in other contexts like resting state, sleep, or epilepsy studies. Instead,

using an anatomical atlas would be an interesting option for the

beamforming approach as it has been used in EEG (van Klink

et al., 2018) and MEG (Hillebrand et al., 2016, 2012; Youssofzadeh,

Agler, Tenney, & Kadis, 2018; Youssofzadeh, Williamson, &

Kadis, 2017) beamforming resting-state functional connectivity.

Future studies need to investigate this atlas-based beamforming

approach in the context of EEG–fMRI. Furthermore, from the current

data analysis, this beamforming approach is not intended to replace

the standard MRI-related artefact corrections (i.e., AAS, ICA, OBS)

when a precise detection of R-peaks is achieved. Our findings also

demonstrated the beamforming + AAS BCG corrected data contained

significantly less remaining BCG artefacts as compared to the

beamforming BCG corrected data. Therefore, beamforming and accu-

rate AAS approach should be considered as complementary and the

combination of both should provide better correction than each of

them separately.

5 | CONCLUSIONS

In this article, we demonstrated that our data-driven beamforming

approach did not only attenuate the BCG artefacts without having

to use the detected R-peak events from ECG recordings, but also

recovered the expected task-based-induced brain activity indicated

by alpha and beta ERDs, which the BCG artefacts typically obscure,

in a significantly greater extent than the conventional AAS BCG cor-

rections. Our findings bring new insight into an active area of

research in EEG–fMRI-related to the extraction of meaningful brain

signals and suppression of MRI-related artefacts. This approach

would be very promising and beneficial especially for the sleep EEG–

fMRI data without detecting R-peak events from ECG recording.

Future research will compare this beamforming BCG artefact correc-

tion approach with MRI-related artefact corrections using VCG

recordings, and further examine whether this beamforming approach

would be better suited to recover meaningful EEG signals related to

spontaneous events such as brain rhythms during sleep and epileptic

discharges.
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