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Abstract: The carbon-carbon bond formation has always been one of the most important reactions
in C1 resource utilization. Compared to traditional organic synthesis methods, biocatalytic C-
C bond formation offers a green and potent alternative for C1 transformation. In recent years,
with the development of synthetic biology, more and more carboxylases and C-C ligases have
been mined and designed for the C1 transformation in vitro and C1 assimilation in vivo. This
article presents an overview of C-C bond formation in biocatalytic C1 resource utilization is first
provided. Sets of newly mined and designed carboxylases and ligases capable of catalyzing C-C bond
formation for the transformation of CO2, formaldehyde, CO, and formate are then reviewed, and
their catalytic mechanisms are discussed. Finally, the current advances and the future perspectives
for the development of catalysts for C1 resource utilization are provided.
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1. Introduction

It has been estimated that more than 35% of industrial chemicals will be produced by
bio-manufacturing until 2030 [1]. C1 resources, including methane, methanol, formalde-
hyde, formic acid, and carbon dioxide, are ideal raw materials for bio-manufacturing, due
to their low cost and easy availability. In nature, six CO2 fixation pathways have been
identified in photoautotrophic and chemoautotrophic microorganisms [2]. In addition
to Calvin–Benson–Bassham (CBB) cycle, there are three major pathways that operate in
methanotrophs or methylotrophic yeast for assimilation of methane or methanol, which
are first oxidized to formaldehyde, and then is assimilated via the ribulose monophosphate
(RuMP) cycle, serine cycle, or xylulose monophosphate pathway (XuMP) [3]. Engineer-
ing natural C1 assimilation pathways to achieve the production of biofuels or industrial
chemicals has always been a research hotspot in synthetic biology [4–16]. However, the
biotransformation of C1 resources is restricted in the industry by low production efficiency,
limited product types, and high production costs.

With the development of synthetic biology, more and more C1 utilization pathways
have been exploited in recent years. These pathways can be broadly divided into two
categories. One refers to C1 transformation in vitro. Carboxylases and C-C ligases from
naturally occurring C1 assimilation pathways are highly specialized, and thus, restricted
their use for the C1 biotransformation in vitro. It has been shown that (de)carboxylases in-
volved in the secondary metabolism are generally reversible and promiscuous [17], several
C-C ligases, such as aldolases and thiamine diphosphate (ThDP)-dependent enzymes [18],
can receive formaldehyde as a receptor. These newly mined (de)carboxylases and C-C
ligases greatly expand the scope of C1 resource utilization in vitro. The other refers to C1
assimilation in vivo. Based on highly active carboxylases or designed C-C ligases, several
artificial C1 assimilation pathways have been constructed, such as malyl-CoA-glycerate

Int. J. Mol. Sci. 2021, 22, 1890. https://doi.org/10.3390/ijms22041890 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms22041890
https://doi.org/10.3390/ijms22041890
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22041890
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/4/1890?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 1890 2 of 22

pathway (MCG) [19], crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle path-
way (CETCH) [20,21], formolase pathway (FLS) [22], and synthetic acetyl-CoA pathway
(SACA) [23]. Compared to the natural C1 assimilation pathways, these artificial pathways
have obvious advantages in catalytic efficiency, biomass yield, and driving force, and are
expected to improve the efficiency of C1 resource utilization in the future.

The overall efficiency of C1 transformation in vitro and C1 assimilation in vivo is
generally determined by the biochemical properties of carboxylases and C-C ligases. A
better understanding of the catalytic mechanisms of these enzymes is necessary for mining
or design more efficient carboxylases and C-C ligases. Herein, we mainly summarized
carboxylases, and C-C ligases for formaldehyde, CO, and formic acid. Furthermore, C1
transformation in vitro and C1 assimilation in vivo based on newly mined or designed car-
boxylases and C-C ligases are highlighted. Finally, a summary about the current advances
and the future perspectives of the C1 resource utilization are presented.

2. Carboxylases for CO2 Biotransformation

CO2 is a poor electrophile and usually exists as bicarbonate in an aqueous solution.
Therefore, the carboxylation reaction often requires energy (adenosine triphosphate (ATP),
nicotinamide adenine dinucleotide phosphate (NADPH), or ferredoxin) or the assistance
of coenzymes (metal ion, ThDP, and prenylated flavin mononucleotide (prFMN), etc.) [24].
We divide carboxylases into seven categories: (1) Only divalent metal-dependent carboxy-
lases, (2) ATP-dependent carboxylases, (3) redox equivalents-dependent carboxylases,
(4) substrate-activated carboxylases, (5) ThDP-dependent carboxylases, (6) multi-enzyme
complex constructed carboxylase, (7) prFMN-dependent carboxylases. Representative
carboxylases are shown in Table 1.

Table 1. Representative carboxylases for CO2 fixation.

Aliphatic Substrates Product Enzyme and Category Pathway
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1, 5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) is the key carboxylase,
which converts CO2 and ribulose-1, 5-bisphosphate to 3-phosphoglycerate [26]. The
catalytic process of Rubisco is that the enolate form of ribulose-1, 5-bisphosphate launches
a nucleophilic attack onto CO2 assisted by an essential Mg2+, to produce a labile C6-β-
ketoacid intermediate, which is hydrolytically cleaved into 3-phosphoglycerate (Figure 1).
RubisCO shows two major flaws. One is the low catalytic activity, which has an average
turnover number of 5 s−1 [27,28]. The other is a side reaction with O2, causing carbon loss.
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Figure 1. The catalytic mechanism of Rubisco [26].

Due to the high complexity of the catalytic mechanism and the unique position of
RubisCO in biosynthesis, it is unlikely that this enzyme can accept non-natural substrate
analogs to produce carboxylic acids. In addition to engineering cyanobacteria or microalgae
to produce various biofuels and industrial chemicals, the reconstruction of the CBB cycle
based on RubisCO in industrial microbial model strains (Escherichia coli, etc.) has made a
series of progress [29–31]. By co-expressing Rubisco, phosphoribulokinase, and formate
dehydrogenase, Shmuel Gleizer et al. engineered E. coli to produce all its biomass carbon
from CO2 via the CBB cycle [30]. By adding eight heterologous genes and deleting three
native genes, Thomas Gassler et al. engineered the peroxisomal methanol-assimilation
pathway of P. pastoris into a CO2-fixation pathway resembling the CBB cycle [31], the
resulting strain can grow continuously with CO2 as a sole carbon source at a µmax of
0.008 h−1.

2.2. ATP-Dependent Carboxylases

Biotin-dependent carboxylases include pyruvate carboxylase (PC, EC 6.4.1.1), acetyl-
CoA carboxylase (ACC, EC 6.4.1.2), propionyl-CoA carboxylase (PCC, EC 6.4.1.3), 3-
methylcrotonoyl-CoA carboxylase (MCC, EC 6.4.1.4), and geranoyl-CoA carboxylase (GCC,
EC 6.4.1.5). They are widely distributed in nature and can be found in archaea, bacteria, al-
gae, fungi, plants, and animals [32]. The catalytic process of biotin-dependent carboxylases
can be divided into two steps (Figure 2). First, the biotin carboxylase (BC) domain catalyzes
the ATP-dependent carboxylation of the N1′ atom of the biotin cofactor, using bicarbonate
as the CO2 donor. Second, the carboxyltransferase (CT) domain transfers the CO2 from
carboxy-biotin to the substrates [33–35]. The site for carboxylation is on the α-carbon
of saturated substrates (pyruvate, acetyl-CoA, and propionyl-CoA) or the γ-carbon of α,
β-unsaturated substrates (3-methylcrotonyl-CoA, geranyl-CoA). Acetyl-CoA carboxylase
and propionyl-CoA carboxylase are two carboxylases of 3-hydroxypropionate/malyl-CoA
cycle and 3-hydroxypropionate/4-hydroxybutyrate cycle [36,37].

Acetone carboxylases (AC, EC 6.4.1.6) are soluble cytoplasmic enzymes, and can be
found in many species of aerobic, anaerobic phototrophic bacteria, and even microaerobic
gastric human pathogenic species Helicobacter pylori. They catalyze the carboxylation of
acetone to form acetoacetate at the expense of ATP [38]. There are two different types
of acetone carboxylases. One requires 2 ATP equivalents as an energy supply for the
carboxylation reaction, while another requires 4 ATP equivalents. The main difference in
catalytic mechanism lies in the processes of substrate activation. The catalytic mechanism
proposed for acetone carboxylase of Xanthobacter/Rhodobacter is that one ATP is sequentially
hydrolyzed to ADP and AMP to activate acetone and bicarbonate, respectively. While the
catalytic mechanism of acetone carboxylase from Aromatoleum is that 2 ATP are hydrolyzed
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to 2 AMP to active two substrates [39]. Acetoacetate can be activated by a CoA ligase to
form acetoacetyl-CoA, which is cleaved to form 2 acetyl-CoA by thiolase. Therefore, a
new pathway from isopropanol and CO2 to acetyl-CoA can be constructed. Acetophenone
carboxylase (APC, EC 6.4.1.8) catalyzes the carboxylation of acetophenone to benzoylac-
etate [40]. Different from the above two activation processes of acetone carboxylases,
acetophenone and bicarbonate are all activated by hydrolyzing ATP to ADP.
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2.3. Redox Equivalents-Dependent Carboxylases

Pyruvate synthase (PS, EC 1.2.7.1) and 2-oxoglutarate synthase (OGS, EC 1.2.7.3) are
a class of enzymes sharing a similar catalytic mechanism [41,42]. They belong to strictly
anaerobic enzymes and show low catalytic activity. Acetyl-CoA can be reductively car-
boxylated by pyruvate synthase at the expense of two equivalents of ferredoxin to generate
pyruvate. Similarly, succinyl-CoA can be converted to 2-oxoglutarate by 2-oxoglutarate
synthase [43]. Different from the above two enzymes, isocitrate dehydrogenase (IDH, EC
1.1.1.41/42) converts 2-oxoglutarate to isocitrate at the expense of NAD(P)H [44]. The
carboxylation process of isocitrate dehydrogenase is assumed to proceed via the enolate
intermediate of 2-oxoglutarate, which is formed with the assistance of divalent metal ions
Mg2+ or Mn2+. After the addition of CO2, the unstable keto-tricarboxylic acid intermediate
is immediately reduced by NAD(P)H to yield stable isocitrate (Figure 3A). 2-oxoglutarate
synthase and isocitrate dehydrogenase are carboxylases of the reductive tricarboxylic acid
(rTCA) cycle.
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Enoyl-CoA carboxylases/reductases (ECRs) are a class of carboxylases that exist
in secondary metabolism, as well as in central carbon metabolism of α-proteobacteria
and Streptomycetes [45]. The best-studied ECR is crotonyl-CoA carboxylase/reductase
(CCR, EC 1.3.1.85) that catalyzes NADPH-dependent reductive carboxylation of crotonyl-
CoA into (2S)-ethylmalonyl-CoA. The mechanism of CCR is assumed to proceed via
nucleophilic hydride attack at β-carbon of the enoyl-CoA ester; the forming enolate is
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trapped by CO2 to generate (2S)-ethylmalonyl-CoA (Figure 3B). Recently, combining
experimental biochemistry, protein crystallography, and advanced computer simulations,
Gabriele M. M. Stoffel et al. determined the CO2-binding residues at the active site of
crotonyl-CoA carboxylase/reductase from Kitasatospora setae [46]. Propionyl-CoA synthase
from Erythrobacter sp. NAP1, as well as an acrylyl-CoA reductase from Nitrosopumilus
maritimus, have almost no carboxylation activity. Based on the determined CO2-binding
residues, they used rational design to engineer two enzymes into carboxylases by increasing
interactions of the proteins with CO2 and suppressing diffusion of water to the active
site [47].

Relative to Rubisco, CCR is oxygen-insensitive, does not react with O2, requires only the
NADPH, and catalyzes CO2 fixation with higher efficiency (Kcat/Km = 1642.6 s−1 mM−1) [48,49].
All of these characteristics make CCR a good candidate enzyme for the fixation of CO2.
Based on CCR, Tobias J. Erb research group constructed a crotonyl-CoA/ethylmalonyl-
CoA/hydroxybutyryl-CoA (CETCH) cycle in vitro [21], which consists of 17 enzymes
and can convert CO2 into organic molecules at a rate of 5 nanomoles of CO2 per minute
per milligram of protein (Figure 4). Recently, they successfully encapsulated thylakoids
isolated from the spinach plant along with all enzymes of the CETCH pathway within
water-in-oil droplets [20]. The encapsulated system could use light energy to produce
glycolate from CO2, while also phosphorylating ADP to ATP.
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2.4. Substrate-Activated Carboxylases

Phosphoenolpyruvate (PEP) carboxylase (PEPC, EC 4.1.1.31) catalyzes the irreversible
carboxylation of PEP to form oxaloacetate (OAA) using Mg2+ or Mn2+ as a cofactor [50].
This kind of enzyme is present in most photosynthetic organisms [51]. PEPC is used to
replenish intermediates of the TCA cycle for amino acid biosynthesis, or to shuttle CO2
between the mesophyll and bundle sheath cells in C4 plants. The catalytic mechanism of
PEPC has been well studied (Figure 5). First, bicarbonate act as a nucleophile to attack
phosphate groups in PEP, yielding carboxyphosphate and enolates of pyruvate, which
is stabilized by metal ions Mn2+. Next, carboxyphosphate decomposes into inorganic
phosphate and CO2, which is attacked by enolates of pyruvate to form OAA [52].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 23 

 

 

 
Figure 4. The crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle pathway (CETCH 
pathway) [21]. CCR, crotonyl-CoA carboxylase/reductase; EEM, ethylmalonyl-CoA epimerase, 
and mutase; MOX, methylsuccinyl-CoA oxidase; MMD, methylmalyl-CoA dehydratase; MML, 
methylmalyl-CoA lyase; POX, propionyl-CoA oxidase; MEM, methylmalonyl-CoA epimerase, and 
mutase; SSDH, succinate semialdehyde dehydrogenase; HBDH, 4-hydroxybutyrate 
dehydrogenase; HBS, 4-hydroxybutyryl-CoA synthetase; HBD, 4-hydroxybutyryl-CoA 
dehydratase. 

2.4. Substrate-Activated Carboxylases 
Phosphoenolpyruvate (PEP) carboxylase (PEPC, EC 4.1.1.31) catalyzes the 

irreversible carboxylation of PEP to form oxaloacetate (OAA) using Mg2+ or Mn2+ as a 
cofactor [50]. This kind of enzyme is present in most photosynthetic organisms [51]. PEPC 
is used to replenish intermediates of the TCA cycle for amino acid biosynthesis, or to 
shuttle CO2 between the mesophyll and bundle sheath cells in C4 plants. The catalytic 
mechanism of PEPC has been well studied (Figure 5). First, bicarbonate act as a 
nucleophile to attack phosphate groups in PEP, yielding carboxyphosphate and enolates 
of pyruvate, which is stabilized by metal ions Mn2+. Next, carboxyphosphate decomposes 
into inorganic phosphate and CO2, which is attacked by enolates of pyruvate to form OAA 
[52]. 

 
Figure 5. The catalytic mechanism of phosphoenolpyruvate carboxylase [52].

PEPC is known to be one of the most active carboxylases (Kcat/Km = 23,792 s−1 mM−1) [53].
Based on PEPC, Hong Yu et al. constructed a synthetic malyl-CoA-glycerate (MCG)
pathway [19], which is capable of converting one C3 sugar to two acetyl-CoA via fixation
of one CO2 equivalent, or assimilating glyoxylate, a photorespiration intermediate, to
produce acetyl-CoA without carbon loss (Figure 6). Coupling the MCG pathway with
the CBB cycle, photosynthetic organisms utilize only 5.5 ATP and 1.5 Rubisco turnovers
to produce one acetyl-CoA from CO2 equivalents, while the native pathway requires 7
ATP and 3 Rubisco turnovers. When transferring the MCG pathway into a photosynthetic
organism Synechococcus elongates PCC7942, the intracellular acetyl-CoA level increased,
and bicarbonate assimilation was improved by roughly 2-fold.

2.5. ThDP-Dependent Carboxylases

Pyruvate decarboxylase (PDC, EC 4.1.1.1) is a key enzyme of carbon metabolism at
the branching point between aerobic respiration and anaerobic alcoholic fermentation, and
can be found in some bacteria, yeasts, and plants [54]. PDC catalyzes the decarboxylation
of pyruvate by using ThDP and Mg2+ as cofactors (Figure 7). This enzyme has been
successfully applied to yield pyruvic acid through the reverse carboxylation reaction. To
favor the carboxylation, high pH and high bicarbonate concentration are needed [55]. In
addition to using a high concentration of bicarbonate solution as a CO2 source, elevated
CO2 pressure is also an effective way to drive the direction of carboxylation. Combining
branched-chain α-keto acid decarboxylase (KdcA) from Lactococcus lactis with transaminase
or amino acid dehydrogenase, Julia Martin et al. achieved the synthesis of L-methionine
from the abundant industrial intermediate methional under a 2 bar CO2 atmosphere [56].
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The glycine cleavage system (GCS) is common among many organisms because of
its involvement in glycine and serine catabolism [57]. The GCS converts glycine to CO2,
NH4

+, and methylene-THF. GCS is composed of four proteins, a carrier protein, and three
enzymes. They are lipoic acid-containing protein (GcvH), glycine dehydrogenase (GcvP),
aminomethyltransferase (GcvT), and lipoamide dehydrogenase (Lpd), respectively. The
glycine cleavage process can be divided into three steps. The first step is the decarboxylation
of glycine by the glycine dehydrogenase. The decarboxylated moiety is then further
degraded by the aminomethyl transferase with the aid of tetrahydrofolate. The last step
is the reoxidation of the two sulfhydryl groups to form lipoic acid-generating NADH by
dihydrolipomide dehydrogenase. Two sulfhydryl groups or lipoate attached to the lipoic
acid-containing protein act as intermediate shuttles.

Now, GCS is confirmed to be reversible (rGCS) and can condense the C1 moiety
of methylene-THF with CO2 and ammonia to produce glycine [58], which shows great
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application potential for reductive glycine pathway (RGP). Arren Bar-Even’s research group
has made a series of encouraging progress [59–61]. Especially, they redesigned the central
carbon metabolism of the model bacterium E. coli for growth on one-carbon compounds
(formate and methanol) using the RGP [61] (Figure 8). Recently, Irene Sánchez-Andrea et al.
demonstrated that sulfate-reducing bacterium Desulfovibrio desulfuricans (strain G11) could
grow autotrophically via the RGP using hydrogen and sulfate as energy substrates [62].
This work first demonstrates that autotrophic microbial growth can be fully supported by
RGP, which is a highly ATP-efficient CO2 fixation pathway.
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cyclohydrolase; MTDH, methylene-THF dehydrogenase; GLYA, L-serine hydroxymethyltransferase;
SDAA, L-serine dehydratase.

2.7. prFMN-Dependent Carboxylases

prFMN-dependent decarboxylases catalyze the non-oxidative reversible decarboxyla-
tion of aromatic substrates, and play a pivotal role in bacterial ubiquinone (coenzyme Q)
biosynthesis and microbial biodegradation of aromatic compounds [63,64]. The prFMN
cofactor is provided by an associated prenyltransferase (UbiX), which extends the isoal-
loxazine FMN ring system through prenylation with a fourth non-aromatic ring. The
catalytically active iminium species of the cofactor (prFMNiminium) is obtained by oxidizing
the reduced prFMN with O2. There are two different catalytic reaction mechanisms for
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the prFMN-assisted (de)carboxylation reaction. For α, β-unsaturated carboxylic acids,
the reaction proceeds through the intermolecular 1, 3-dipolar cycloaddition step. While
for protocatechuic acid-type substrates, the electrophilic character of the iminium ion of
prFMNiminium enables reversible (de)carboxylation via a mono-covalently bound quinoid–
cofactor intermediate. prFMN-dependent decarboxylases encompass a wide range of
substrates [17], including non-aromatic α, β-unsaturated (acrylic) acid derivatives, cate-
chol, and 4-hydroxybenzoic acid derivatives, polycyclic aromatic hydrocarbons (PAHs),
and heterocyclic substrates. Recently, combining ferulic acid decarboxylase (FDC, prFMN-
dependent) with carboxylic acid reductase (CAR), alcohol dehydrogenase (ADH), or imine
reductase (IRED), Godwin A. Aleku et al. designed cascade reactions to enable efficient
functionalization of terminal alkenes to the corresponding aldehyde, alcohol, amide or
amine derivatives through ambient CO2 fixation [65].

3. C-C Ligases for Formaldehyde Biotransformation

Formaldehyde is a cytotoxic compound and a central metabolic intermediate in methy-
lotrophs [66]. In addition to the naturally occurring formaldehyde condensing enzymes,
such as dihydroxyacetone synthase (DAS), 3-hexulose-6-phosphate synthase (HPS), and
serine hydroxymethyltransferase (SHMT), several promiscuous enzymes display catalytic
activity towards formaldehyde. Based on the catalytic mechanism, those enzymes can
be divided into 4 categories (Figure 9). Class I aldolases activate the donor substrate
with a lysine residue. Class II aldolases use a metal cofactor to facilitate the activation of
donor substrate to an enolate. The third class is hydroxymethyl pyridoxal 5′-phosphate
(PLP) dependent enzymes. The PLP coenzyme activates the donor substrate to form a
quinoide-aldimine intermediate. The last is ThDP-dependent enzymes. The ThDP coen-
zyme activates the donor substrate to form an enamine/carbanion intermediate. For the
first three classes of enzymes, formaldehyde cannot act as a donor substrate because it is
not enolizable. For ThDP-dependent enzymes, formaldehyde can act either as a donor or
an acceptor. C-C ligases using formaldehyde as a donor or acceptor were summarized in
Table 2. Furthermore, the formaldehyde assimilation pathways published in recent years
are highlighted.
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Table 2. Summary of C-C Ligases with formaldehyde as a donor or acceptor.

Substrates Product Enzyme and Category Pathway
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3.1. Class I Aldolases for Formaldehyde Biotransformation 
Natural class I aldolases are generally promiscuous. It has been confirmed that 

several class I aldolases can tolerate formaldehyde as an acceptor substrate. From the 
perspective of biocatalysis, the promiscuity of class I aldolases provides solutions for 
producing valuable chemicals from formaldehyde. The following are examples of class I 
aldolases catalyzing formaldehyde as a receptor. 4-hydroxy-2-oxoglutarate aldolase (EC 
4.1.3.16, class I aldolase) can catalyze the aldol addition of pyruvic acid or phenylpyruvic 
acid to formaldehyde [18]. DHAP-dependent aldolases, including D-Fructose-1, 6-
bisphosphate (FBP) aldolases (FruA, EC 4.1.2.13), and tagatose 1, 6-diphosphate aldolase 
(TagA, EC 4.1.2.40), can catalyze the aldol addition of dihydroxyacetone phosphate 
(DHAP) to formaldehyde [67,68]. D-Fructose-6-phosphate aldolase (FSA, EC 4.1.2.n) can 
catalyze the aldol addition of dihydroxyacetone (DHA), hydroxyacetone (HA), and 
glycolaldehyde (GA) to formaldehyde [69]. 

3.2. Class II Aldolases for Formaldehyde Biotransformation 
Hexulose phosphate synthase (HPS, EC 4.1.2.43) is a class II aldolase found in aerobic 

methylotrophic bacteria and is involved in the ribulose monophosphate (RuMP) cycle. It 
catalyzes D-ribulose 5-phosphate with formaldehyde to yield D-arabinose 3-hexulose 6-
phosphate. Due to strict substrate specificity, it is difficult to use hexulose phosphate 
synthase to synthesize value-added chiral products. While, by combining the non-
oxidative glycolysis (NOG) with the RuMP, Igor W. Bogorad et al. constructed a methanol 
condensation cycle (MCC) [70], which can convert methanol to higher-chain alcohols or 
other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-
independent system (Figure 10). It is generally believed that the RuMP cycle is the most 
efficient naturally occurring route for methanol assimilation. However, realizing the 

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 14 of 23 

 

 

  

MSHMT for D-alanine. α-Methylserine 
aldolase for 

D-alanine and D-butanine 

PLP-dependent aldolase 

/ 

 
 

Dihydroxyacetone synthase (DAS, EC 
2.2.1.3) 

ThDP-dependent C-C Ligase 

XuMP 

  

Formolase (FLS) 

ThDP-dependent C-C Ligase 

FLS 

pathway 

  

Glycolaldehyde synthase (GALS) 

ThDP-dependent C-C Ligase 

SACA 

pathway 

  

2-hydroxyacyl CoA lyase (HACL) 

ThDP-dependent C-C Ligase 
/ 

3.1. Class I Aldolases for Formaldehyde Biotransformation 
Natural class I aldolases are generally promiscuous. It has been confirmed that 

several class I aldolases can tolerate formaldehyde as an acceptor substrate. From the 
perspective of biocatalysis, the promiscuity of class I aldolases provides solutions for 
producing valuable chemicals from formaldehyde. The following are examples of class I 
aldolases catalyzing formaldehyde as a receptor. 4-hydroxy-2-oxoglutarate aldolase (EC 
4.1.3.16, class I aldolase) can catalyze the aldol addition of pyruvic acid or phenylpyruvic 
acid to formaldehyde [18]. DHAP-dependent aldolases, including D-Fructose-1, 6-
bisphosphate (FBP) aldolases (FruA, EC 4.1.2.13), and tagatose 1, 6-diphosphate aldolase 
(TagA, EC 4.1.2.40), can catalyze the aldol addition of dihydroxyacetone phosphate 
(DHAP) to formaldehyde [67,68]. D-Fructose-6-phosphate aldolase (FSA, EC 4.1.2.n) can 
catalyze the aldol addition of dihydroxyacetone (DHA), hydroxyacetone (HA), and 
glycolaldehyde (GA) to formaldehyde [69]. 

3.2. Class II Aldolases for Formaldehyde Biotransformation 
Hexulose phosphate synthase (HPS, EC 4.1.2.43) is a class II aldolase found in aerobic 

methylotrophic bacteria and is involved in the ribulose monophosphate (RuMP) cycle. It 
catalyzes D-ribulose 5-phosphate with formaldehyde to yield D-arabinose 3-hexulose 6-
phosphate. Due to strict substrate specificity, it is difficult to use hexulose phosphate 
synthase to synthesize value-added chiral products. While, by combining the non-
oxidative glycolysis (NOG) with the RuMP, Igor W. Bogorad et al. constructed a methanol 
condensation cycle (MCC) [70], which can convert methanol to higher-chain alcohols or 
other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-
independent system (Figure 10). It is generally believed that the RuMP cycle is the most 
efficient naturally occurring route for methanol assimilation. However, realizing the 

MSHMT for D-alanine. α-Methylserine
aldolase for

D-alanine and D-butanine
PLP-dependent aldolase

/

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 14 of 23 

 

 

  

MSHMT for D-alanine. α-Methylserine 
aldolase for 

D-alanine and D-butanine 

PLP-dependent aldolase 

/ 

 
 

Dihydroxyacetone synthase (DAS, EC 
2.2.1.3) 

ThDP-dependent C-C Ligase 

XuMP 

  

Formolase (FLS) 

ThDP-dependent C-C Ligase 

FLS 

pathway 

  

Glycolaldehyde synthase (GALS) 

ThDP-dependent C-C Ligase 

SACA 

pathway 

  

2-hydroxyacyl CoA lyase (HACL) 

ThDP-dependent C-C Ligase 
/ 

3.1. Class I Aldolases for Formaldehyde Biotransformation 
Natural class I aldolases are generally promiscuous. It has been confirmed that 

several class I aldolases can tolerate formaldehyde as an acceptor substrate. From the 
perspective of biocatalysis, the promiscuity of class I aldolases provides solutions for 
producing valuable chemicals from formaldehyde. The following are examples of class I 
aldolases catalyzing formaldehyde as a receptor. 4-hydroxy-2-oxoglutarate aldolase (EC 
4.1.3.16, class I aldolase) can catalyze the aldol addition of pyruvic acid or phenylpyruvic 
acid to formaldehyde [18]. DHAP-dependent aldolases, including D-Fructose-1, 6-
bisphosphate (FBP) aldolases (FruA, EC 4.1.2.13), and tagatose 1, 6-diphosphate aldolase 
(TagA, EC 4.1.2.40), can catalyze the aldol addition of dihydroxyacetone phosphate 
(DHAP) to formaldehyde [67,68]. D-Fructose-6-phosphate aldolase (FSA, EC 4.1.2.n) can 
catalyze the aldol addition of dihydroxyacetone (DHA), hydroxyacetone (HA), and 
glycolaldehyde (GA) to formaldehyde [69]. 

3.2. Class II Aldolases for Formaldehyde Biotransformation 
Hexulose phosphate synthase (HPS, EC 4.1.2.43) is a class II aldolase found in aerobic 

methylotrophic bacteria and is involved in the ribulose monophosphate (RuMP) cycle. It 
catalyzes D-ribulose 5-phosphate with formaldehyde to yield D-arabinose 3-hexulose 6-
phosphate. Due to strict substrate specificity, it is difficult to use hexulose phosphate 
synthase to synthesize value-added chiral products. While, by combining the non-
oxidative glycolysis (NOG) with the RuMP, Igor W. Bogorad et al. constructed a methanol 
condensation cycle (MCC) [70], which can convert methanol to higher-chain alcohols or 
other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-
independent system (Figure 10). It is generally believed that the RuMP cycle is the most 
efficient naturally occurring route for methanol assimilation. However, realizing the 

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 14 of 23 

 

 

  

MSHMT for D-alanine. α-Methylserine 
aldolase for 

D-alanine and D-butanine 

PLP-dependent aldolase 

/ 

 
 

Dihydroxyacetone synthase (DAS, EC 
2.2.1.3) 

ThDP-dependent C-C Ligase 

XuMP 

  

Formolase (FLS) 

ThDP-dependent C-C Ligase 

FLS 

pathway 

  

Glycolaldehyde synthase (GALS) 

ThDP-dependent C-C Ligase 

SACA 

pathway 

  

2-hydroxyacyl CoA lyase (HACL) 

ThDP-dependent C-C Ligase 
/ 

3.1. Class I Aldolases for Formaldehyde Biotransformation 
Natural class I aldolases are generally promiscuous. It has been confirmed that 

several class I aldolases can tolerate formaldehyde as an acceptor substrate. From the 
perspective of biocatalysis, the promiscuity of class I aldolases provides solutions for 
producing valuable chemicals from formaldehyde. The following are examples of class I 
aldolases catalyzing formaldehyde as a receptor. 4-hydroxy-2-oxoglutarate aldolase (EC 
4.1.3.16, class I aldolase) can catalyze the aldol addition of pyruvic acid or phenylpyruvic 
acid to formaldehyde [18]. DHAP-dependent aldolases, including D-Fructose-1, 6-
bisphosphate (FBP) aldolases (FruA, EC 4.1.2.13), and tagatose 1, 6-diphosphate aldolase 
(TagA, EC 4.1.2.40), can catalyze the aldol addition of dihydroxyacetone phosphate 
(DHAP) to formaldehyde [67,68]. D-Fructose-6-phosphate aldolase (FSA, EC 4.1.2.n) can 
catalyze the aldol addition of dihydroxyacetone (DHA), hydroxyacetone (HA), and 
glycolaldehyde (GA) to formaldehyde [69]. 

3.2. Class II Aldolases for Formaldehyde Biotransformation 
Hexulose phosphate synthase (HPS, EC 4.1.2.43) is a class II aldolase found in aerobic 

methylotrophic bacteria and is involved in the ribulose monophosphate (RuMP) cycle. It 
catalyzes D-ribulose 5-phosphate with formaldehyde to yield D-arabinose 3-hexulose 6-
phosphate. Due to strict substrate specificity, it is difficult to use hexulose phosphate 
synthase to synthesize value-added chiral products. While, by combining the non-
oxidative glycolysis (NOG) with the RuMP, Igor W. Bogorad et al. constructed a methanol 
condensation cycle (MCC) [70], which can convert methanol to higher-chain alcohols or 
other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-
independent system (Figure 10). It is generally believed that the RuMP cycle is the most 
efficient naturally occurring route for methanol assimilation. However, realizing the 

Dihydroxyacetone synthase (DAS, EC
2.2.1.3)

ThDP-dependent C-C Ligase
XuMP

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 14 of 23 

 

 

  

MSHMT for D-alanine. α-Methylserine 
aldolase for 

D-alanine and D-butanine 

PLP-dependent aldolase 

/ 

 
 

Dihydroxyacetone synthase (DAS, EC 
2.2.1.3) 

ThDP-dependent C-C Ligase 

XuMP 

  

Formolase (FLS) 

ThDP-dependent C-C Ligase 

FLS 

pathway 

  

Glycolaldehyde synthase (GALS) 

ThDP-dependent C-C Ligase 

SACA 

pathway 

  

2-hydroxyacyl CoA lyase (HACL) 

ThDP-dependent C-C Ligase 
/ 

3.1. Class I Aldolases for Formaldehyde Biotransformation 
Natural class I aldolases are generally promiscuous. It has been confirmed that 

several class I aldolases can tolerate formaldehyde as an acceptor substrate. From the 
perspective of biocatalysis, the promiscuity of class I aldolases provides solutions for 
producing valuable chemicals from formaldehyde. The following are examples of class I 
aldolases catalyzing formaldehyde as a receptor. 4-hydroxy-2-oxoglutarate aldolase (EC 
4.1.3.16, class I aldolase) can catalyze the aldol addition of pyruvic acid or phenylpyruvic 
acid to formaldehyde [18]. DHAP-dependent aldolases, including D-Fructose-1, 6-
bisphosphate (FBP) aldolases (FruA, EC 4.1.2.13), and tagatose 1, 6-diphosphate aldolase 
(TagA, EC 4.1.2.40), can catalyze the aldol addition of dihydroxyacetone phosphate 
(DHAP) to formaldehyde [67,68]. D-Fructose-6-phosphate aldolase (FSA, EC 4.1.2.n) can 
catalyze the aldol addition of dihydroxyacetone (DHA), hydroxyacetone (HA), and 
glycolaldehyde (GA) to formaldehyde [69]. 

3.2. Class II Aldolases for Formaldehyde Biotransformation 
Hexulose phosphate synthase (HPS, EC 4.1.2.43) is a class II aldolase found in aerobic 

methylotrophic bacteria and is involved in the ribulose monophosphate (RuMP) cycle. It 
catalyzes D-ribulose 5-phosphate with formaldehyde to yield D-arabinose 3-hexulose 6-
phosphate. Due to strict substrate specificity, it is difficult to use hexulose phosphate 
synthase to synthesize value-added chiral products. While, by combining the non-
oxidative glycolysis (NOG) with the RuMP, Igor W. Bogorad et al. constructed a methanol 
condensation cycle (MCC) [70], which can convert methanol to higher-chain alcohols or 
other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-
independent system (Figure 10). It is generally believed that the RuMP cycle is the most 
efficient naturally occurring route for methanol assimilation. However, realizing the 

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 14 of 23 

 

 

  

MSHMT for D-alanine. α-Methylserine 
aldolase for 

D-alanine and D-butanine 

PLP-dependent aldolase 

/ 

 
 

Dihydroxyacetone synthase (DAS, EC 
2.2.1.3) 

ThDP-dependent C-C Ligase 

XuMP 

  

Formolase (FLS) 

ThDP-dependent C-C Ligase 

FLS 

pathway 

  

Glycolaldehyde synthase (GALS) 

ThDP-dependent C-C Ligase 

SACA 

pathway 

  

2-hydroxyacyl CoA lyase (HACL) 

ThDP-dependent C-C Ligase 
/ 

3.1. Class I Aldolases for Formaldehyde Biotransformation 
Natural class I aldolases are generally promiscuous. It has been confirmed that 

several class I aldolases can tolerate formaldehyde as an acceptor substrate. From the 
perspective of biocatalysis, the promiscuity of class I aldolases provides solutions for 
producing valuable chemicals from formaldehyde. The following are examples of class I 
aldolases catalyzing formaldehyde as a receptor. 4-hydroxy-2-oxoglutarate aldolase (EC 
4.1.3.16, class I aldolase) can catalyze the aldol addition of pyruvic acid or phenylpyruvic 
acid to formaldehyde [18]. DHAP-dependent aldolases, including D-Fructose-1, 6-
bisphosphate (FBP) aldolases (FruA, EC 4.1.2.13), and tagatose 1, 6-diphosphate aldolase 
(TagA, EC 4.1.2.40), can catalyze the aldol addition of dihydroxyacetone phosphate 
(DHAP) to formaldehyde [67,68]. D-Fructose-6-phosphate aldolase (FSA, EC 4.1.2.n) can 
catalyze the aldol addition of dihydroxyacetone (DHA), hydroxyacetone (HA), and 
glycolaldehyde (GA) to formaldehyde [69]. 

3.2. Class II Aldolases for Formaldehyde Biotransformation 
Hexulose phosphate synthase (HPS, EC 4.1.2.43) is a class II aldolase found in aerobic 

methylotrophic bacteria and is involved in the ribulose monophosphate (RuMP) cycle. It 
catalyzes D-ribulose 5-phosphate with formaldehyde to yield D-arabinose 3-hexulose 6-
phosphate. Due to strict substrate specificity, it is difficult to use hexulose phosphate 
synthase to synthesize value-added chiral products. While, by combining the non-
oxidative glycolysis (NOG) with the RuMP, Igor W. Bogorad et al. constructed a methanol 
condensation cycle (MCC) [70], which can convert methanol to higher-chain alcohols or 
other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-
independent system (Figure 10). It is generally believed that the RuMP cycle is the most 
efficient naturally occurring route for methanol assimilation. However, realizing the 

Formolase (FLS)
ThDP-dependent C-C Ligase

FLS
pathway

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 14 of 23 

 

 

  

MSHMT for D-alanine. α-Methylserine 
aldolase for 

D-alanine and D-butanine 

PLP-dependent aldolase 

/ 

 
 

Dihydroxyacetone synthase (DAS, EC 
2.2.1.3) 

ThDP-dependent C-C Ligase 

XuMP 

  

Formolase (FLS) 

ThDP-dependent C-C Ligase 

FLS 

pathway 

  

Glycolaldehyde synthase (GALS) 

ThDP-dependent C-C Ligase 

SACA 

pathway 

  

2-hydroxyacyl CoA lyase (HACL) 

ThDP-dependent C-C Ligase 
/ 

3.1. Class I Aldolases for Formaldehyde Biotransformation 
Natural class I aldolases are generally promiscuous. It has been confirmed that 

several class I aldolases can tolerate formaldehyde as an acceptor substrate. From the 
perspective of biocatalysis, the promiscuity of class I aldolases provides solutions for 
producing valuable chemicals from formaldehyde. The following are examples of class I 
aldolases catalyzing formaldehyde as a receptor. 4-hydroxy-2-oxoglutarate aldolase (EC 
4.1.3.16, class I aldolase) can catalyze the aldol addition of pyruvic acid or phenylpyruvic 
acid to formaldehyde [18]. DHAP-dependent aldolases, including D-Fructose-1, 6-
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glycolaldehyde (GA) to formaldehyde [69]. 

3.2. Class II Aldolases for Formaldehyde Biotransformation 
Hexulose phosphate synthase (HPS, EC 4.1.2.43) is a class II aldolase found in aerobic 

methylotrophic bacteria and is involved in the ribulose monophosphate (RuMP) cycle. It 
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synthase to synthesize value-added chiral products. While, by combining the non-
oxidative glycolysis (NOG) with the RuMP, Igor W. Bogorad et al. constructed a methanol 
condensation cycle (MCC) [70], which can convert methanol to higher-chain alcohols or 
other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-
independent system (Figure 10). It is generally believed that the RuMP cycle is the most 
efficient naturally occurring route for methanol assimilation. However, realizing the 
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3.1. Class I Aldolases for Formaldehyde Biotransformation

Natural class I aldolases are generally promiscuous. It has been confirmed that several
class I aldolases can tolerate formaldehyde as an acceptor substrate. From the perspec-
tive of biocatalysis, the promiscuity of class I aldolases provides solutions for producing
valuable chemicals from formaldehyde. The following are examples of class I aldolases cat-
alyzing formaldehyde as a receptor. 4-hydroxy-2-oxoglutarate aldolase (EC 4.1.3.16, class I
aldolase) can catalyze the aldol addition of pyruvic acid or phenylpyruvic acid to formalde-
hyde [18]. DHAP-dependent aldolases, including D-Fructose-1, 6-bisphosphate (FBP)
aldolases (FruA, EC 4.1.2.13), and tagatose 1, 6-diphosphate aldolase (TagA, EC 4.1.2.40),
can catalyze the aldol addition of dihydroxyacetone phosphate (DHAP) to formalde-
hyde [67,68]. D-Fructose-6-phosphate aldolase (FSA, EC 4.1.2.n) can catalyze the aldol
addition of dihydroxyacetone (DHA), hydroxyacetone (HA), and glycolaldehyde (GA) to
formaldehyde [69].

3.2. Class II Aldolases for Formaldehyde Biotransformation

Hexulose phosphate synthase (HPS, EC 4.1.2.43) is a class II aldolase found in aer-
obic methylotrophic bacteria and is involved in the ribulose monophosphate (RuMP)
cycle. It catalyzes D-ribulose 5-phosphate with formaldehyde to yield D-arabinose 3-
hexulose 6-phosphate. Due to strict substrate specificity, it is difficult to use hexulose
phosphate synthase to synthesize value-added chiral products. While, by combining the
non-oxidative glycolysis (NOG) with the RuMP, Igor W. Bogorad et al. constructed a
methanol condensation cycle (MCC) [70], which can convert methanol to higher-chain
alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved
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and ATP-independent system (Figure 10). It is generally believed that the RuMP cycle is
the most efficient naturally occurring route for methanol assimilation. However, realizing
the heterogeneous construction of the RuMP cycle is a challenging task. Recently, a series
of progress has been made [71,72]. By using metabolic robustness criteria followed by
laboratory evolution, Frederic Y.-H. Chen et al. enabled the growth of the engineered E. coli
with methanol as the sole carbon source [72].
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isomerase; XPK, phosphoketolase; PTA, phosphate acetyltransferase.

Another class II aldolase, 2-keto-3-deoxy-L-rhamnonate aldolase (YfaU, EC 4.1.2.53),
can also catalyze pyruvate with formaldehyde to generate 4-hydroxy-2-oxobutanoate.
Combining YfaU with (S)-or (R)-selective transaminases, Karel Hernandez et al. achieved
the stereoselective synthesis of (S)-and (R)-homoserine with high yield from formaldehyde
and alanine [73]. Relying on the aldol reaction of pyruvate with formaldehyde as a superior
synthetic pathway design, Hai He et al. constructed the homoserine cycle [74], which
can assimilate two molecules of formaldehyde or methanol to generate one molecule of
acetyl-CoA (Figure 11). Compared to the RuMP cycle, the homoserine cycle support higher
theoretical yields of products that are derived from acetyl-CoA, including ethanol, acetone,
butyrate, butanol, citrate, itaconate, 2-ketoglutarate, and levulinic acid.
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acetylating acetaldehyde dehydrogenase. Both SAL and LTA are catalyzed by the same LtaE enzyme.

3.3. PLP-Dependent Aldolases for Formaldehyde Biotransformation

Serine hydroxymethyltransferase (SHMT, EC 2.1.2.1) belongs to the PLP-dependent
aldolase family and is involved in serine cycle and reductive glycine pathway (RGP) [75,76].
The natural serine cycle pathway found in Methylobacterium extorquens AM1 can assimilate
one molecule of formaldehyde or methanol and one molecule of bicarbonate into acetyl-
CoA. Hong Yu et al. constructed a modified serine cycle [77], which uses formaldehyde
dehydrogenase (Faldh) to simplify the oxidation of formaldehyde to formate, and also
utilize the combination of alanine-glyoxylate transaminase and serine dehydratase to
avoid hydroxypyruvate as an intermediate in the conversion from glyoxylate to PEP. By
utilizing the modified serine cycle, they achieved the conversion of methanol to ethanol in
an engineered E. coli strain.

Similar to SHMT, there are two types of PLP-dependent enzymes that can achieve the
synthesis of unnatural amino acids. α-methylserine hydroxymethyltransferase (MSHMT,
EC 2.1.2.7) catalyzes the formation of α-methyl-L-serine from D-alanine and formalde-
hyde [78]. α-Methylserine aldolase can achieve the enantioselective formation of α-methyl-
L-serine and α-ethyl-L-serine from D-alanine and D-butanine with formaldehyde [79].
Different from SHMT and MSHMT, α-Methylserine aldolase is tetrahydrofolate (THF)-
independent in vitro.

3.4. ThDP-Dependent C-C Ligases for Formaldehyde Biotransformation

Dihydroxyacetone synthase (DAS, EC 2.2.1.3) belongs to the ThDP-dependent en-
zymes and is involved in xylulose monophosphate pathway (XuMP). It catalyzes D-
xylulose 5-phosphate with formaldehyde to yield D-glyceraldehyde 3-phosphate and dihy-
droxyacetone [80]. The catalytic process can be described as follows: The activated ThDP
(C2 of the ThDP is deprotonated) attack the carbonyl group of D-xylulose 5-phosphate, and
then the bond between C-2 and C-3 of D-xylulose 5-phosphate break with the assistance
of basic residues, generating 2-α, β-dihydroxyethylidene-THDP (DHETHDP, enamine
or carbanion intermediate). DHETHDP reacts with formaldehyde to gain dihydroxyace-
tone. Currently, DAS is not exploited as a biocatalyst. However, Pichia pastoris, a kind of
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methylotrophic yeast, have been engineered to produce chemicals from methanol using
XuMP [81]. Similar to DAS, transketolase (TK, EC 2.2.1.1) can catalyze the reaction of D-
fructose-6-phosphate or L-sorbose with formaldehyde to generate dihydroxyacetone [82].

The benzaldehyde lyase (BAL, EC 4.1.2.38) catalyzes the reversible ligation of two
benzaldehyde to yield an (R)-benzoin [83]. When formaldehyde acts as a receptor, ben-
zaldehyde first reacts with formaldehyde. However, wild-type BAL was shown to catalyze
the oligomerization of formaldehyde into glycolaldehyde and dihydroxyacetone with low
activity. Justin B. Siegel et al. engineered the BAL through computationally design and
gained formolase (FLS) with high formaldehyde catalytic activity [22]. By combining FLS
with acetyl-CoA synthase (ACS), acetaldehyde dehydrogenase (ACDH), and dihydrox-
yacetone kinase (DHAK), they created an FLS pathway, which assimilates formate into
dihydroxyacetone phosphate with four steps (Figure 12A). Compared with the natural
carbon fixation pathway, the FLS pathway has obvious advantages in chemical driving
force, biomass yield, and reaction conditions (aerobic).
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Figure 12. The formolase (FLS) pathway [22] and synthetic acetyl-CoA (SACA) pathway [23]. (A) The
formolase (FLS) pathway. ACS, acetyl-CoA synthase; ACDH, acetaldehyde dehydrogenase; FLS,
formolase; DHAK, dihydroxyacetone kinase. (B) The synthetic acetyl-CoA (SACA) pathway. GALS,
glycolaldehyde synthase; ACPS, acetyl-phosphate synthase; PTA, phosphate acetyltransferase.

Benzoylformate decarboxylase (BFD, EC 4.1.1.7) is also a ThDP-dependent enzyme
that catalyzes the conversion of benzoylformate to benzaldehyde and CO2 [84]. When
formaldehyde is the only substrate, trace amounts of glycolaldehyde can be detected. Our
research group engineered the BFD through directed evolution and gained glycolaldehyde
synthase (GALS) with high catalytic activity for formaldehyde [23]. Different from FLS,
GALS enables synthesis of glycolaldehyde even under high formaldehyde concentration
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conditions. By combining GALS with repurposed phosphoketolase (ACPS), and phosphate
acetyltransferase (PTA), we constructed a synthetic acetyl-CoA (SACA) pathway, which
assimilates formaldehyde into acetyl-CoA with only three steps (Figure 12B). Compared to
the FLS pathway, SACA has obvious advantages in the synthesis of acetyl-CoA derivatives.
When dihydroxyacetone phosphate (C3), the product of the FLS pathway, is converted to
acetyl-CoA, one carbon is lost as CO2. Although both the FLS pathway and SACA pathway
have shown great potential in assimilating C1 compounds, the low activity and affinity of
FLS and GALS towards formaldehyde restrict their further application in vivo. Recently,
Alexander Chou et al. reported that 2-hydroxyacyl CoA lyase (HACL) could catalyze the
ligation of formyl-CoA with formaldehyde to produce glycolyl-CoA [85]. Compared to
FLS and GALS, HACL shows higher catalytic activity and affinity towards formaldehyde.
Although they mainly focus on the bioconversion of formaldehyde to glycolate, perhaps
this alternative pathway will be available in vivo in the future.

4. C-C Ligases for CO and Formate Biotransformation

CO and formate are relatively inert compounds, and few enzymes can catalyze the
C-C forming with them. However, they are ideal electron donors [86], which can be easily
oxidized to CO2 and reduce power. The reducing power can support CO2 fixation and
serves to provide the cell with energy. Several microbes can grow on formate or CO as
the sole carbon source based on this strategy. CO is a toxic and flammable gas with low
solubility, while formic acid is readily soluble and of low toxicity. So formic acid is a
preferred carbon source and mediator of electrons.

4.1. C-C Ligases for CO Biotransformation

Diverse microbes can grow on CO as the sole carbon source, including anaerobes,
such as Moorella thermoacetica, some purple sulfur bacteria akin to Rhodospirillum rubrum,
and Carboxydothermus hydrogenoformans, as well as some aerobic carboxydobacteria like
Oligotropha carboxidovorans [87]. For aerobes, CO is first oxidized to CO2 by Mo-Cu−CODH
(CO dehydrogenase), and then CO2 is fixed by the CBB cycle. While for anaerobic microbes,
CO is oxidized to CO2 by Ni−CODH, and the CO2 is then fixed by the WL pathway. Only
CO dehydrogenase/acetyl-CoA-synthase complex existing in WL pathway can directly
achieve the C-C extension [88]. CO dehydrogenase (CODH) reversibly catalyzes CO2
reduction into CO, and then acetyl-CoA synthase (ACS) catalyzes the condensation of
in situ generated CO with CoA and a methyl group bound to the cobalt center in a B12-
containing protein to generate acetyl-CoA. The WL pathway is not only a predominant
CO2 sink under anaerobic conditions, but also used to synthesize desired products, such
as ethanol and 2, 3-butanediol from industrial waste gases (mainly CO, CO2, H2) [89].
In addition to chemical energy, several anaerobic bacteria, such as Sporomusa ovata, and
Moorella thermoacetica, can employ light energy to enable the photosynthesis of acetic acid
from CO2 [90–92].

4.2. C-C Ligases for Formate Biotransformation

Similar to CO assimilation, the CBB cycle and WL pathways are two carbon-fixation
pathways known to support formatotrophic growth (i.e., growth on formate) by full oxida-
tion of formate [93]. Different from CO, formate can not only be oxidized to CO2 to achieve
carbon fixation, but also can be reduced to methylene-THF in vivo. The serine pathway in
methylotrophic organisms is also known to support formatotrophic growth [94,95]. The
metheylene-THF can spontaneously release formaldehyde, so RuMP, XuMP, RGP, FLS, and
SACA pathways are, thus, highly promising for supporting formatotrophic growth. For-
mate is a relatively strong acid (pKa = 3.75), and normally it is deprotonated. So formate is
a much poorer electrophile than CO2 [88]. The direct formate-fixing reactions are rare. Only
one formate-fixing reaction catalyzed by pyruvate formate-lyase (PFL) is confirmed. This
enzyme is mostly known to support pyruvate cleavage, producing an extra ATP molecule
during anaerobic sugar fermentation. Now the reversibility of PFL has been demonstrated.
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Especially, the enzyme was shown to achieve the condensation of acetyl-CoA and formate
in vivo [96], supporting efficient growth of E. coli on acetate and formate. The catalytic
mechanism of PFL is a radical process, in which a single electron is extracted from formate
by cysteine radical. The resulting formyl radical then attacks an enzyme-bound acetate
moiety to generate a pyruvyl radical, which is released as pyruvate.

5. Conclusions

Newly mined or designed carboxylases and C-C ligases not only greatly expand the
scope of C1 transformation in vitro, but also are expected to improve the efficiency of
C1 assimilation in vivo. For example, mined prFMN-dependent (de)carboxylases enable
efficient functionalization of terminal alkenes to the corresponding aldehyde, alcohol,
amide, or amine derivatives through ambient CO2 fixation [65]. The reversible glycine
cleavage system (GCS) enables the growth of E. coli on one-carbon compounds (formate
and methanol) using the reductive glycine pathway, which is theoretically the most efficient
route for formate assimilation to date [61]. With the development of synthetic biology, we
believe that more and more carboxylases and C-C ligases are being mined or designed.

Compared to C1 transformation in vitro, constructing an efficient C1 assimilation
pathway is more desirable. Since an efficient C1 assimilation pathway will be possible
to greatly reduce industrial production cost and also alleviate the pressure of resource
supplement for bio-manufacturing in the future. It is encouraging that the constructed
CETCH pathway based on crotonyl-CoA carboxylase/reductase, can use light energy to
produce multi-carbon molecule glycolate from CO2, while also phosphorylating ADP to
ATP. Although several artificial pathways, such as the homoserine cycle, formolase pathway
(FLS), and synthetic acetyl-CoA (SACA) pathway, show great application potential, model
strains (E. coli) that integrate these artificial pathways have low growth efficiency when C1
compounds is used as carbon source or energy source. Of course, a lot of work needs to be
done to make these artificial pathways truly applied to industrial C1 biotransformation.

C1 compounds (CO2, HCOOH, HCHO, CH3OH, and CH4) can be interconverted. In
methanotrophs, CH4 can be continuously oxidized to CO2 and then assimilated through the
CBB cycle. In methanogens, CO2 can be continuously reduced to CH4 [97]. CO2 also can be
continuously reduced to CH3OH in vitro [98]. Therefore, constructing a new assimilation
pathway based on any of the C1 compounds can theoretically be used to assimilate other
C1 compounds. However, among C1 compounds, only CO2 and formaldehyde are good
candidate substrates for exploiting carboxylases and C-C ligases. For the CO2 assimilation
pathway, the energy source is an issue that must be considered. Both electric energy and
light energy may be ideal energy sources. Recently, the semiconductor–bacteria biohybrid
photosynthetic system was reported to efficiently realize the synthesis of acetic acid from
CO2 with the non-photosynthetic bacteria [90]. Formaldehyde exhibits high and versatile
reactivity, in comparison to other C1 compounds. However, formaldehyde is toxic to the
cell, therefore, the mined or designed C-C ligases must have high activity and affinity
towards formaldehyde.
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