
sensors

Article

Object Tracking for a Smart City Using IoT and
Edge Computing

Hong Zhang 1,†, Zeyu Zhang 1,†, Lei Zhang 1, Yifan Yang 1, Qiaochu Kang 2 and Daniel Sun 3,4,*
1 Image Processing Center, BeiHang University, XueYuan Road No. 37, HaiDian District,

Beijing 100083, China; dmrzhang@buaa.edu.cn (H.Z.); zzybeihang@buaa.edu.cn (Z.Z.);
leizhang@buaa.edu.cn (L.Z.); stephenyoung@163.com (Y.Y.)

2 College of Information and Computer Sciences, University of Massachusetts Amherst,
Amherst, MA 01003, USA; qiaochukang@hotmail.com

3 Software and Computational Systems, DATA61, CSIRO E, Level 1, Synergy Building 801,
Black Mountain Science and Innovation Park, Clunies Ross Street, Black Mountain, PO Box 1700,
Canberra, ACT 2601, Australia

4 School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
* Correspondence: daniel.sun@data61.csiro.au
† These authors contributed equally to this work.

Received: 27 March 2019; Accepted: 20 April 2019; Published: 28 April 2019
����������
�������

Abstract: As the Internet-of-Things (IoT) and edge computing have been major paradigms for
distributed data collection, communication, and processing, smart city applications in the real world
tend to adopt IoT and edge computing broadly. Today, more and more machine learning algorithms
would be deployed into front-end sensors, devices, and edge data centres rather than centralised
cloud data centres. However, front-end sensors and devices are usually not so capable as those
computing units in huge data centres, and for this sake, in practice, engineers choose to compromise
for limited capacity of embedded computing and limited memory, e.g., neural network models being
pruned to fit embedded devices. Visual object tracking is one of many important elements of a smart
city, and in the IoT and edge computing context, high requirements to computing power and memory
space severely prevent massive and accurate tracking. In this paper, we report on our contribution
to object tracking on lightweight computing including (1) using limited computing capacity and
memory space to realise tracking; (2) proposing a new algorithm region proposal correlation filter
fitting for most edge devices. Systematic evaluations show that (1) our techniques can fit most IoT
devices; (2) our techniques can keep relatively high accuracy; and (3) the generated model size is
much less than others.

Keywords: Internet-of-Things; edge computing; smart city; object tracking; lightweight computing

1. Introduction

Although a massive shift from on-premise software to cloud computing has been witnessed,
as a decentralised compromise, edge computing has enhanced cloud processing for time-sensitive
applications. Smart city, as a typical large scale system, is gradually adopting IoT and edge computing,
and object tracking, among the most important applications in a smart city, have actually used IoT
and edge computing for communication and computation infrastructure. Here is an example of object
tracking: In order for self-driving cars to become a reality, those cars need to react to external factors in
real-time. The moving objects such as cars and pedestrians always bring considerable uncertainty to
the self-driving system. If a self-driving car can track the trajectories of moving objects on the road,
it will perceive both normal and sudden movements of its surroundings. Once abrupt lane changing
is detected, the car must slow down immediately. If a self-driving car is traveling down a road and

Sensors 2019, 19, 1987; doi:10.3390/s19091987 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/0/1987?type=check_update&version=1
http://dx.doi.org/10.3390/s19091987
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 1987 2 of 23

a pedestrian walks out in front of the car, the car must stop immediately. IoT and edge computing can
definitely benefit this scenario for:

• Low Latency. The computation is implemented directly on the IoT edge devices. There is no
network latency of pushing and fetching data. Thus, the system will respond immediately once
acquiring sensor information.

• Using less network bandwidth. For example, Netflix uses local caches distributed on many cities
around the globe to reduce the overall network transfer cost and optimise video streaming for
much better overall experience.

• Privacy. In some occasions, data should stay only close to the users, sending minimal amount of
data to cloud for improving user experience, like enabling the user to control remotely.

• Low Cost. Reducing unnecessary centralised computation and communication resource imply
low running cost obviously. For example, Netflix uses local caches distributed on many cities
around the globe to reduce the overall network transfer cost.

Besides the above example, in a smart parking lot facility, the tracking system can fetch the
trajectory of every vehicles and use the information to guide the guests or detect abnormal driving
behaviour. Unmanned Aerial Vehicles (UAVs) can follow its owners automatically and cameras
can record one’s movement. However, in IoT and edge computing context, high requirement to
computing power and memory of traditional computer vision techniques severely prevent massive
object tracking. In this paper, we focus on lightweight object tracking that requires less computation,
less memory, and less data transmission. Lightweight object tracking needs an elegant algorithm
and implementation.

There are two major problems for the existing tracking algorithms. First, it is the tracking accuracy
and robustness. Visual object tracking is a challenging task, especially when faced with difficult
tracking conditions e.g., occlusion, object deformation and background cluttering. The ability to
handle these difficulties directly influences the tracking accuracy and robustness of a tracking algorithm.
Recently, the adoption of discriminative learning method in visual tracking field has greatly contributed
to the promotion of tracking accuracy and speed. These methods usually train a classifier online in the
first frame and then search among candidate patches using the trained classifier in the following frames.
In 2010, Bolme et al. [1] adopted the property of circulate matrix for training a Ridge Regression
model as the classifier. Thus, the correlation response can be calculated efficiently in the frequency
domain and the proposed tracker, as first discriminative correlation filter (DCF) method, enjoys low
computation complexity. However, no feature extraction is implemented in [1], thus, the tracking ability
is limited by the feature discrimination. Then, Henriques et al. [2,3] introduced Histogram of Gradient
(HOG) [4] features into DCF methods and improved its accuracy and robustness. More inspiring
improvement to DCF trackers came from works of Danelijan et al. [5,6] and Galoogahi et al. [7,8],
that aimed at fading the boundary effects inherited in the circuit matrix assumption of DCF trackers.
In 2017, Galoogahi et al. [8] proposed to solve the zero-aliasing MOSSE filter by ADMM method [9].
The tracker, called BACF, achieves relative high performance on benchmarks and runs quite fast.
However, BACF still can not overcome the difficult tracking conditions such as occlusion and object
deformation. In our approach, we take BACF as the baseline tracker and design concise frameworks to
detect tracking status, and thus, enhance the tracking accuracy efficiently.

Next, we illustrate another issue that object tracking systems for edge computing context are
faced with. In order to increase the tracking accuracy and robustness, an obvious solution is to
adopt more discriminative image features such as deep-learning features. Deep convolutional neural
networks(CNNs) have proven to be super effective on several challenging vision tasks [10–12],
e.g., object detection and face recognition. Compared to the hand-crafted features such as HOG
and Color Naming [13], CNN features significantly improve the tracking ability against the target
deformation, occlusion and out-of-plane rotation. However, extracting CNN features from deep
convolutional network requires expensive computation and CNN features always have high

Sensors 2019, 19, 1987 3 of 23

dimensions. These properties ruin the computational efficiency of DCF method. The method such
as [14] runs only 5 fps on a quad-core CPU at about 4 GHz. In 2016, Bertinetto et al. [15,16] firstly
employed a Siamese network to combine the feature extraction and classification process jointly, called
Siamese-fc. As an end-to-end CNN architecture, it achieves relative high performance owning to the
one-shot architecture and Graphics Processing Unit (GPU) acceleration. Although Siamese-fc runs
around 86 fps on a GPU device, it requires dense parallel computation thus, conducts high power
consumption. Besides, CNN methods require huge memory space, usually above 10 Megabytes,
to maintain its network model. Hence, in terms of power consumption and memory usage CNN-based
tracking algorithms are not suitable for IoT edge applications.

1.1. Motivations

Smart city applications tend to adopt IoT and edge computing broadly for distributed data
collection, communication and processing. However, front-end sensors and devices are usually not
so capable as those computing units in huge data centres, and for this sake, in practice, engineers
choose to compromise for limited capacity of embedded computing and limited memory. Visual object
tracking as an important element of smart city is a promising application area. The crucial point for
designing tracking systems in IoT edge is to keep a balance between tracking accuracy and computation
complexity. After carefully review the recent development of object tracking, we notify that although
the implementation of DCF-based trackers is quite efficient, tracking accuracy of the existing methods
is not good enough for widespread usage. While, CNN-based methods, though more accuracy and
robustness, require high computing complexity and large memory space. Hence, we propose a tracking
algorithm with region proposals and tracking status detection schemes. Thanks to the proposed
frameworks, our method can overcome difficult tracking conditions such as occlusion, rotation and
deformation and, thus, dramatically improves the tracking accuracy. Meanwhile, it is suitable for IoT
devices with limited computing capacity and memory space.

1.2. Contributions

This paper offers the following contributions:

(1) We demonstrate a visual object tracking system for smart city applications using IoT and edge
computation with limited computing capacity and memory space. It can fit most low-power
consumption IoT devices, e.g., Xilinx SoC platforms and Raspberry Pi ARM devices, hence
provide flexible and energy conservation advantages.

(2) We introduce a novel region proposal correlation filter algorithm for lightweight computation
tracking. Owing to the concise region proposal scheme and feature combination strategy,
the algorithm runs around 40 fps on edge devices and requires only 157 KB on-chip memory.
Besides, Response Confidence Level (RCL) is proposed to detect tracking status and update
tracking model.

(3) Our embedded tracking system with proposed algorithm, surpasses existing systems for IoT in
tracking accuracy and robustness. It can precisely track the targets even when difficult tracking
conditions, e.g., occlusion, deformation or background cluttering, occur.

The remainder of our paper is organized as follows: In Section 2, we briefly summarize the
existing tracking systems and their drawbacks. Then, the theory of discriminative correlation filter,
an efficient tracking paradigm, is discussed. Next, we introduce related tracking methods based on
region proposals. In Section 3, we firstly demonstrate our object tracking architecture using IoT and
edge computing. Second, the proposed tracking algorithm is illustrated in detail. After explaining the
solution to boundary effect of DCF-based tracker by zero-aliasing filter, we demonstrate our innovative
approach of fetching the region proposals from the correlation response. Then, a robust criterion for
judging the tracking status is introduced, based on the response’s peak value, PSR and number of
proposals. Section 4 is about the experiment and result. The implementation details of our tracking

Sensors 2019, 19, 1987 4 of 23

system in IoT context are firstly put forward. Next, we focus on the system tracking performance.
We evaluate our algorithm with other related trackers on two benchmarks. The result shows the
computation efficiency of our proposed frameworks on DCF-based tracker. Besides, our tracker
requires much less memory space while achieves comparable tracking accuracy and robustness.
The last section is a summary of the paper and future prospects for object tracking system using IoT
and edge computing are forecasted.

2. Related Work

In this section, we discuss the applications of tracking system in IoT and edge computing context
and the existing tracking algorithms. The pros and cons of the existing tracking systems are illustrated.
Then, DCF-based trackers, which are suitable for edge applications, are introduced in Section 2.1.
Then in Section 2.2, some region proposal methods aimed at further enhancing the tracking accuracy
are discussed.

2.1. Object Tracking System in IoT

Researchers at Gartner estimate that there will be 20 billion IoT devices connected to the Internet
by 2020 [17]. In order to process huge computation capacity, traditional approaches are to transmit the
data generated by the device to a cloud platform. However, there are three major limitations for cloud
computing: transmit bandwidth, power consumption and processing latency. An example scenario is
the camera surveillance to detect traffic accidents. If the detection algorithm is deployed at the cloud,
the bandwidth requirement for HD videos as well as high latency of network transmission will ruin
the efficiency and real-time response of the application, respectively. A sample scenario is a security
camera that records the video when an accident happens. The application requires wide bandwidth if
the whole video is transmitted and immediate response for accident alert. To overcome the limitations
of cloud computing, the edge and fog computing has been introduced. In [18], edge datacenter is
proposed as the middle layer to optimize the energy consumption and system latency. It proves that
for time-sensitive applications, edge computing is an elegant yet efficient solution. Except for the
theoretical studies on IoT edge computing, the solutions to large-scale deployment of IoT edge in
industries have attracted considerable attention. Amazon has proposed a solution called AWS IoT
Greengrass for time-sensitive applications. Meanwhile, Microsoft has also published Azure IoT Edge
to extend the cloud service to the edge side. The advantages of these solutions include security and
stability of data transmission, versatile toolkits for software development, low cost for large-scale
deployment and so on. Although powerful services have been provided by large companies, specific
systems and projects on the IoT edge devices still require careful design.

Visual object tracking is such a time-sensitive application and it shows promising prospect in
scenarios such as autonomous vehicles, smart city monitor and robotic vision. When designing
object tracking algorithms for the IoT edge, it is important to think about the energy efficiency of
the system. The critical point is first to understand the main trick and consumption of the tracking
algorithm, and then fully utilize the IoT edge resources. In terms of object tracking applications,
Shit, R.C et al. [19] introduced sensor localization in IoT infrastructure and the location information is
helpful for a coarse search of the target. Nevertheless, tracking accuracy and robustness are always
the top consideration of a tracking system. In traditional tracking system the accurate tracking results
guarantee the control of front-end cameras to follow the interested targets. In 2019, Luo et al. [20]
proposed a novel module called active tracking. The system directly predicts the actions of the camera
rather than the tracking results. However, the reinforcement learning of control system still requires
high computation complexity and long latency.

Visual object tracking is a low-latency application and it shows promising prospect in scenarios
such as autonomous vehicles, smart city monitor and robotic vision. When applying the object
tracking algorithm at the egde of IoT network, energy efficiency is essential, especially when the
devices are powered by batteries. Another motivation towards energy profiling and enhancement

Sensors 2019, 19, 1987 5 of 23

is to reduce carbon emissions. According to a study published by the Centre for Energy Efficient
Telecommunications, the cloud was estimated to consume up to 43 TWh in 2015, compared to only
9.2 TWh in 2012, an increase of 46%. This is roughly equivalent to adding 4.9 million cars to the
roads [21]. Thus, it is essential to understand the relationship between tracking algorithms and their
respective energy consumption to efficiently utilize the IoT device’s power resources. Meanwhile,
tracking accuracy is also an essential consideration.

The power consumption of the tracking algorithm mainly depends on the memory access.
Under 45 nm CMOS technology, a 32 bit floating point add consumes 0.9 pJ, a 32 bit SRAM cache
access takes 5 pJ, while a 32 bit DRAM memory access takes 640 pJ, which is 3 orders of magnitude
of an add operation [22]. If the model of the tracking system is larger than 1 megabyte, we need to
store the model in DRAM memory thus, it requires more energy to access the tracker model. Existing
deep learning algorithms, e.g., Siamese-fc [15] and HCF [14], needs more than 50 megabytes memory
space to contain its network models. Although they achieves the state-of-the-art tracking accuracy,
the energy efficiency of the entire system blocks its widespread usage in IoT edge devices. While,
some traditional tracking algorithms such as KCF [3] and Struck [23], maintain a small model capacity
of less than 1 megabyte, however the tracking accuracy of these methods are much lower than deep
learning methods, especially when targets are faced with difficult tracking conditions e.g., occlusion,
deformation, out-of-plane rotation and background cluttering.

2.2. Introduction to the DCF Tracker

Discriminative correlation filter indicates a category of tracking methodology. It was firstly
introduced by [1] in 2010. Since then, plenty of methods are proposed for increasing tracking accuracy
and robustness. A typical DCF tracker is trained using the image patch x, centered around the target
to fit a desired relation response y of Gaussian distribution. The filter h is obtained by minimizing the
following objective function in the spatial domain:

E(h) =

∥∥∥∥∥ D

∑
d=1

hd ? xd − y

∥∥∥∥∥
2

+ λ
D

∑
d=1

∥∥∥hd
∥∥∥2

. (1)

where ? stands for circular correlation operator. xd ∈ RN and hd ∈ RN refers to the dth channel of
vectorized patch and the corresponding filter respectively [24]. D is the number of feature channels,
N is number of pixels in the image patch, and λ is a regularization factor (λ ≥ 0).

By applying Parseval’s theorem to Equation (1), filter h can be obtained in the frequency domain:

E(ĥ) =

∥∥∥∥∥ D

∑
d=1

x̂d � ĥ
d − ŷ

∥∥∥∥∥
2

+ λ
D

∑
d=1

∥∥∥ĥ
d
∥∥∥2

. (2)

where x̂d, ĥ
d

and ŷd are the discrete fourier transfer—DFT of xd, hd and y respectively. A � is the
element-wise product between two vectors. Then the optimal filter ĥ can be solved efficiently in the
frequency domain and h is the inverse DFT of ĥ.

Since there are more than one training samples during tracking process. An concise update
scheme for renewing the regression filter ĥ is introduced by [25]. The update scheme can be seen as
minimizing a weighted squared error,

E(ĥ) =
m

∑
j=1

αj

∥∥∥∥∥ D

∑
d=1

x̂d
j � ĥ

d − ŷj

∥∥∥∥∥
2

+ λ
D

∑
d=1

∥∥∥ĥ
d
∥∥∥2

. (3)

where sample index j is the frame number and αj is the weight for the training sample in jth frame.

We can achieve the recursive formula of both nominator and denominator to the solution ĥ
d

by setting

Sensors 2019, 19, 1987 6 of 23

the αj = η(1− η)(m−j) for j > 1 and α1 = (1− η)(m−1). η is called learning rate for the model. Then the

dth channel of ĥ
d

is defined as:

ĥ
d
j =

Âd
j

B̂d
j + λ

(4)

Âd
j = (1− η)Âd

j−1 + ηŷj � x̂d∗
j (5)

B̂d
j = (1− η)B̂d

j−1 + η
D

∑
i=1

x̂i∗
j x̂i

j (6)

where x̂∗ is the complex conjugate of x̂. x̂ is the diagonal elements of X̂, which is also the DFT of x.

The nominator Âd and denominator B̂d is updated using the predicted target patch. In the next frame,
a searching patch z is cropped from the position of last frame, then the predicted location is at where
the maximum value of the response map R in Equation (7) indicates.

R = F−1(
D

∑
d=1

ĥ
d � ẑd∗) . (7)

Although the DCF-based trackers enjoy the computation efficiency by transforming to the
frequency domain, the circular hypothesis of DFT brings boundary effects to the response map
which degrades the tracking performance.

2.3. Tracking with Region Proposals

Th region proposal method is firstly introduced for the visual detection. It is designed to replace
the sliding window approach by fetching potential object locations from the whole frame. Some of the
region proposal methods are based on image segmentation and they treat different image segments
as object proposals. Selective Search [26] uses a super-pixel segmentation algorithm in color space
to find image segments and then merges the segments to obtain proposals. MCG [27], however,
segments the image based on the edge cue on multi-scale hierarchy and merges the segments by
edge strength. Usually, only the top one thousand proposals are used for the following process,
thus, the proposals are finally rank by a combination of multiple cues, such as location, shape,
color and edge. While, the shortcoming of segmentation based approach is the high computational
complexity. Though number of potential objects are reduced, it is still time-consuming to fetch the
credible proposals. Recently, new region proposal methods are suggested for real-time application.
EdgeBox [28] and BING [29] are typical methods for quick object proposals. Two approaches both beg
the segmentation process and directly score the candidate windows by the property of edges in the
window. EdgeBox gives a high score to the windows containing a large number of edges and BING
distinguishes the objects and backgrounds by the edge homogeneous observing that edges of objects
have heterogeneous property.

As it is mentioned before, visual tracking is time-sensitive. Region proposal methods without
segmentation are more suitable for this kind of task. Edgebox Tracking, EBT [30], was presented in
2016. It applies the EdgeBox as a region proposal method and gets the object-like candidates from the
whole frame. The proposed candidates are passed to a structure-SVM classifier in order to tell the target
from the other cluttering objects. It is a global search strategy for target detection, however, only the
edge information is used for classification so that it suffers when motion blur happens. In 2018, a new
target-specific object proposal generation method for tracking (TOPGT) [31] was introduced. Different
from EBT, TOPGT combines the edge cue and color cue together to generate the object proposals and
then ranks the proposals by shape, color as well as size similarity. After then, it trains a CNN network
with the proposals and locates the target with the highest network output score. While, although the

Sensors 2019, 19, 1987 7 of 23

trained framework of TOPGT is fairly robust against deformation and motion blur the imbalance of
positive and negative samples may lead to target drift when occlusion happens. Besides, it requires
the CNN-model update during tracking and, thus, suffers from heavy computation complexity and
ruins the real-time property.

3. Tracking System in IoT and Edge Computing Context

An overview of our system design is shown in Figure 1:

Figure 1. The system design of our tracking system in IoT and edge computing context.

The idea is to use some front-end cameras that provide us with an interface to fetch videos, a local
server that connects to those local cameras and processes their images using machine learning and
a computer vision algorithm, then sends the processed data or labels to the cloud, so we can monitor
and treat the cameras as sensors by knowing the content of the videos. We can use this to track people
or vehicles on the street, receive an alert if something alarming happens in a public space, or even train
a custom model and allow authorized personnel to walk around a place. There are many application
cases for using the object tracking system.

We are going to use some pan-tilt-zoom (PTZ) camera platforms as our front-end cameras.
Use a Zynq-7000 development board as the local server (we also try on our laptops), that will run
a pre-trained support vector machine (SVM) model for classifying and detecting objects on images.
Afterwards, the tracking algorithm starts to track the detected object and analyzes the trajectory of the
target. The trajectory is then fed back to the camera platform and used to control the servo system
to follow the tracking target. Thus, our system can keep an eye on the target by the tracking system.
The classified data is sent to the cloud securely using a Cloud IoT Core and also leveraging the new
gateway feature, so the local server can act on behalf of the camera modules for sending data to the
cloud. Then the data is processed in an event-based way using Firebase Cloud Functions, that basically
stores data on Firebase to make the data available to internet-connected users on a web interface
deployed on Firebase Hosting. Also, the local server will provide a local web interface to monitor the
cameras. The project architecture contains five parts as shown in Figure 2.

DeviceListener: Responsible for searching the cameras using mDNS, maintaining a list of devices
on the local network and emitting events when devices are online or offline.

ObjectTracker: Locate an object and tracks objects using proposed tracking algorithm.
CloudIoTCoreGateway: Handles all the communication and authentication with Cloud IoT Core

and also acts as a Cloud IoT Core Gateway.
WebInterface: Provides a web server that serves a web UI and also a real-time engine to sync

data with the browser using socket.io.
EdgeServer: Uses all of the above classes, fetching images from the active devices, passing those

images through the tracker, then sending data to Cloud IoT Core and providing the data to the local
web interface.

Sensors 2019, 19, 1987 8 of 23

Figure 2. The project architecture of the overall system.

In order to keep the target in view, the tracking algorithm plays an important role in the overall
system. In this paper, we focus on the tracking algorithm fitting for IoT and edge computing context.
Our algorithm is based on the BACF tracker, which aims at alleviating the boundary effect of DCF
trackers. In Section 3.1, we firstly explain the principle of BACF. Next, Section 3.2 clarifies our region
proposal framework based on DCF trackers. Then in Section 3.3 innovative criterion to detect the
tracking status is proposed based on HOG and color histogram response. At last, the strategy employed
to combine multi-cues in our implementation is put forward in Section 3.4.

3.1. Baseline Tracker: BACF

In order to transfer the objective function of Equation (1) to the frequency domain, an assumption
of periodic extension of image patch is required to ensure the applicability of the DFT. Due to
the periodic assumption, a shifted image patch will introduce repetitive content of center patch
other than background samples at the image boarder. It brings frequency aliasing in the frequency
domain, while in the spatial domain, the background samples are covered, which makes the filter
lack discriminative power. In the BACF method, zero-aliasing correlation filter is employed to handle
the problem.

Background-aware correlation filter(BACF) is to minimize the following objective function:

E(h) =
∥∥∥P>h ? x− y

∥∥∥2
+ λ ‖h‖2 . (8)

where P is a T× N binary matrix which holds the mid T elements of feature channel x. A > indicates
the transport operator. x ∈ RN and y ∈ RN , N is the length of sample x. Different from Equation (1),
the filter h ∈ RT is of length T, where T � N.

Similar to the traditional DCF tracker, Equation (8) can be learned in the frequency domain for
computational efficiency. However, since the zero-aliasing constraint of h is in the spatial domain we
keep the regularization in spatial domain. Then, the frequency domain expression of Equation (8) is
as follows:

E(h, ĝ) = ‖x̂� ĝ− ŷ‖2 + λ ‖h‖2 (9)

s.t. ĝ =
√

NFP>h (10)

where ĝ is an auxiliary variable and F is an orthonormal N × N DFT matrix, such that the DFT of
signal a can be expressed as â =

√
NFa.

To solve Equation (9), Augmented Lagrangian Method(ALM) is employed:

L(h, ĝ, ζ̂) = ‖x̂� ĝ− ŷ‖2 + ζ̂>(ĝ−
√

NFP>h)

+ λ ‖h‖2 + µ
∥∥∥ĝ−

√
NFP>h

∥∥∥2
.

(11)

Sensors 2019, 19, 1987 9 of 23

where ζ̂ is a N × 1 Lagrangian vector in the fourier domain and another regularization term to penalty
the zero-padding filter ĝ is introduced, which µ is the penalty factor. Equation (11) can be solved
iteratively by Alternating Direction Method of Multipliers (ADMMs) [9]. For simplify the process,
we just give the solutions to two subproblems ĝ? and h?. For more details, please refer to [7,8].

3.1.1. Subproblem ĝ?

ĝ? = arg minL(ĝ; ĥ, ζ̂)

= (Ŝxy + µĥ− ζ̂) ◦−1 (Ŝxx + µ1) .
(12)

where ĥ =
√

NFP>h. It is easily obtained by applying DFT after masking h with P>. Ŝxy and Ŝxx are
the cross-spectral and auto-spectral of sample x with desired response y respectively.

3.1.2. Subproblem h?

ĥ
?
= arg minL(ˆh; g, l)

= (µ +
λ√
N
)−1(µg + l) .

(13)

where g = 1√
N

PF>ĝ and l = 1√
N

PF> ζ̂. They can be efficiently calculated by applying inverse DFT of

ĝ and ζ̂ and then cropped them by matrix P.

3.1.3. Lagrangian Multiplier Update

ζ̂(i+1) ← ζ̂(i) + µ(ĝ(i+1) − ĥ
(i+1)

) (14)

µ(i+1) ← min(µmax, βµ(i)) . (15)

where ĝi+1 and ĥ
i+1

are the current solutions to the above subproblems at iterations i + 1 within
iterative ADMM. The penalty factor µ is gradually increase within iterative ADMM and β is
a increment parameter.

The final discriminative filter ĝ is then solved iteratively using Equations (12)–(15). Similar to
traditional DCF solution, the predicted target location is then obtained by multiplying filter ĝ with the
feature patch x̂ in frequency domain.

Rhog = F−1(
D

∑
d=1

ĝd∗ � x̂d) . (16)

3.2. Region Proposal Method

In this section, we will discuss our region proposal approach based on correlation filters.
Unlike the general region proposal methods, such as Selective Search, EdgeBox and BING, that aim at
locating possible areas of all class objects, our approach is designed to find the candidate positions
that contain similar objects with the tracking target. Specifically, the proposed method treats the
correlation filter as a prior knowledge and utilizes the correlation response to fetch similar objects
among the searching area. Experimental results show that a high recall ratio can be achieved with only
20 proposals generated, shows the efficiency of our scheme. Then, feature combination strategy can be
implied at the proposed candidates to enhance tracking accuracy. For a single-target tracking task,
the initial object in the first frame is known in advance. Thus, a more specific region proposal method
can be proposed based on the known target model. Unlike general region proposal methods, such as
Selective search, EdgeBox and BING, region proposal methods for tracking enjoy the advantage of
utilizing the tracking model as a prior. Therefore, the proposed region proposal approach for tracking

Sensors 2019, 19, 1987 10 of 23

is computationally efficient embedding into DCF framework meanwhile it achieves high precision rate
with less than 20 number.

As we review the implementation of DCF trackers, a discriminative filter h keeps updating during
the tracking process to distinguish the target from background surroundings. Then, the response
map Rhog in Equation (7) is calculated as the cross-correlation of the filter h with searching patch
z. Generally, DCF trackers set only the location with peak response value as the prediction target.
However, we notice through experiments that although the regression objective is set as a Gaussian
function, the actual response map usually contains multiple peak values and the target can be located
at suboptimal peaks, especially when targets are faced with object deformation, background clustering
or fast motion. There are two possible reasons. First, the model drifts always happen during the
tracking process and as it accumulates the discriminative power of the correlation filter drops. Second,
hand-crafted features are not robust against all kinds of tracking scenarios. For example, the hog
feature is fragile against target rotation and deformation; thus, distracters may have comparable
responses as deformed targets. According to the observations, the region proposal method based
on correlation filters are presented. Generally, in DCF trackers, only the maximum value location of
the response map is used as the prediction of the target. However, during experiments, we find that
sometimes the target does not locate at the maximum response position especially when faced with
difficult tracking status, e.g., occlusion, fast motion and deformation. There are two possible reasons
for the phenomena. First, in order to limit the frequent aliasing, a hanning window is applied on
the sample x, which suppresses the response at the boarder. Second, accumulating of model drift
may decrease the discriminative power of the filter and result in a suboptimal response. Further
investigation about the position of the target under such circumstances notices that though it is not
the maximum value location, it always be a local maximum of the surrounding areas. Based on that,
we present our region proposal approach for DCF trackers.

All local maxima of the response map Rhog are firstly extracted, where a local maximum is defined
as the location with a response value larger than its eight connected neighbors. Next, keep only the
local maxima with response values that are larger than 0.6 of the global peak value. are chosen to be
the candidates The selected proposals are calculated as follows:

Pprops = Plmax × ILoc

{
Rhog(P) ≥ 0.6Peak)

}
. (17)

where Pprops is the center locations of proposals and Plmax denotes local maximum locations. I is
an indicator function of value 1 at locations with response greater than 0.6 Peak, which is the global
maximum of response map.

After locating the center positions, the proposals are generated by fetching bounding-boxes of
the same size at each position. Getting the center locations, we fetch the bounding-boxes using the
same patch size in the DCF framework. Besides, non-maximum suppression (NMS) is then used
on the proposed bounding-boxes to eliminate heavy overlapped pairs. Figure 3 shows the object
proposals generated by our region proposal method on videos from OTB2015 and VOT2016 datasets.
From Figure 3, there are two regular patterns summarized: From the given sequences, two observation
of patterns are catched: (1) The number of proposals is closely related to tracking status. Number of
proposals increases when the target is faced with difficult scenarios and vice versa; (2) ground-truth
bounding-box always lays among the proposed candidate bounding-boxes unless tracker drift occurs.

Sensors 2019, 19, 1987 11 of 23

1 111 232 569

1 40 94 117

385 28 257 385

86 161 206 247

Figure 3. Illustration of the proposed DCF-based region proposal method on four different sequences.

3.3. Tracking Status Detection

As mentioned in Section 1, object tracking systems are faced with several difficult statuses, such
as occlusion, deformation and fast motion, during the tracking process. The strategies for handling the
difficult situations have major effects on the performance of the tracker. The first step towards a useful
strategy for complex scenarios is to correctly predict the tracking status. Guan et al. [32] proposed
an event-triggered decision model to predict the tracking status. It combines spatial and temporal loss
with an event decision tree. We adopt a concise implementation in view of the region proposals from
correlation filter response. Section 3.3 elaborates our innovative criterion to judge the tracking status.
The criterion is closely related to our region proposal method in Section 3.2. When demonstrating the
experiment on region proposal extraction, we notice that more candidates are proposed as the target
meets difficult situations. In view of the connection between the number of proposals and tracking
status, we suggest a new criterion which combines peak value, Peak-to-Sidelobe Ratio (PSR) and
number of proposals to predict the tracking status. Different from the methods from [1,33], the ratio
between the current frame and the average value of the past frames is employed to indicate the tracking
status. Since the criterion is based on the response map, it is named Response Confidence Level (RCL).
The definition is as follows:

RCL =
PeakK

Peak1:K−1
+

PSRK

PSR1:K−1
+

1
num o f props

(18)

Peak1:K−1 = (
K−1

∑
i=1

Peaki) / (K− 1) (19)

PSR1:K−1 = (
K−1

∑
i=1

PSRi) / (K− 1) (20)

Sensors 2019, 19, 1987 12 of 23

where K indicates the Kth frames among the sequence. PeakK stands for the maximum value of
the response map and PSRK = (PeakK − µ) / σ, where µ and σ represent the mean and standard
derivation of the response map, respectively. Peak1:K−1 is the average peak value from the 1th frame to
the (K− 1)th frame. So does PSR1:K−1.

The tracking statuses have been predicted by RCL and then a new update scheme different from
the original DCF tracker is introduced. The details about the filter update scheme is in Section 4.2.
Figure 4 shows the efficacious of RCL on sequence Girl2. From the figure we can notify that the
RCL significantly drops when faced with difficult tracking conditions occur, e.g., occlusion, rotation,
background cluttering and fast motion.

Figure 4. The correspondence between difficult tracking conditions and our proposed RCL criterion
on test sequences girl2.

3.4. Jointly Detection Using Multiple Cues

Although potential bounding-boxes have been proposed in the methods in Section 3.2, how to
determine the most likelihood among proposals is still unresolved. As discussed in Section 2.3, multiple
feature cues can considerably improve the accuracy and robustness of tracking performance. Aiming
at designing a tracker for real-time applications, the CNN-based feature is not considered because of
the computational complexity. HOG feature, which is the statistic of edge cue, is already employed in
BACF architecture. Other features like shape or color are taken into account. In [34–36], color cue is
already proven to be powerful combined with HOG feature on DCF trackers. We also find that color
cue is robust against the object deformation and rotation yet weak against illumination change and
background cluttering. These properties are just complementary to edge-based features like HOG.

Sensors 2019, 19, 1987 13 of 23

thus, the color histogram feature is employed as the other cue for the joint detection in our approach,
similar to the choice in papers [36,37].

To distinguish target pixels x from background surrounding pixels, a naive Bayes classifier
is trained with the color histogram of searching patch I. Given a target region T (i.e., the initial
bounding-box or the predicted area of DCF tracker) and its surrounding region S = T { in I, the object
likelihood of pixels x is obtained by Bayes rule:

P(x | T ,S , bx) =
P(bx | x ∈ T) P(T)

∑Ω∈{T , S} P(bx | x ∈ S) P(S) . (21)

We define a symbol H I
Ω(b) to denote the bth bin of Histogram H calculated from region Ω ∈ I. And bx

stands for the bin where color component of I(x) belongs to. The conditional probability can be directly
estimate by the color histogram, P(bx | x ∈ T) = H I

T (bx)/|T | and P(bx | x ∈ S) = H I
S (bx)/|S|,

where | · | calculates the total of pixels in the area. Besides, the prior probabilities are approximate
as P(T) = |T |/|T + S| and P(S) = 1 − P(T) respectively. Then, by simplifying Equation (21),
we get (22).

P(x | T ,S , bx) =
H I
T (bx)

H I
T (bx) + H I

S (bx)
. (22)

The object likelihood map is defined as LI , where the likelihood of each pixels in map I is obtained
by Equation (22). Then, LI is embedded into the region proposal framework to jointly combine color
cue and edge cue for detection the target. The most intuitive approach is to use the value of LI(x),
where x is the center location of the proposals. However, different from response map of DCF filter,
whose regression target is a Gaussian distribution, the maximum response of the likelihood map is
usually not located at the center of the target. Thus, we introduce a new method to measure the
color similarity of the proposals by accumulating the value of LI(x) among x ∈ Ωk, where Ωk is the
bounding-box area of the proposal k. Furthermore, the accumulated value can be quickly calculated
by integral of likelihood map LI .

A(x) = ∑
x,≤x
LI(x,) (23)

Rcolor(k) = A(x1
k) + A(x4

k)− A(x2
k)− A(x3

k) (24)

where A(x) is the integral response of likelihood map LI . Rcolor(k) is the color histogram response
of proposal k, where x1

k , x2
k , x3

k , x4
k are the top-left, top-right, bottom-right and bottom-left corner

coordinates of bounding-box proposal k.
Then the combined response of proposals k is generated by multiplex the response of HOG feature

with the response of color histogram together as follows:

R(k) = Rhog(k)×Rcolor(k) . (25)

Figure 5 shows the architecture of the region proposal correlation filter. The potential
bounding-boxes are proposed from the response of the correlation filter, generated by the baseline
tracker BACF. Then, different feature cues can be extracted from the candidates which dramatically
enhances the robustness of proposed tracker meanwhile reduces the computation redundancy. In this
paper, we combine the edge cue of HOG response with the color cue of histogram to achieve real-time
tracking performance of about 30 fps. The efficiency of the overall framework is shown in Section 4.3.
Moreover, this architecture can be flexibly expanded to combine other feature cues, including shape,
texture or deep CNN features.

Sensors 2019, 19, 1987 14 of 23

Figure 5. Architecture of the overall Region proposal correlation filter.

When a new frame comes, one loop of region proposal correlation filter algorithm is summarized
in Algorithm 1.

Algorithm 1 Framework of proposed region proposal correlation filter method.
Input:

z: searching image patch, m× n× c;

g: zero-aliasing filter, m× n× c;

fg: color histogram of foreground object, h bins;

bg: color histogram of background surrounding, h bins;
Output:

Pos: Predicted object position, [x y];
1: Extract the hog feature of the input image patch x and translate it to frequency domain ẑ = fft2(f hog(z)).
2: Calculate the response of feature patch with zero-aliasing filter and find the original position with peak

response. Posorig = arg max[x y] resph and resph = ifft2(ĝ? � ẑ).
3: Generate the proposals from the response map according to Equation (17) and get final k candidates: Posk

prop

by non-maximum suppression.
4: Compute the Response Confidence Level(RCL) in terms of Equation (18).
5: if RCL < para.Threshold then

6: Calculate the object likelihood of each proposals by color histogram according to Equations (22)–(24).
7: Combine the response of hog feather with the color histogram according to Equation (22) and choose the

proposal with the highest response. Posadj = arg maxk Pos
k
prop.

8: Predict the object position by multi-cue detection when confidence level is low. Pos = Posadj;
9: Keep the zero-aliasing filter g unchanged.

10: else

11: Predict the object position by original response when confidence level is high. Pos = Posorig;
12: Update the zero-aliasing filter according to Equations (12)–(15);
13: Update the color histogram of the foreground and background respectively.
14: end if

4. Experiments and Results

We extensively elaborate the implementation details of our tracking system using IoT and edge
computing. The overall system is demonstrate in Section 3. The core of the system is the EdgeServer.
It firstly fetches images from the active cameras and then passes those images through the tracker.
After the tracking process, EdgeServer sends only compressed information to Cloud IoT Core and
provides the data to the local web interface. We will discuss the implementation details of EdgeServer
in Section 4.1.

Sensors 2019, 19, 1987 15 of 23

Another critical design in the system is the tracking algorithm, which keeps a balance between
tracking accuracy and energy consumption. We evaluate our proposed algorithm on the widely used
benchmarks and metrics. The benchmark result of our tracking algorithm compared with the related
methods indicate the effectiveness of our region proposal framework on DCF trackers. At the end of
this section, several state-of-art trackers are used for comparisons to show the tracking accuracy as
well as the computation and memory efficiency of our algorithm.

A brief view of our tracking performance: Table 1 shows the computation efficiency of our
algorithm. With all of the trackers tested on the same platform, our tracker achieves top accuracy
performance and meanwhile ranks #3 in running speed. Moreover, Table 2 shows a comparison
between our method and state-of-the-art CNN-based trackers. Results represent that our algorithm
attains comparable tracking accuracy with a model size of only 157 KB. Low computing consumption
together with small memory requirement result in energy conservation of the whole procedure.

Table 1. Detail information about related trackers performance in OTB100. Boldface, italics and
underline represent 1st, 2nd and 3rd respectively.

Trackers Comparison Distance Precision Overlap Precision Mean fps

BACF Boundary Effects 81.8% 77.5% 35.3
SRDCF Boundary Effects 78.8% 73.5% 5.6
SAMF Feature Combination 74.9% 64.9% 18.3
Staple Feature Combination 77.6% 71.1% 67.2

SRDCFad Tracking Status Prediction 81.5% 76.1% 2.9
LMCF Tracking Status Prediction 78.2% 71.8% 85.2

RPCF our approach 84.9% 81.6% 39.3

Table 2. Summary of state-of-the-art trackers’ performance on VOT2016. Boldface, italics and underline
represent 1st, 2nd and 3rd respectively.

Tracker EAO Accuracy Parameter Size

SiamAN 0.235 0.539 14 MB
STRUCK 0.142 0.422 2 MB
SRDCF 0.247 0.532 1.4 MB
CCOT 0.331 0.535 329 MB

MDNet 0.257 0.543 31.6 MB
HCF 0.220 0.435 510 MB

TCNN 0.325 0.553 491 MB

RPCF 0.260 0.540 157 KB

4.1. Flexible Implementation for IoT devices

We implement and test our EdgeServer on Xilinx SoC platform Zynq-7000, with a dual-core
Cortex-A9 ARM at 1 GHz operation and an Artix7 FPGA with 512 KB on-chip memory. FPGA acts
as the Devices Listener, it fetches video collected by front-end cameras and crops only the interest
patches to ARM processor. Besides, it also stores the template model and current image on the on-chip
block RAM. Meanwhile, a Linux operating system is running on the ARM Cortex-A9 processor and it
works on the remaining jobs as an EdgeServer, including object tracking, IoT core gateway and the
Web interface. The gateway collects data from the cameras, sending the processed data to the cloud,
and also has a local web UI that runs by default on port 3000. On the web interface, you can access
to see the cameras images and tracking results. To process the data being received though Cloud
IoT Core, we use Firebase Cloud Function. Although we implement our EdgeServer on a Xilinx SoC
platform, as it is shown in Figure 6, the proposed tracking system in fact can be extended to many
edge platforms with ARM or X86 cores, e.g., Raspberry PI, STM32 series and so on. Since the overall
system requires only 157 KB memory and runs in real-time tracking performance on a dual-core CPU
at 1 GHz, the system can implement flexibly.

Sensors 2019, 19, 1987 16 of 23

Figure 6. Zynq-7000 platform as the EdgeServer.

As we have mentioned, it is especially important to understand the relationship between
algorithms and their respective energy consumption to efficiently utilize the IoT device’s power
resources. Based on the platform of our EdgeServer, we dedicate on designing an energy-conservation
tracking algorithm on dual-core processing unit and the implementation details about our algorithm
are then discussed in Section 4.1.

Details for Tracking Algorithm

Followed by [3], the 31 dimensional HOG feature of cell size 4× 4 is employed in our BACF
filter. The searching area is set to be 5 times of the target size in order to handle difficult tracking
situations, e.g., fast motion and occlusion. The regularization factor, lambda in Equation (9), is set
as 0.01. A scale variation process referred to [38] is implemented, with the number of scales and
size step setting to 3 and 1.02 respectively. Moreover, the ADMM optimization parameters follow
the setting in [8]. The number of iterations is set to 2 to make a balance between performance and
computation complexity. The penalty factor µ, is updated by Equation (15), where β = 10 and
µmax = 103. Color histogram of bin size 32 is computed for target and background areas. The object
histogram is particularly calculated among an area with 0.1 inner-padding of the original target size.
Furthermore, a normal Gaussian distribution of σ = 0.5 is employed to the likelihood map such that
center likelihood slightly stands out.

The discriminative filter for regression as well as the color histogram of the target and background
surroundings are both updated in order to catch the target deformation during tracking. However,
unlike the traditional strategy, that updates the model per frames, we propose a new update scheme
based on the proposed RCL criterion. Only the confidential tracking results are considered as reliable
training samples.As mentioned in Section 3.3, RCL is a combination of peak value, Peak-to-Sidelobe
ratio and the number of proposals. Through experiment, we observe that when Peak/Peak and
PSR/PSR drop to around 0.8 or there are more than 3 number of proposals, the tracking results
are usually unreliable. It usually happens on account of difficult tracking status, e.g., deformation,
motion blur or occlusion. Thus, we set the threshold of RCL to be 1.93 ≈ (0.8 + 0.8 + 1/3). Tracking
results with larger RCL will be used to update the BACF filter and the color histograms. Based on
the selective update scheme, the learning rates for BACF filter and color histograms are then set to
0.013 and 0.04 respectively.

4.2. Benchmarks and Metrics

Our method is firstly evaluated on the OTB2015 [39] benchmark, which contain 100 sequences.
The performance of all trackers is measured by two indicators, namely Overlap Precision(OP) and
Distance Precision(DP). OP metric measures the percentage of frames with IoU scores that are greater
than a threshold, where IoU is the intersection over union(IoU) of predicted and ground truth bounding

Sensors 2019, 19, 1987 17 of 23

boxes. We compare the trackers using threshold of 0.5 (IoU > 0.5). The area-under-the-curve (AUC)
of plot metric is also employed to rank the trackers. While, DP metric measures the percentage of
frames with the center distances of predicted and ground-truth bounding boxes less than a threshold.
The percentage at threshold of 20 pixels is reported for all trackers. In the experiment, we apply the
One-Pass-Evaluation(OPE) followed methodology in [39].

VOT2016 [40] is also applied to show the robustness of the trackers. VOT2016 dataset contains
60 challenging sequences and it provides a evaluation toolkit to measure the trackers, which will
re-initial the tracker to correct position once failure occurs. The expected average overlap is proposed
to rank the trackers, which combines the per-frame accuracy and failures.

4.3. Accuracy and Efficiency

We evaluate our tracker with 15 state-of-the-art trackers includes KCF [3], Struck [23], fDSST [41],
SRDCF [5], MDNet [42], CCOT [6], Siamese-fc [15], HCF [14], TCNN [43], LCT [44], Staple-ca [45],
PTAV [46], TOPGT [31], ECO-HC [47], MCCT-H [48] and SAMF [16] on two benchmarks OTB2015
and VOT2016.

The results on the two challenging benchmarks show the accuracy and energy efficiency of our
tracker, especially on OTB2015 dataset, our approach surpasses all of the state-of-the-art trackers for
real-time application with only 157 KB model parameters.

4.3.1. Comparison to Traditional Tracking Algorithms

We firstly demonstrate the effective of our region proposal framework on DCF tracker by
comparing the performance of our method with baseline tracker: BACF [8] and other related trackers:
SAMF [38], Staple [36], SRDCFad [49], SRDCF [5] and LMCF [33]. OTB2015 benchmark is used to
evaluate the trackers.

Figure 7 shows the results of both DP and OP plots on OTB2015 benchmark. Compared with
6 relevant trackers, our proposed tracker achieves top performance on both DP and OP plot of
evaluations, with 84.9% precision and 64.0% overlap respectively. The DP metric gains 3% increments
and OP metric gains 2.1% opposed to baseline tracker: BACF. Meanwhile, owing to the concise
architecture of combining edge and color cues on region proposals our approach runs at 39.3 fps,
even faster compared to the original 35 fps implementation of BACF. The SRDCF tracker, another
method to limit the boundary effect of correlation filter, achieves 78.8% precision and 59.8% overlap
respectively while only runs less than 10 fps. SAMF and Staple are two related trackers that combine the
edge and color cues to jointly track the target. Same feature cues are implemented in our framework,
however, on account of the region proposal methodology the combination of edge of color cues
becomes more robust and efficient. It can be seen from Figure 4 that compared to SAMF tracker, our
approach has 18% gain in AUC scores. With regards to Staple, our tracker also achieves an average of
11% improvement.

Table 1 is a summary of our approach and 6 other relevant trackers. Distance precision indicates
the percentage at threshold of 20 pixels error, high DP score means the trackers precisely follow
the ground-truth of the target. And then overlap precision measures the percentage with IoU score
greater than 0.5, higher OP score guarantees that the trackers predict the exact scale variation of the
target. The last column, mean fps, indicates the average running speed among all sequences in the
dataset. Since all of the listed algorithm is employed on the same processor, higher fps demonstrates the
computation efficiency of the algorithms. Although our tracker is not the fastest algorithm, our tracking
performance in DP and OP score both rank #1.

Sensors 2019, 19, 1987 18 of 23

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE

RPCF [0.849]

BACF [0.818]

SRDCFdecon [0.815]

SRDCF [0.788]

LMCF [0.782]

STAPLE [0.776]

SAMF [0.749]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c

e
ss

 r
a

te

Success plots of OPE

RPCF [0.640]

SRDCFdecon [0.619]

BACF [0.616]

SRDCF [0.598]

LMCF [0.576]

STAPLE [0.576]

SAMF [0.542]

Figure 7. OTB2015 results of related trackers.

4.3.2. Comparison to CNN-Based Tracking Methods

We compare our algorithm with CNN-based tracker on VOT2016 dataset. When evaluated
on VOT2016 dataset, all of the tracking parameters keep exactly the same as its implementation in
OTB2015 dataset in order to test the generalization of our proposed tracker. We evaluate the trackers in
accordance with accuracy, expected average overlap(EAO) and parameter size. The accuracy measures
the average overlap ratio between the predicted bounding box and the ground-truth. And EAO
combines the raw values of per-frame accuracies and failures, and then measures the expected no-reset
of a tracker run on a a short-term sequence [50]. The model parameter size measures the memory
space required by an algorithm. Higher the accuracy or EAO score are, better the tracker is. On the
contrary, fewer model parameters indicates less memory access and thus, the algorithm enjoys more
energy conservation. The tracking results are shown in Figure 8.

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Expected overlap scores for baseline

CCOT
TCNN
RPCF
MDNet_N
SRDCF
SiamAN
HCF
KCF
SAMF
DSST
STRUCK

Figure 8. Expected overlap scores in VOT2016 challenge for state-of-the-art trackers.

Different from OTB2015 dataset, VOT2016 challenge employs a scheme that tracker will be
re-initialized after each drift and count for one failure. Thus, VOT2016 dataset mainly focus on
short-term tracking. From Table 2 we notice that all top performance trackers like C-COT, TCNN,
MDNet and HCF employ deep-learning feature rather than hand-crafted one because of high
distinguish ability of deep feature. Moreover, in terms of our RPCF tracker, it introduces RCL to
self-detect the possible drift of tracker. And then tracker searches potential objects among region
proposals and stops update the target’s models. Even if tracking failure occurs, RPCF tracker may
correct itself in the following process. The schemes have less influence in VOT2016 evaluation.
Even though our tracker ranks #3 in EAO score, only behind two deep-feature trackers, C-COT

Sensors 2019, 19, 1987 19 of 23

and TCNN. However, C-COT and TCNN implement VGG-19 as backbone network to collect deep
feature, thus, the model parameter size of the trackers are more than 300 Megabytes. From Table 2
we can notice that comparing with state-of-the-art CNN-based trackers our RPCF tracker has the
comparable performance with only 157 KB parameter size. Fewer parameter size illustrates less
memory access when processing the algorithm, and thus, leads to low power consumption.

4.4. Tracking Performance under Difficult Conditions

Section 4.4 demonstrates the tracking performance of our algorithm under different tracking
status. Besides the overall performance of the trackers among all the sequences, there are manually
labeled attributes to all of the sequences, which indicate the difficult situations happen during the
tracking sequence. The performance on the associated attribute sequences shows the trackers capability
of handling the specific tracking situation. There are total of 11 attributes in OTB2015 dataset, namely
scale-variation, in-plain rotation, out of view, background cluttering, illumination variation, motion
blur, fast motion, deformation, out-of plain rotation, occlusion and low-resolution.

In Figure 9, trackers’ performance under different tracking conditions is shown. Owing to the
efficiency of proposed region proposal and multi-cue combination scheme, our tracker overwhelmingly
exceeds other trackers under difficult tracking conditions, such as out-of-plane rotation, occlusion,
deformation and motion blur. We can tell from Figure 9 that especially when faced with out-of-plane
rotation and deformation scenarios occur, the overlap precision gains at least 5% comparing to
other trackers. The reason is that although the hog feature of the object changes dramatically
under out-of-plane rotation and deformation, other features like color histogram and texture stay
unchanged. The region proposal scheme of our approach can generate several candidates and use
color histogram to re-locate the target. Together with the proposed RCL criterion to sense the tracking
status, RPCF outperforms other trackers under difficult tracking conditions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

e

Success plots of OPE - occlusion (49)

RPCF [0.604]
SRDCFdecon [0.582]
BACF [0.568]
SRDCF [0.558]
LMCF [0.548]
SAMF [0.543]
STAPLE [0.534]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE - out-of-plane rotation (63)

RPCF [0.624]
SRDCFdecon [0.580]
BACF [0.578]
LMCF [0.551]
SRDCF [0.550]
STAPLE [0.531]
SAMF [0.529]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE - deformation (44)

RPCF [0.627]
BACF [0.576]
SRDCFdecon [0.553]
STAPLE [0.546]
SRDCF [0.545]
LMCF [0.519]
SAMF [0.516]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

e

Success plots of OPE - motion blur (29)

RPCF [0.643]
SRDCFdecon [0.630]
SRDCF [0.596]
BACF [0.575]
LMCF [0.548]
STAPLE [0.537]
SAMF [0.534]

Figure 9. Different tracking conditions analysis of OTB2015.

5. Conclusions

In the paper, an object tracking system using IoT and edge computation is introduced.
The proposed system focuses on the edge network design and utilizes Google Cloud as the Cloud
IoT core. Specifically, EdgeServer is implemented on a Xilinx Zynq-7000 platform with dual-core

Sensors 2019, 19, 1987 20 of 23

ARM and FPGA Artix-7. The edge functions include capturing the images from front-end cameras
and tracking interested objects among image sequences, where the tracking algorithm plays a crucial
rule. Thus, we design an algorithm to keep a balance between the tracking accuracy and utility of
limited resources on edge devices. It achieves the state-of-the-art tracking accuracy, but meanwhile,
it requires low computing capacity and memory space. In general, the proposed algorithm can
proceed a 1080P image in less than 25 milliseconds on Zynq-7000 platform and rank #1 in accuracy
among traditional tracking methods. Besides, our method acquires comparable tracking precision
compared to the CNN-based trackers of model size beyond 300 Megabytes, while our parameter
size is only 157 kilobytes. It is three orders of magnitude less than CNN-based models. All in all,
the proposed accurate tracking system enjoys the lightweight computation and requires small memory
space therefore it has a promising prospect in IoT and edge computing applications. The algorithm is
flexibly deployed to many energy-efficient edge devices.

The proposed tracking algorithm plays as the core of our object tracking system. It maintains
an ingenious balance between the tracking performance, system latency and energy consumption.
Besides, the C++ implementation of the overall algorithm has the advantage of easy and rapid
deployment. The system is easily rearranged from Google Cloud to other IoT platforms such as
Microsoft Azure IoT or Amazon AWS Greengrass software merely by designing new interface programs.
In the smart city applications, plenty of front-end cameras have been deployed for surveillance,
Human–Computer Interaction and sports broadcasting. Our tracking system will improve the existing
systems by introducing tracking trajectory of the interested characters. In the future, self-driving cars
with the object tracking system will probably sense the movement of surrounding cars and respond
instantly to unusual moves.

Although the proposed tracking system achieves the state-of-the-art, we argue that there is still
limitation existing in our tracking system. Specifically, it lies in improving tracking robustness for
long-time object tracking. An issue exists that a tracker should keep stable when occlusion and fast
motion occur; on the contrary, when faced with deformation and rotation it should update rapidly
to adapt the appearance changes. However, a reliable method to predict tracking status and its
corresponding updating scheme still needs further study.

Author Contributions: Conceptualization, H.Z. and Z.Z.; Methodology, Z.Z.; Software, Z.Z. and L.Z.;
Validation, Z.Z., Q.K. and Y.Y.; Formal Analysis, D.S.; Investigation, H.Z.; Resources, D.S.; Data Curation, Q.K.;
Writing—Original Draft Preparation, Z.Z.; Writing—Review and Editing, D.S.; Visualization, L.Z.; Supervision,
H.Z.; Project Administration, H.Z. and Z.Z.; Funding Acquisition, H.Z.

Funding: This research was funded by National Key Research and Development Program of China, grant number
2016YFE0108100. and National Natural Science Foundation of China, grant number 61872019.

Conflicts of Interest: The authors declare there is no conflicts of interest regarding the publication of this paper.

References

1. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation
filters. In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
San Francisco, CA, USA, 13–18 June 2010; pp. 2544–2550.

2. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the circulant structure of tracking-by-detection
with kernels. In Proceedings of the European Conference on Computer Vision, Florence, Italy,
7–13 October 2012; pp. 702–715.

3. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583–596. [CrossRef] [PubMed]

4. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA,
20–25 June 2005; Volume 1, pp. 886–893.

http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://www.ncbi.nlm.nih.gov/pubmed/26353263

Sensors 2019, 19, 1987 21 of 23

5. Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Learning spatially regularized correlation filters for
visual tracking. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
7–13 December 2015; pp. 4310–4318.

6. Danelljan, M.; Robinson, A.; Khan, F.S.; Felsberg, M. Beyond correlation filters: Learning continuous
convolution operators for visual tracking. In Proceedings of the European Conference on Computer Vision,
Amsterdam, The Netherlands, 8–16 October 2016; pp. 472–488.

7. Kiani Galoogahi, H.; Sim, T.; Lucey, S. Correlation filters with limited boundaries. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4630–4638.

8. Galoogahi, H.K.; Fagg, A.; Lucey, S. Learning Background-Aware Correlation Filters for Visual Tracking.
In Proceedings of the ICCV, Venice, Italy, 22–29 October 2017; pp. 1144–1152.

9. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [CrossRef]

10. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1440–1448.

11. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

12. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

13. Van De Weijer, J.; Schmid, C.; Verbeek, J.; Larlus, D. Learning color names for real-world applications.
IEEE Trans. Image Process. 2009, 18, 1512–1523. [CrossRef] [PubMed]

14. Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Hierarchical convolutional features for visual
tracking. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
7–13 December 2015; pp. 3074–3082.

15. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks
for object tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam,
The Netherlands, 8–16 October 2016; pp. 850–865.

16. Valmadre, J.; Bertinetto, L.; Henriques, J.; Vedaldi, A.; Torr, P.H. End-to-end representation learning for
correlation filter based tracking. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5000–5008.

17. Hung, M. Leading the IoT. Gartner Insights on How to Lead in a Connected World. 2017. Available online:
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf (accessed on 29 August 2017).

18. Mishra, S.K.; Puthal, D.; Sahoo, B.; Sharma, S.; Xue, Z.; Zomaya, A.Y. Energy-Efficient Deployment of Edge
Dataenters for Mobile Clouds in Sustainable IoT. IEEE Access 2018, 6, 56587–56597. [CrossRef]

19. Shit, R.C.; Sharma, S.; Puthal, D.; Zomaya, A.Y. Location of Things (LoT): A review and taxonomy of sensors
localization in IoT infrastructure. IEEE Commun. Surv. Tutor. 2018, 20, 2028–2061. [CrossRef]

20. Luo, W.; Sun, P.; Zhong, F.; Liu, W.; Zhang, T.; Wang, Y. End-to-end Active Object Tracking and Its Real-world
Deployment via Reinforcement Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2019. [CrossRef] [PubMed]

21. Feng,D.; Jiang, C.; Lim, G.; Cimini, L.; Feng, G.; Li, G. A survey of energy-efficient wireless communications.
IEEE Commun. Surv. Tutor. 2013, 15, 167–178. [CrossRef]

22. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained
quantization and huffman coding. arXiv 2015, arXiv:1510.00149.

23. Hare, S.; Golodetz, S.; Saffari, A.; Vineet, V.; Cheng, M.M.; Hicks, S.L.; Torr, P.H. Struck: Structured output
tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2096–2109. [CrossRef] [PubMed]

24. Danelljan, M. Learning Convolution Operators for Visual Tracking; Linköping University Electronic Press:
Linköping, Sweden, 2018; Volume 1926.

25. Babenko, B.; Yang, M.H.; Belongie, S. Robust object tracking with online multiple instance learning.
IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1619–1632. [CrossRef] [PubMed]

26. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J.
Comput. Vis. 2013, 104, 154–171. [CrossRef]

27. Arbeláez, P.; Pont-Tuset, J.; Barron, J.T.; Marques, F.; Malik, J. Multiscale combinatorial grouping.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
24–27 June 2014; pp. 328–335.

http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1109/TIP.2009.2019809
http://www.ncbi.nlm.nih.gov/pubmed/19482579
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
http://dx.doi.org/10.1109/ACCESS.2018.2872722
http://dx.doi.org/10.1109/COMST.2018.2798591
http://dx.doi.org/10.1109/TPAMI.2019.2899570
http://www.ncbi.nlm.nih.gov/pubmed/30762532
http://dx.doi.org/10.1109/SURV.2012.020212.00049
http://dx.doi.org/10.1109/TPAMI.2015.2509974
http://www.ncbi.nlm.nih.gov/pubmed/26700968
http://dx.doi.org/10.1109/TPAMI.2010.226
http://www.ncbi.nlm.nih.gov/pubmed/21173445
http://dx.doi.org/10.1007/s11263-013-0620-5

Sensors 2019, 19, 1987 22 of 23

28. Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In Proceedings of the European
Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 391–405.

29. Cheng, M.M.; Zhang, Z.; Lin, W.Y.; Torr, P. BING: Binarized normed gradients for objectness estimation at
300fps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, 23–28 June 2014; pp. 3286–3293.

30. Zhu, G.; Porikli, F.; Li, H. Beyond local search: Tracking objects everywhere with instance-specific proposals.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 943–951.

31. Guo, G.; Wang, H.; Yan, Y.; Liao, H.Y.M.; Li, B. A New Target-specific Object Proposal Generation Method
for Visual Tracking. arXiv 2018, arXiv:1803.10098.

32. Guan, M.; Wen, C.; Shan, M.; Ng, C.L.; Zou, Y. Real-time event-triggered object tracking in the presence of
model drift and occlusion. IEEE Trans. Ind. Electron. 2019, 66, 2054–2065. [CrossRef]

33. Wang, M.; Liu, Y.; Huang, Z. Large margin object tracking with circulant feature maps. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 21–26.

34. Danelljan, M.; Shahbaz Khan, F.; Felsberg, M.; Van de Weijer, J. Adaptive color attributes for real-time visual
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, 23–28 June 2014; pp. 1090–1097.

35. Possegger, H.; Mauthner, T.; Bischof, H. In defense of color-based model-free tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 2113–2120.

36. Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.; Torr, P.H. Staple: Complementary learners for real-time
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 27–30 June 2016; pp. 1401–1409.

37. Kuai, Y.; Wen, G.; Li, D. Learning adaptively windowed correlation filters for robust tracking. J. Vis. Commun.
Image Represent. 2018, 51, 104–111. [CrossRef]

38. Li, Y.; Zhu, J. A scale adaptive kernel correlation filter tracker with feature integration. In Proceedings of the
European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 254–265.

39. Wu, Y.; Lim, J.; Yang, M.H. Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015,
37, 1834–1848. [CrossRef] [PubMed]

40. Kristan, M.; Matas, J.; Leonardis, A.; Vojíř, T.; Pflugfelder, R.; Fernandez, G.; Nebehay, G.; Porikli, F.;
Čehovin, L. A novel performance evaluation methodology for single-target trackers. IEEE Trans. Pattern
Anal. Mach. Intell. 2016, 38, 2137–2155. [CrossRef] [PubMed]

41. Danelljan, M.; Häger, G.; Khan, F.; Felsberg, M. Accurate scale estimation for robust visual tracking.
In Proceedings of the British Machine Vision Conference, Nottingham, UK, 1–5 September 2014; BMVA
Press: Nottingham, UK, 2014.

42. Nam, H.; Han, B. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 4293–4302.

43. Kang, K.; Li, H.; Yan, J.; Zeng, X.; Yang, B.; Xiao, T.; Zhang, C.; Wang, Z.; Wang, R.; Wang, X.; et al. T-cnn:
Tubelets with convolutional neural networks for object detection from videos. IEEE Trans. Circuits Syst.
Video Technol. 2018, 28, 2896–2907. [CrossRef]

44. Ma, C.; Yang, X.; Zhang, C.; Yang, M.H. Long-term correlation tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5388–5396.

45. Mueller, M.; Smith, N.; Ghanem, B. Context-aware correlation filter tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
Volume 2, p. 6.

46. Fan, H.; Ling, H. Parallel tracking and verifying: A framework for real-time and high accuracy visual tracking.
In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 5486–5494.

47. Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. ECO: Efficient Convolution Operators for Tracking.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; Volume 1, p. 3.

http://dx.doi.org/10.1109/TIE.2018.2835390
http://dx.doi.org/10.1016/j.jvcir.2018.01.008
http://dx.doi.org/10.1109/TPAMI.2014.2388226
http://www.ncbi.nlm.nih.gov/pubmed/26353130
http://dx.doi.org/10.1109/TPAMI.2016.2516982
http://www.ncbi.nlm.nih.gov/pubmed/26766217
http://dx.doi.org/10.1109/TCSVT.2017.2736553

Sensors 2019, 19, 1987 23 of 23

48. Wang, N.; Zhou, W.; Tian, Q.; Hong, R.; Wang, M.; Li, H. Multi-Cue Correlation Filters for Robust Visual
Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake,
UT, USA, 18–23 June 2018; pp. 4844–4853.

49. Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Adaptive decontamination of the training set:
A unified formulation for discriminative visual tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1430–1438.

50. Kristan, M.; Matas, J.; Leonardis, A.; Felsberg, M.; Cehovin, L.; Fernandez, G.; Vojir, T.; Hager, G.; Nebehay, G.;
Pflugfelder, R. The visual object tracking vot2015 challenge results. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, Santiago, Chile, 7–13 December 2015; pp. 1–23.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivations
	Contributions

	Related Work
	Object Tracking System in IoT
	Introduction to the DCF Tracker
	Tracking with Region Proposals

	Tracking System in IoT and Edge Computing Context
	Baseline Tracker: BACF
	Subproblem
	Subproblem h
	Lagrangian Multiplier Update

	Region Proposal Method
	Tracking Status Detection
	Jointly Detection Using Multiple Cues

	Experiments and Results
	Flexible Implementation for IoT devices
	Benchmarks and Metrics
	Accuracy and Efficiency
	Comparison to Traditional Tracking Algorithms
	Comparison to CNN-Based Tracking Methods

	Tracking Performance under Difficult Conditions

	Conclusions
	References

