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Summary. In rats respiratory tract infections due to Sendai 
virus and coronavirus usually are transient, but they can 
have long-lasting consequences when accompanied by My- 
coplasma pulmonis infections. Morphological alterations in 
the tracheal epithelium and a potentiation of the inflamma- 
tory response evoked by sensory nerve stimulation ("neu- 
rogenic inflammation ") are evident nine weeks after the in- 
fections begin, but the extent to which these changes are 
present at earlier times is not known. In the present study 
we characterized these abnormalities in the epithelium and 
determined the extent to which they are present 3 and 6 
weeks after the infections begin. We also determined the 
magnitude of the potentiation of neurogenic inflammation 
at these times, whether the potentiation can be reversed 
by glucocorticoids, and whether a proliferation of blood 
vessels contributes to the abnormally large amount of plas- 
ma extravasation associated with this potentiation. To this 
end, we studied Long-Evans rats that acquired these viral 
and mycoplasmal infections from other rats. We found that 
the tracheal epithelium of the infected rats had ten times 
as many Alcian blue-PAS positive mucous cells as did that 
of pathogen-free rats; but it contained none of the serous 
cells typical of pathogen-free rats, so the total number of  
secretory cells was not increased. In addition, the epithelium 
of the infected rats had three times the number of ciliated 
cells and had only a third of the number of globule leuko- 
cytes. In response to an injection of capsaicin (150 btg/kg 
i.v.), the tracheas of the infected rats developed an abnor- 
mally large amount of extravasation of two tracers, Evans 
blue dye and Monastral blue pigment, and had an abnor- 
mally large number of Monastral blue-labeled venules, par- 
ticularly in regions of mucosa overlying the cartilaginous 
rings. This abnormally large amount of extravasation was 
blocked by dexamethasone (1 rag/day i.p. for 5 days). We 
conclude that M. pulmonis infections, exacerbated at the 
outset by viral infections, result within three weeks in the 
transformation of epithelial serous cells into mucous cells, 
the proliferation of ciliated cells, and the depletion of glob- 
ule leukocytes. They also cause a proliferation of mediator- 
sensitive blood vessels in the airway mucosa, which is likely 
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to contribute to the potentiation of neurogenic inflamma- 
tion that accompanies these infections. 
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Introduction 

When pathogen-free rats are inoculated intranasally with 
Sendai virus (Parainfluenza virus type 1) or coronavirus 
(Sialodacryoadenitis virus/Rat Coronavirus), the ensuing 
respiratory tract infection produces an acute inflammatory 
response characterized by scattered regions of epithelial ne- 
crosis and the influx of neutrophils and lymphocytes into 
the airway mucosa (Jacoby et al. 1979; Carthew and Spar- 
row 1980; Castleman 1983). These changes reach their peak 
within 3-7 days and are largely resolved within two weeks. 
However, if the viral infections occur in the presence of 
infections caused by Mycoplasma pulmonis, the resulting 
pathological changes in the airways are much more severe 
than those caused by any of the organisms independently; 
and chronic airway disease develops (Schoeb et al. 1985; 
Schoeb and Lindsey 1987). 

Recently, it was discovered that the tracheal mucosa 
of rats with combined viral and mycoplasmal infections 
not only exhibits chronic inflammatory changes but also 
is unusually susceptible to "'neurogenic inflammation" 
(McDonald 1988a). Because neurogenic inflammation is 
produced by substances released from activated sensory ax- 
ons (Jancso et al. 1967), this susceptibility indicates that 
the infections can increase the sensitivity of sensory nerves 
or augment the tissue response to nerve stimulation. 

In evidence of this susceptibility, the activation of senso- 
ry axons by electrical stimulation of the vagus nerve or 
by an injection of capsaicin, the pungent substance of red 
peppers, evokes unusually severe neurogenic inflammation 
in the trachea. Specifically, in rats studied nine weeks after 
the infections begin, nerve stimulation causes abnormally 
large amounts of plasma extravasation from blood venules 
in the tracheal mucosa (McDonald 1988a). 

In addition, the tracheal epithelium of these rats with 
viral and mycoplasmal infections shows distinctive morpho- 
logical changes. In particular, the epithelium has an abnor- 
mally large number of goblet cells and ciliated cells and 
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a diminished number of  globule leukocytes (McDonald 
1988a). However, the magnitude of these changes has not 
been determined, and it is unknown to what extent the 
changes are present at times earlier than nine weeks and 
why rats with these infections are so susceptible to neu- 
rogenic inflammation. 

The present study was done to address three issues. 
First, we made a histochemical and electron microscopic 
study to quantify the morphological changes present in the 
tracheal epithelium 3 or 6 weeks after the onset of respirato- 
ry tract infections due to Sendal virus, coronavirus, and 
M. pulmonis. In particular, we determined whether the large 
number of goblet cells adds to the normal complement of 
epithelial serous cells or whether the goblet cells replace 
the other secretory cells with no change in the totaI number 
of secretory cells. We also determined the magnitude of 
the change in the numbers of ciliated cells and globule leuk- 
ocytes. Three weeks was chosen as the earliest time to cir- 
cumvent the acute inflammatory changes present during 
the first week or two after the onset of the viral infections. 

Second, we determined the extent to which neurogenic 
inflammation in the trachea is potentiated 3 or 6 weeks 
after infection and whether this potentiation is reversed by 
glucocorticoids. The magnitude of the neurogenic inflam- 
matory response was inferred from the amount of plasma 
extravasation evoked by a standardized dose of capsaicin, 
a drug that is known to induce neurogenic inflammation 
and thereby to increase vascular permeability (Gamse et al. 
1980; Saria et al. 1983; Lundberg et al. 1984; Persson et al. 
1986; McDonald 1988 a). The amount of plasma extravasa- 
tion was quantified with Evans blue dye (Saria and Lund- 
berg 1983); it was also measured with Monastral blue pig- 
ment, which - unlike Evans blue - does not cross the en- 
dothelium of intact blood vessels (Joris et al. 1982; McDon- 
ald 1988b). This property of Monastral blue enabled us 
to verify that the extravasation of the tracers was due to 
an increase in vascular permeability and not to hemody- 
namic changes evoked by the capsaicin (Makara et al. 1967; 
Mitchell et al. 1984). The effect of glucocorticoids on this 
system was examined because these drugs are known to 
inhibit the increase in vascular permeability produced by 
chemical mediators and to ameliorate inflammatory dis- 
eases of  the airways (Svensjo and Roempke 1985; Anders- 
son and Persson 1988). 

Third, we explored the possibility that the large amount 
of plasma extravasation evoked in the infected rats by sen- 
sory nerve stimulation is in part due to a proliferation of 
mucosal blood vessels sensitive to sensory nerve mediators. 
To examine this issue, our strategy was to produce neu- 
rogenic inflammation in the tracheas of pathogen-free and 
infected rats with an injection of capsaicin and then to com- 
pare the numbers of Monastral blue-labeled mucosal blood 
vessels that were present in two groups. 

Materials and methods 

Initial treatment of  animals 

Sixty-one female Long-Evans rats were used in three experi- 
ments: 29 pathogen-free rats were obtained from Charles 
River Breeding Laboratories (Portage, MI), and 32 pre- 
viously infected rats were purchased from Simonsen Labo- 
ratories (Gilroy, CA). 

In the first experiment, pathogen-free rats were housed 

with infected rats for 6 weeks beginning at six weeks of 
age. In the second experiment, the rats lived together for 
3 weeks beginning at nine weeks of age. In both of these 
experiments, there were four groups with 6-7 rats in each 
group: (1) newly obtained pathogen-free rats, (2) pathogen- 
free rats that acquired infections during the experiment by 
living with infected rats, (3) rats that were infected at the 
outset and were newly obtained, and (4) rats that were in- 
fected at the outset and were housed with pathogen-free 
rats. During the period of exposure, the pathogen-free rats 
and the infected rats were caged together (l or 2 of each 
per cage) in a room with other rats infected with Sendai 
virus, coronavirus and M. pulmonis. The newly obtained 
rats were studied 1-3 days after their arrival from the ven- 
dor. At the end of the experiments, the ra~s were 12 weeks 
of age and had an average body weight of 244 +_ 3 g (S.E.). 

In the third experiment, eight infected rats were housed 
with the other infected rats for 10 weeks beginning at ten 
weeks of age. During the last five days, these rats were 
given 0.125 ml intraperitoneal injections of dexamethasone 
sodium phosphate (0.5 mg) or 0.9% NaC1 twice daily. The 
dexamethasone-treated rats weighed 243_+5 g and their 
controls weighed 275 + 6 g at the end of the experiment. 

At the end of the experiments, all rats were anesthetized 
with sodium methohexital (75 mg/kg) and had one milliliter 
of blood withdrawn for measurements of antibody titers 
to Sendai virus, coronavirus, and M.pulmonis, which were 
performed by Microbiological Associates Inc. (Bethesda, 
MD) using enzyme-linked immunosorbent assays. The rats 
were then injected with one of the two tracers. 

Preparation of  tissues and measurement of  tracers 

Studies using Evans blue as the tracer. Four to five rats 
from each group of the first two experiments and all rats 
in the third experiment received an injection of Evans blue 
dye (30 mg/kg i.v. over 5 sec) dissolved in 0.9% NaC1. Ap- 
proximately fifteen seconds later, the rats received an injec- 
tion of capsaicin (150 Ixg/kg i.v. over 2-2.5 min; Sigma 
Chemical Company, St. Louis, MO), in a vehicle having 
a final concentration of 0.9% NaC1, 1% ethanol and 0.5% 
Tween 80, or an injection of the vehicle used for dissolving 
the capsaicin (1 ml/kg i.v. over 2-2.5 min). Five minutes 
after the dye injection, the rats were perfused through the 
heart with 1% paraformaldehyde in 0.05 M citrate buffer 
(pH 3.5) to wash out the intravascular dye (Brokaw and 
McDonald 1988). The rostral-most four cartilaginous rings 
were removed from each trachea, fixed with 3 % glutaralde- 
hyde in 75 mM sodium cacodylate buffer (pH 7.1), and 
embedded in glycol methacrylate. The remaining portion 
of each trachea was cut open lengthwise along the ventral 
midline, transected at the carina, removed, and fixed with 
buffered paraformaldehyde overnight at 4 ~ C. Thereafter, 
the tracheas were blotted between pieces of bibulous paper 
and weighed. 

The Evans blue was extracted by incubating each tra- 
chea in two milliliters of formamide at 60 ~ C for 16-24 h. 
The optical density of the extracted dye in formamide, mea- 
sured with a spectrophotometer (Zeiss PMQ II) at a wave- 
length of 620 nm, was used to calculate the concentration 
of dye (Saria and Lundberg 1983). 

Studies using Monastral blue as the tracer. One to three 
rats from each of the four groups in the first two experi- 
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ments received an injection of Monastral blue (30 mg/kg 
i.v. over 5 sec; Sigma Chemical Company). Immediately 
thereafter, capsaicin or its vehicle was injected as in the 
other experiments. Approximately five minutes after the 
Monastral blue injection, the rats were perfused through 
the heart with two glutaraldehyde-containing fixatives for 
five minutes each (McDonald 1988 b). The trachea was re- 
moved, and a piece of each trachea consisting of the four 
rostral-most cartilaginous rings was embedded in glycol 
methacrylate. The remainder of  each trachea was prepared 
as a whole mount after 1 by 3 mm specimens of mucosa 
were removed from intercartilaginous regions of the caudal 
trachea, processed for electron microscopy, and embedded 
in epoxy resin (McDonald 1988b). Sections 0.5 gm in thick- 
ness from these specimens were stained with toluidine blue 
for light microscopy, and sections approximately 50 nm in 
thickness were mounted on single slot specimen grids and 
stained with lead citrate for electron microscopy. 

The tracheal whole mounts were used to estimate the 
number of blood vessels responsive to capsaicin-treatment. 
For this purpose, the area density of Monastral blue-labeled 
vessels in the tracheal mucosa of capsaicin-treated rats from 
the 6 week experiment (3 pathogen-free and 3 infected) was 
measured by stereological point counting. In each whole 
mount, point counts were made of ten regions of mucosa 
overlying cartilaginous ring Number 5 through 14 and ten 
regions between these rings. Each region measured 333 by 
600 lam. The counts were made by superimposing a com- 
puter-generated multipurpose test grid (d= 25 mm; Weibel 
1979) on a televised image of the specimens magnified 460 x 
with a stereomicroscope. Measurements were expressed as 
the percentage of mucosal surface area occupied by labeled 
blood vessels. 

Histochemical staining 

Tracheal cross-sections 3 gm in thickness were cut from 
specimens embedded in glycol methacrylate (JB-4 embed- 
ding kit, Polysciences Incorporated, Warrington, PA) and 
stained by one of three methods: (1) Sections used for mea- 
suing the thickness of the epithelium were stained with 0.5 % 
toluidine blue for 1 min. (2) Sections used to identify glyco- 
protein-rich secretory ceils by the Aleian blue-periodic acid 
Schiff (PAS) reaction were stained with 0.5% Alcian blue 
in 3% acetic acid (pH 2.5) for 30 min, washed with distilled 
water, treated with 1% periodic acid for 5 min, and stained 
in Schiff reagent for three minutes (Lamb and Reid 1969 b; 
Bancroft and Stevens 1982), By this method, secretory gran- 
ules containing abundant neutral glycoproteins are stained 
magenta and those containing abundant acidic glycopro- 
teins are stained blue-purple. (3) To distinguish globule 
leukocytes (Kent 1966) from epithelial secretory cells, the 
naphthol AS-D chloroacetate esterase (chymase) activity of 
globule leukocytes was stained in a medium containing 
naphthol AS-D chloroacetate (Sigma Chemical Company) 
as the substrate and hexazotized pararosanilin (Sigma 
Chemical Company) as the chromogen at 30 ~ C for 2-3 h 
(Gomori 1953; Beckstead et al. 1981). Unlike globule leuk- 
ocytes which are stained orange-red, epithelial secretory 
cells are unstained by this reaction. 

Morphometric analysis of the epithelium 

The thickness of the epithelium in toluidine blue-stained 
methacrylate sections was measured with a calibrated eye- 

piece at a magnification of 400 x .  In a cross-section from 
the rostral portion of each trachea, the thinnest and thickest 
regions of anterior, posterior and two lateral parts of the 
epithelium were measured, and the mean of these measure- 
ments was used as the epithelial thickness. 

The numbers and proportions of various types of epithelial 
cells in sections of tracheal mucosa from three pathogen- 
free rats and three infected rats were determined by electron 
microscopy. All nucleated profiles of secretory cells, ciliated 
cells, and other types of epithelial cells in contact with the 
airway lumen were counted. Basal cells were excluded from 
these counts. The number of cells per millimeter of epithelial 
surface and the average width of epithelial cells were calcu- 
lated from the total number of cells and the length of epithe- 
lium (1.1-1.7 mm). 

The number of glycoprotein-rich epithelial secretory cells 
visible in the Alcian blue-PAS stained sections of tracheas 
was determined in eight vehicle-treated rats (4 pathogen- 
free and 4 infected). All epithelial cell profiles that con- 
tained magenta or blue-purple granules were counted in 
a cross-section of each trachea (luminal circumference= 
7.~8.3 mm). The counts were expressed as the number of 
secretory cells per millimeter of  epithelium (Lamb and Reid 
1968, 1969a; Jones et al. 1973; Greig et al. 1980). 

The diameters of vesicle profiles in secretory cells from 
pathogen-free rats and infected rats (10 cell profiles from 
each group) were measured with a digitizer on electron mi- 
crographs having a magnification of 35000 x .  The number 
of vesicle profiles per secretory cell profile was determined 
in electron micrographs of cells that were cut in the plane 
of their nucleus and were in contact with the airway lumen. 

The numerical density of globule leukocytes in the tra- 
cheal epithelium, expressed as the number of these cells 
per cubic millimeter of epithelium, was determined in tissue 
sections of  five pathogen-free rats and five infected rats. 
Using the method described by Tam et al. (1988), we deter- 
mined the numerical density from the number of profiles 
of globule leukocytes in chloroacetate esterase-stained sec- 
tions, the mean caliper diameter of the cell profiles 
(10.0 gm) computed from the major and minor axes of 200 
cell profiles, and the 3 gm section thickness. The actual 
number of globule leukocytes present was found to be 
24.6% of the number of profiles of  these cells in the tissue 
sections. The volume of epithelium in the sections was cal- 
culated from the thickness of  the epithelium, the luminal 
circumference of the tracheas, and the section thickness, 

Statistical analysis 

Average values are expressed as the mean + standard error 
of the mean (S.E.). The significance of differences between 
groups of data was evaluated by analysis of variance or 
Student's t test. Differences having p values less than 0.05 
were considered statistically significant. 

Results 

Antibody titers 

The pathogen-free rats did not have significant antibody 
titers to Sendai virus, coronavirus, or M. pulmonis in their 
blood. However, the rats that acquired infections during 
the experiment had significant titers to all three organisms 
after 3 weeks of exposure, and had even higher titers after 
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Fig. la ,  b. Values are means _+ S.E. (N=5-13) of serologica] antibody titers, a Pathogen-free rats and rats that acquired infections. 
Figure shows the titers for pathogen-free rats (0 weeks of exposure) and rats that acquired infections during 3 or 6 weeks of exposure 
to infected rats. b Rats infected at the outset. Figure shows the titers for rats that were infected at the outset and either were studied 
upon arrival from the vendor (0 weeks of exposure) or lived with the other rats for 3 or 6 weeks. Antibody titers were measured 
with enzyme-linked immunosorbent assays, which were done by Microbiological Associates Inc., Bethesda, MD, and are expressed 
in assay units. Significant values exceed 0.17 assay units. * Significantly different from corresponding values for pathogen-free rats 
as determined by analysis of variance (p < 0.01) 

6 weeks of  exposure (Fig. 1 a). Rats  that  were infected at  
the outset  had  significant titers to coronavirus  and M. pul- 
monis at the beginning of  the experiment;  at  the end of  
the 3 and 6 week experiments,  they also had high titers 
to Sendai virus (Fig. 1 b). All  of  the dexamethasone- t rea ted  
rats and their infected controls  had high titers to the three 
organisms. 

Changes in the epithelium 

Secretory cells in vehicle-treated rats. The number  of  secre- 
tory  cells that  were visible in the tracheal epithelium of  
pathogen-free rats varied with the technique used to identify 
them. In tracheas that  were fixed initially with paraformal -  
dehyde, embedded in methacrylate ,  and stained with Alcian 
blue-PAS, most  of  the non-cil iated cells had  a foamy cyto- 
plasm with a few faint  p ink granules or no discernible gran- 
ules (Fig. 2). Only four cells per  mil l imeter of  epithelium 
had bri l l iant  magenta  granules and none had blue-purple 
granules (Table 1). However,  when the tracheas were fixed 
with glutara ldehyde a n d  osmium, embedded in epoxy resin, 
and stained with toluidine blue, many  o f  the non-cil iated 
epithelial cells contained blue-purple granules (Fig. 6). In 
sections viewed with the electron microscope,  64% of  the 
nucleated epithelial cells in contact  with the airway lumen 

were found to contain  secretory granules (Table 1). Thus, 
there was a 20-fold difference between the number  of  secre- 
tory cells identified by electron microscopy and the number  
made visible by Alcian blue-PAS staining. 

Epithelial  secretory cells of  the pathogen-free rats had 
a cuboidal  or low columnar  shape, a dense cytoplasm, and 
a nucleus with an irregular contour  and prominent  clumps 
of  he terochromat in  (Figs. 8, 10). An  average of  13 granules 
were present in each cell profile ( r a n g e = 3 - 2 5 ;  Table 1). 
The secretory granules had an average diameter  of  663 nm 
(Table 1) and contained a homogeneous core of  modera te  
electron density (Fig. 11). Some granules had a rim of  mate-  
rial that  was less dense (Fig. 11) or more dense (Figs. 14, 
15) than the remainder  o f  the core. 

The secretory cells in the epithelium of  rats that acquired 
infections during the 3 week experiment appeared  identical 
to those of  rats in the 6 week experiment and those of  
rats that  were infected at  the outset, but  they were conspi- 
cuously different from the secretory cells jus t  described. 
The cells were tall and slender, and their abundan t  granules 
were visualized by all of  the staining methods.  In sections 
stained with Alcian blue-PAS, the granules were bril l iant 
magenta  or blue-purple (Fig. 3). Cells containing magenta  
or blue-purple granules were ten times as numerous in the 
infected rats as in the pathogen-free rats (Table 1). In epoxy 

Figs. 2--5. Light micrographs of methacrylate sections of rat tracheal mucosa stained with Alcian blue-PAS. The rats received an injection 
of Monastral blue followed by an injection of vehicle or capsaicin (150 gg/kg i.v.), and five minutes later were fixed by perfusion. 
The epithelium of pathogen-free rats is shown in 2 (vehicle) and 4 (capsaicin). Some of the non-ciliated epithelial cells contain pink 
granules (arrows), but most have no discernible granules. The arrow head in 2 marks a globule leukocyte. Capsaiein treatment caused 
a slight widening of the spaces between epithelial cells and resulted in a layer of pink mucus over the epithelium (4). The epithelium 
of infected rats is shown in 3 (vehicle, rat infected at outset) and 5 (capsaicin, rat acquired infections during the 6 week experiment). 
The secretory cells have a mixture of magenta and blue-purple granules, and one cell in 3 (arrow) has predominantly blue-purple 
granules. Following capsaicin treatment, the number of stained granules is reduced and most of those remaining are in the apical 
portion of the cells (5, arrow). Magnification indicated by scale bar in Fig. 7 

Figs. 6, 7. Light mierographs of toluidine blue-stained epoxy sections of tracheal mucosa from vehicle-treated rats. 6 shows the relatively 
thin epithelium of a pathogen-free rat, consisting mainly of cuboidal and low columnar cells. The ciliated cells are outnumbered by 
non-ciliated cells, most of which contain blue-back granules typical of serous ceils (arrow). 7 shows the epithelium of an infected 
rat, which contains tall columnar cells and is twice as thick as that of the pathogen-free rat. The epithelium has abundant ciliated 
cells and contains several mucous cells with pale purple granules (arrow). Scale bar for 2-7 = i0 ~tm 
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Table 1. Comparison of epithelial cells in the tracheas of pathogen-free rats and infected rats 

Type of epithelial ceils Pathogen-free rats Infected rats 

Proportion Number of Vesicles Proportion Number of Vesicles 
of cells cell profiles in secretory cells of cells cell profiles in secretory cells 
(%) per mm (%) per mm 

Determined by Alcian blue-PA S staining: 

Secretory cells - 4•  - - 39_+5* - 
Percent of secretory cells 5 • 0.4 % - 68 + 9 % * - - 
visible by electron microscopy 

Determined by electron microscopy: 

Secretory cells 64_+5% 82_+6 30_+2%* 56__5* - 
Diameter of vesicle profiles (nm) - - 663 _+ 16 (N= 127) - 1035 • 26 * (N= 165) 
Number of vesicle profiles per cell - 13_+ 1 (N= 25) - 33_+ 4* (N= 16) 

Ciliated cells 33_+5% 42_+9 68_+2%* 127-+2" 
Other types of cells 3_+0.6% 4_+1 2_+0.4% 4__+i 
All epithelial cells in contact 100% 128_+12 - 100% 187• - 
with the airway lumen 

Values are means • S.E. of data from pathogen-free rats and from infected rats that acquired infections during the 6 week experiment 
or were infected at the outset. Electron microscopic counts were made on mucosal specimens from 3 tracheas in each group. Only 
nucleated profiles of epithelial cells in contact with the airway lumen were counted. "Other types of cells" include epithelial cells 
that had neither cilia nor secretory granules. Light microscopic counts were made of secretory cells with magenta or blue-purple granules 
in Alcian blue-PAS stained sections of tracheas of 4 vehicle-treated rats in each group. 
* Significantly different from corresponding values for pathogen-free rats, as determined by Student's t test (p < 0.05) 

sections stained with toluidine blue, the granules were pale 
blue or  violet, contrast ing with the dark ly  stained cytoplasm 
(Fig. 7). 

By electron microscopy the cytoplasmic density and nu- 
clear morpho logy  of  the secretory cells in infected rats ap- 
peared similar to that  o f  pathogen-free rats, but  the gran- 
ules were very different (Figs. 9, 12). In the infected rats, 
these cells contained an average of  33 granules per nucleated 
cell profi le (range = 10-74), which was 2.6 times the number  
in the secretory cells o f  pathogen-free rats. In addit ion,  
the granules had an average diameter  of  1035 nm, which 
was 56% larger than those in pathogen-free rats (Table 1). 
The contents of  the granules had  a stippled texture and 
a low to modera te  electron density (Figs. 13, 16). The core 
mater ia l  of  some granules was sur rounded by a thin electron 
lucent halo (Fig. 13) or contained aggregates of  electron 
dense mater ia l  (Fig. 17). Unl ike the secretory granules of  
pathogen-free rats, the granules in the infected rats were 
surrounded by membranes  that  were discont inuous in some 
regions, usually where the granules contacted one another  
(Fig. 16). 

Despite their prominence,  epithelial secretory cells in 
the infected rats were 30% less numerous  than the corre- 
sponding cells identified by electron microscopy in the path-  
ogen-free rats (Table 1). Also,  in the infected rats the 
number  of  secretory cells, expressed as a percentage of  the 
epithelial  cells in contact  with the airway lumen, was less 
than half  that  of  the pathogen-free rats. This difference 

was in par t  due to the increased number  of  ciliated cells 
in the infected rats (Table 1). 

Some secretory cells and ciliated cells of  the infected 
rats had M. pulmonis at tached to their apical p lasma mem- 
brane at junct ion-l ike adhesion sites (Figs. 12, 18). The or- 
ganisms were membrane-bound  bags of  cytoplasm, ovoid 
or tubular  in shape and approximate ly  1-2 gm in length, 
and contained clumps of  r ibosome-l ike particles enmeshed 
in a network of  fine filaments (Fig. 18). 

Secretory cells in capsaicin-treated rats. Epithelial  secretory 
cells contained fewer granules in capsaicin-treated patho- 
gen-free rats than in those injected with vehicle. Though 
not  readily appreciated in sections stained with Alcian blue- 
PAS (Fig. 4), this degranula t ion was obvious by electron 
microscopy (Figs. 19, 20). An  average of  5 __ 1 granules were 
present in each nucleated cell profile ( N =  15), which was 
37% of  the number  present  in the vehicle treated rats (p < 
0.001). 

Similarly, the secretory ceils in capsaicin-treated infected 
rats contained fewer granules than did those of  their vehicle- 
t reated counterparts .  This degranulat ion was evident in sec- 
tions stained with Alcian blue-PAS (Fig. 5) and was con- 
firmed by electron microscopy,  where the number  of  gran- 
ules per  nucleated cell profile (12_+ 3 granules;  N =  15) was 
36% of  the control  (vehicle) value (p < 0.001). Mos t  of  the 
granules that  remained were in the apex of  the cells (Figs. 5, 
21, 22). In addit ion,  after capsaicin the ceils had spine-like 

Figs. 8, 9. Electron micrographs comparing the tracheal epithelium of a pathogen-free rat (8) with that of a rat that was infected 
at the outset (9). Both rats received an injection of vehicle. The epithelium of the infected rat not only is much thicker but also 
has a larger number of ciliated cells (C) and contains mucous-like secretory cells (5). The granules of these secretory cells are larger, 
more numerous, and less electron-dense than those of the serous-like secretory cells (5) of the pathogen-free rat. Beneath the epithelium 
of the infected rat, the lamina propria (L) contains lymphoid cells. Scale bar = 5 gm 
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lateral projections and were bordered by abnormally wide 
intercellular spaces (Fig. 21); and the lamina propria was 
distorted by an accumulation of extracellular (edema) fluid. 

Ciliated cells. In the tracheal epithelium of the pathogen- 
free rats, ciliated cells composed only 33% of the nucleated 
cell profiles in contact with the airway lumen (Table 1). 
The cells had a cuboidal or low columnar shape, a compara- 
tively lucent cytoplasm, and a round or ovoid nucleus 
(Figs. 6, 8). 

In the infected rats, ciliated cells constituted 68% of 
the nucleated cell profiles in contact with the airway lumen 
and were three times as numerous as ciliated cells in patho- 
gen-free rats (Table 1). The cells had a tall, narrow colum- 
nar shape, a lucent cytoplasm, and a nucleus with an irregu- 
lar contour (Figs. 7, 9). 

Globule leukocytes. Globule leukocytes were identified by 
their location, rounded shape, eccentrically-placed nucleus, 
and conspicuous cytoplasmic granules (Figs. 23, 24). Al- 
though the granules stained with Alcian blue-PAS (Fig. 2) 
and toluidine blue, their larger and more variable size and 
their central placement in the epithelium distinguished them 
from the granules of epithelial secretory cells. In sections 
stained for chloroacetate esterase activity, the granules of  
globule leukocytes were the only structures in the epitheli- 
um that had the red reaction product (Fig. 23). 

Globule leukocytes were much more numerous in the 
tracheal epithelium of the pathogen-free rats (Fig. 23) than 
in the epithelium of rats that acquired infections during 
the experiment (Fig. 25) or were infected at the outset 
(Fig. 26). The pathogen-free rats had 225 300_ 18 300 glob- 
ule leukocytes per cubic millimeter of epithelium, whereas 
the rats that acquired infections during the 6 week experi- 
ment had 70 800_+ 37400 of these cells per cubic millimeter 
(p < 0.01 ; N =  5 per group). 

Changes in epithelial thickness and cell width 

The tracheas of pathogen-free rats had a cuboidal or low 
columnar pseudostratified epithelium that averaged 
16.3_+0.7 gm (N=5)  in thickness. The epithelium of the 
pathogen-free rats contained an average of 128 cells per 
millimeter (Table 1), which yields an average cell width of 
7.9+_0.7 gm. 

In contrast, the tracheas of rats that acquired infections 
during the experiment had a tall columnar pseudostratified 
epithelium, which was approximately twice as thick as that 
of the pathogen-free rats (p < 0.001). The thickness of the 
epithelium of rats exposed for 3 weeks (34.9_+ 2.4 ~tm) or 
6 weeks (31_+2.4 gm) did not differ significantly from that 
of their infected cagemates (35.9 _+ 1.5 gm and 31.5 _+ 0.9 gm 
respectively [N= 4-5 per group]). The epithelial surface of 
the infected rats had an undulating contour and in some 
regions had crypt-like infoldings in which secretory cells 
were numerous. The epithelial cells were 50% more densely 

packed in the infected rats (187 cells/ram; Table 1) and 
thus were only 68% as wide (5.4_+0.1 gm) as those of  path- 
ogen-free rats. However, because the elongation of the epi- 
thelial cells was accompanied by narrowing, cell volume 
(approximately 800 gm 3) was not appreciably different in 
pathogen-free and infected rats. 

Changes in the lamina propria 

Lymphoid tissue was not found in the tracheal mucosa of 
the pathogen-free rats (Figs. 6, 8). However, mononuclear 
cells were abundant in the lamina propria and in focal re- 
gions of the epithelium of all of the infected rats (Fig. 7). 
In addition, the mucosal glands were larger in the infected 
rats than in the pathogen-free rats. 

Potentiation of neurogenic inflammation 

In the pathogen-free rats, capsaicin (150 gg/kg i.v.) resulted 
in 2.5 times as much extravasated Evans blue in the trachea 
as did an injection of vehicle. However, in the rats that 
acquired infections during the 3 week experiment, this dose 
of capsaicin produced 8.3 times as much dye extravasation 
as did the vehicle (Table 2). Compared to the values for 
pathogen-free rats, there was 3.3 times as much dye in the 
tracheas of  the infected rats at 3 weeks and 2.2 times as 
much at 6 weeks (3800_+478 ng/trachea). Rats that were 
infected at the outset had an average of 3.2 times as much 
extravasated dye as the pathogen-free rats (Table 2). All 
of these differences were statistically significant. 

Because the tracheas of the infected rats were heavier 
than those of the pathogen-free rats, the amounts of capsai- 
cin-induced extravasation in the infected rats appeared to 
be somewhat less when expressed per milligram of trachea, 
but the values were still significantly greater than those 
in pathogen-free rats (Table 2). 

A small amount of Evans blue was present in the tra- 
cheas of vehicle-treated rats, regardless of whether they 
were pathogen-free or infected, but there was no indication 
that vascular permeability to Evans blue was abnormal in 
the infected rats in the absence of capsaicin. In fact, the 
amount of dye expressed per milligram of trachea was more 
than twice as large in the pathogen-free rats, as their tra- 
cheas weighed less than those of the infected rats (Table 2). 

Effect of dexamethasone on the potentiation 
of neurogenic inflammation 

The infected rats treated with dexamethasone for five days 
developed only 29% as much Evans blue extravasation in 
response to capsaicin as did their infected controls (p< 
0.001). The amount of extravasation in the dexamethasone- 
treated infected rats (2460_+ 580 ng/trachea) was sufficiently 
small that it was not significantly different from that of 
the pathogen-free rats. By contrast, the controls for this 

Figs. 111-13. Electron micrographs comparing the epithelial secretory cell in a pathogen-free rat (10, 11) and a rat that was infected 
at the outset (12, 13). Both rats were injected with vehicle. The cell of the infected rat is taller, and its granules are larger, more 
nmnerous, and less electron-dense than those from the pathogen-free rat. The content of the granules from the pathogen-free rat 
has a smooth texture (11), and that from the infected rat has a stippled texture (13). A mycoplasma (arrow) is attached to the apical 
surface of the secretory cell from the infected rat (12). Scale bars = 2 gm for 10, 12 and 500 nm for ll, 13 
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Table 2. Weights and Evans blue dye contents of tracheas of pathogen-free rats and infected rats 

Group of rats Duration of exposure Tracheal weight Evans blue content 
to infected rats (nag) (ng/trachea) 
during experiment 

Evans blue content 
(ng/mg trachea) 

Capsaicin-treated : 
Pathogen-free none 39.9 _+ 1.2 1720 _+ 206 43.4 _ 5.7 
Acquired infections 3 weeks 57.0 + 5.9 * 5700 _+ 520 * 102.0 • t0.8 * 
Infected at outset none, 3 weeks, or 6 weeks 64.1 _+ 2.7" 5550 + 424" 86.8_+ 5.8 * 

Vehicle-treated: 
Pathogen-free none 38.4_+0.9 680_+ 80 17.8_+ 2.t 
Infected at outset none 64.9_+5.9* 500_+ 58 7.7_+ 0.5 

Values are means _+ S.E. Each group contained 4-5 rats. Rats that acquired infections were pathogen-free at the outset and were 
housed with infected rats for 3 weeks. Values for the three groups of rats that were infected at the outset and were re-exposed during 
the experiment for 0, 3 or 6 weeks were not significantly different from one another, as determined by analysis of variance, and 
thus were combined (N=12). The amount of Evans blue in the tracheas of the groups treated with capsaicin (150 gg/kg i.v.) is a 
measure of the susceptibility of their airways to neurogenic inflammation. The amount of Evans blue in the tracheas of the two groups 
injected with vehicle (1 ml/kg i.v.) reflects the amount of dye extravasated in the absence of neurogenic inflammation. 

* Significantly different from corresponding values for pathogen-free rats, as determined by one-way analysis of variance (p < 0.05) 

experiment  had the largest amoun t  o f  dye extravasat ion 
(8600_+ 557 ng/trachea) o f  any of  the infected rats. 

Increased number of mediator-sensitive blood vessels 

In the tracheas of  pathogen-free rats t reated with capsaicin, 
labeled b lood  vessels were present  in regions of  the mucosa  
between cart i laginous rings (area density of  labeled ves- 
sels = 22%), but  they were rare over the rings (area density 
o f  labeled vessels = 3% ; Fig. 27). By comparison,  in infected 
rats  t reated with capsaicin,  b lood  vessels were more  heavily 
labeled by Monas t ra l  blue, and the labeled vessels were 
more numerous  in regions of  the mucosa  between cartilagi- 
nous tings (area density of  labeled v e s s e l s :  42%) and were 
much more  abundan t  in regions overlying the tings (area 
density of  labeled v e s s e l s = 3 3 % ;  Fig. 27). No  Monas t ra l  
blue-labeled vessels were found in the mucosa  of  any of  
the rats t reated with vehicle. 

Increase in tracheal weight 

The tracheas of  rats that  acquired infections during the 
experiment,  like those of  the rats that  were infected at the 
outset, were about  50% heavier than the tracheas of  the 
pathogen-free rats (Table 2). This difference in tracheal 
weight was not  due to a change in body  weight, as tracheal 
weights expressed as a fraction of  body weight showed simi- 
lar differences. 

The increased weight of  the infected rat  t racheas was 
consistent with the abnormal ly  thick mucosa  and abundan t  

mucosal  lymphoid  tissue. As the tracheas of  rats treated 
with capsaicin weighed approximate ly  the same as those 
of  vehicle-treated rats in the same group (Table 2), capsai-  
cin-induced p lasma extravasat ion did not  result in an appre-  
ciable increase in tracheal weight. 

Discussion 

Infection-related changes in the tracheal epithelium 

Secretory cells. The results of  the present study are consis- 
tent with Jeffery and Reid 's  (1975) finding that  the tracheal 
epithelium of  pathogen-free rats contains numerous serous 
cells but  few mucous cells. We found by electron microsco- 
py that  nearly all of  the non-cil iated cells contained secreto- 
ry granules with the comparat ively  small size and number  
typical of  serous cell granules (Jeffery and Reid 1981). The 
small number  of  Alcian blue-PAS stained cells, which are 
presumably  mucous cells, that  we found in pathogen-free 
rats approximates  the number  reported for such rats by 
Lamb and Reid (1969a) and Jones et al. (1973), Lamb and 
Reid (1968) and Greig et al. (1980) found larger numbers  
of  these cells in some "specif ic  pa thogen-f ree"  rats, but  
the possible effects of  respira tory tract  infections in these 
rats were not  excluded. 

Secretory cells in the tracheal mucosa  of  the infected 
rats had the characteristics of  mucous (goblet) cells. In evi- 
dence of  this, most  if not  all of  these cells contained granules 
that  stained magenta  or blue-purple with Alcian blue-PAS, 
indicat ing the presence of  abundant  neutral  or acidic glyco- 

Figs. 14-17. Electron micrographs showing morphological variants of granules in tracheal epithelial secretory cells of a pathogen-free 
rat (14, 15), a rat that was infected at the outset (16), and a rat that acquired infections during the 6 week experiment (17). An 
electron dense halo is present at the perimeter of the granules from the pathogen-free rat. In 14 this halo is thin, homogeneous and 
compact, whereas in 15 it is dispersed and granular. In the infected rat, the enveloping membrane of the granules is discontinuous 
in some regions (arrows in 16). The granules in 16 have a stippled but otherwise homogeneous interior, whereas those in 17 contain 
prominent round electron-dense regions (arrows) within a stippled matrix. Scale bar = 500 nm 

Fig. 18. Electron micrograph showing M. pulmonis cells (arrow heads) attached to the apical plasma membrane of tracheal epithelial 
cells of a rat that was infected at the outset. Junction-like regions resembling zonulae adhaerentes are visible at some attachment sites 
(arrows). Scale bar = 500 nm 
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Figs. 19--22. Electron micrographs showing the capsaicin-induced (~ 50 gg/kg i.v.) reduction in number of granules in epithelial secretory 
cells in a pathogen-free rat (19, 20) and a rat that acquired infections during the 6 week experiment (21, 22). Most of the remaining 
secretory granules are in the apex of the cells (21, 22). In the infected rat, the lower portion of the secretory cell is bordered by 
abnormal spaces that are spanned by spine-like processes (arrows, 21). Scale bars = 2 gm for 19, 21 and 500 nm for 20, 22 
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Figs. 23-26. Micrographs showing globule leukocytes in the tracheal epithelium of pathogen-free and infected rats. 24 is an electron 
micrograph of  the epithelium of a pathogen-free rat showing that the cytoplasmic granules of  the globule leukocyte (arrows) are more 
electron-dense and in some cases larger than those of the surrounding secretory cells. Scale bar = 2 pm. 23, 25 and 26 are light micrographs 
of sections stained histochemically to demonstrate the chloroacetate esterase activity in globule leukocytes (arrows). 23 shows the epithelium 
of a pathogen-free rat, which contains many more globule leukocytes than does the epithelium of a rat that acquired infections during 
the 6 week experiment (25) or was infected at the outset (26). Note that an injection of capsaicin (150 pg/kg i.v.), which the rats 
of 23, 25, and 26 received, did not degranulate the globule leukocytes. Scale bars for 23, 25 and 26= 10 gm 
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Fig. 27. Histogram showing the means _+ S.E. (N= 3 rats per group) of the area density of Monastral blue-labeled blood vessels 
in the tracheas of pathogen-free rats and infected rats from the 6 week experiment. Area densities are expressed as a percentage of 
total mucosal surface area evaluated in tracheal whole mounts by stereological point counting. All rats received an injection of Monastral 
blue followed by capsaicin (150 gg/kg i.v.) and were perfused five minutes later. * Significantly different from corresponding values 
for pathogen-free rats as determined by analysis of variance (P<0.01). At the bottom of the figure, light micrographs of the luminal 
surface of tracheal whole mounts compare the effects of capsaicin in a pathogen-free rat (left) and a rat that acquired infections 
during the 6 week experiment (right). In the trachea of the pathogen-free rat, Monastral blue-labeled blood vessels (arrows) are not 
present in the mucosa overlying the cartilaginous ring (asterisk); but in the infected rat many labeled vessels are present in this location 
(asterisk). Scale bar = 200 gm 

proteins (Eskelund 1957; Lamb and Reid 1969b; Spicer 
et al. 1980, 1983). Fur thermore ,  the granules in these cells 
had  the large size, abundance,  and ul trastructure typical  
of  granules of  tracheal goblet  cells (Rhodin  and Da lhamn  
1956; Jeffery and Reid 1975, 1981). 

A n  increase in the number  of  goblet  cells in the respira- 
tory epithelium and the product ion  of  abnormal ly  large 
amounts  of  mucus are well established features of  chronic 
respira tory infections caused by M. pulmonis (Ventura and 
Go  ucher 1966; Lindsey et al. 1971). Goble t  cell hyperplas ia  
can also result from chronic exposure to irr i tants such as 
formalin (Florey et al. 1932), sulfur dioxide (Reid 1963; 
Lamb and Reid 1968), and tobacco smoke (Lamb and Reid 
1969a; Greig et al. 1980; Jeffery and Reid 1981), but  it 
is not  known to be an effect of  Sendai virus or  coronavirus  
infections (Jacoby e t a l .  1975; Cast leman 1983; Schoeb 
et al. 1985). 

Epithelial  serous cells are a possible source of  such gob- 
let cells, as t ransi t ional  stages between the two cell types 
have been identified (Jeffery and Reid 1981), and  serous 
cells are known to serve as stem cells for other types of  
epithelial cells (Evans et al. 1986). The possibi l i ty that  such 
a t ransformat ion  occurs is also consistent with our observa- 
t ion that  the increased number  of  mucous  cells in the in- 

fected rats was offset by a reduction in the number  of  serous 
cells. 

Stimulation of  mucus secretion. The results of  our study 
indicate that  capsaicin causes the degranulat ion of  epithelial 
secretory cells both  in pathogen-free rats and in infected 
rats. Considering that  capsaicin can activate certain types 
of  sensory nerves (Jancso et al. 1967; Gamse  et al. 1980), 
our  observations suggest that  the degranulat ion of  both  
types of  secretory cell is regulated by sensory nerves, either 
through a reflex or through an effect of  a sensory nerve 
mediator .  The lat ter  possibil i ty is consistent with evidence 
that  mucous cells of  the tracheal epithelium are not  stimu- 
lated by parasympathe t ic  agonists but  are degranulated by 
irr i tants such as mus ta rd  oil, sulfur dioxide, ammonia ,  and 
tobacco smoke (Florey et al. 1932; Lamb and Reid 1968; 
Jeffery 1978), which activate sensory nerves, and by electri- 
cal s t imulat ion of  vagal  sensory axons (McDona ld  1988 b). 

Ciliated cells'. The tracheal epithelium of  pathogen-free rats 
and mice has few ciliated cells compared  to that  of  most  
mammals  including humans.  We found that  ciliated cells 
consti tuted only 33% of  the cells that  reach the tracheal 
lumen, which corresponds to other values in the l i terature 
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for pathogen-free rats and mice (Jeffery and Reid 1975; 
Pack et al. 1980). The number of ciliated cells is not fixed, 
however, as these cells proliferate as a result of M. pulmonis 
infections (termed "epithelial hyperplasia" by Lindsey et al. 
1971; Schoeb et al. 1985), as was observed in the infected 
rats we studied. Chronic exposure to sulfur dioxide (Dal- 
hamn 1956) or tobacco smoke (Jeffery and Reid 1981) can 
also cause ciliated cell hyperplasia. 

Globule leukocytes. Globule leukocytes are migratory cells 
in the airway epithelium that appear to be of mesenchymal 
origin and are considered by some to be mucosal mast cells 
(Kent 1966; Frederix and Baert 1986; Tam et al. 1988). 
We paid particular attention to these cells because their 
granules stain with Alcian blue-PAS and toluidine blue and 
can, therefore, be confused with the granules of epithelial 
serous cells or mucous cells. However, unlike the granules 
of epithelial secretory cells, the granules in globule leuko- 
cytes contain a chymotrypsin-like serine protease that can 
be detected histochemically by its chloroacetate esterase ac- 
tivity (Huntley et al. 1985; Frederix and Baert 1986; Tam 
et al. 1988). 

Our finding that airway infections decreased by two- 
thirds the number of globule leukocytes in the tracheal epi- 
thelium demonstrates the dynamic nature of this cell popu- 
lation. Such changes have not been described previously, 
but it is known that nematode infections result in changes 
in the number of globule leukocytes in the intestinal epithe- 
lium (Carroll et al. 1984). 

Epithelial thickness. It is well established that the tracheas 
of pathogen-free rats have a cuboidal or low columnar epi- 
thelium (Lindsey etal.  1971; Jeffery and Reid 1975; 
Hayashi and Huber 1977), and that the epithelium of rats 
with chronic airway infections produced by M. pulmonis 
is abnormally thick (Lindsey et al. 1971; Schoeb et al. 
1985). Although chronic exposure to irritants such as sulfur 
dioxide (Dalhamn 1956; Lamb and Reid 1968) or tobacco 
smoke (Jones et al. 1973) can also increase the epithelial 
thickness, infections due to Sendai virus or coronavirus evi- 
dently do not have this effect (Jacoby et al. 1975; Castleman 
1983; Schoeb et al. 1985). 

Potentiation of neurogenic inflammation by infections 

The present study reveals that pathogen-free rats become 
abnormally susceptible to neurogenic inflammation within 
three weeks of acquiring respiratory tract infections caused 
by M. pulmonis, Sendai virus, and coronavirus. This suscep- 
tibility of the infected rats to neurogenic inflammation was 
manifested by an unusually large amount of  plasma extra- 
vasation evoked in the trachea by capsaicin. The airway 
infections themselves did not cause an appreciable increase 
in vascular permeability, as the infected rats not treated 
with capsaicin had no more dye in their tracheas than did 
pathogen-free rats. 

Capsaicin is thought to produce neurogenic inflamma- 
tion by stimulating the release of  substance P or other neu- 
ropeptides from sensory nerves (Gamse et al. 1980; Saria 
et al. 1983). Several lines of evidence support our assump- 
tion that it is this effect of capsaicin which is responsible 
for the plasma extravasation observed in the present stu- 
dies, not the cardiovascular and respiratory reflexes evoked 
by the drug (Makara et al. 1967; Mitchell et al. 1984). For 

example, intravenous capsaicin does not increase vascular 
permeability in all vascular beds but instead exerts its effect 
in proportion to the amount of substance P in the tissue 
(Saria et al. 1983; Lundberg et al. 1984). Furthermore, in- 
travenous capsaicin can mimic the changes in vascular per- 
meability produced in the tracheal mucosa by vagal stimula- 
tion and substance P injection (Saria et al. 1983; Mc Don- 
ald 1988a), which do not evoke the same reflex changes 
as capsaicin. Also, the endothelial gaps in postcapillary ven- 
ules that are responsible for the extravasation induced by 
capsaicin, vagal stimulation, and substance P (McDonald 
1988 a, b) would not be expected to result from reflex hemo- 
dynamic changes. Finally, when capsaicin is applied directly 
to the tracheal mucosa, skin or conjunctiva of the eye, the 
resulting plasma extravasation coincides with the region of 
the application, an unlikely finding if caused by reflex 
hemodynamic changes (Jancso 1960; Lundberg and Saria 
1982). 

The potentiation of neurogenic inflammation in the in- 
fected rats was abolished by dexamethasone given over five 
days. This inhibition is consistent with the well established 
action of glucocorticoids on vascular permeability (Svensjo 
and Roempke 1985; Andersson and Persson 1988), al- 
though no such effect was observed by Lundberg et al. 
(1983) in pathogen-free rats treated with methylpredniso- 
lone for four hours. It is unknown whether the inhibition 
we observed is a manifestation of one of the generalized 
anti-inflammatory actions of glucoeorticoids (Bowen and 
Fauci 1988) or whether it is a specific effect on neurogenic 
inflammation, such as the upregulation of an enzyme that 
degrades tachykinins released from sensory nerves or the 
downregulation of tachykinin receptors on postcapillary 
venules. 

By using Monastral blue in the present study, we were 
able to address the question of whether the abnormally 
large amount of extravasation in the infected rats resulted 
from an increase in the number of responsive blood vessels 
or from an increased response of individual vessels. We 
found both to be true: Monastral blue-labeled vessels in 
the tracheas of infected rats not only were more intensely 
colored, but they were also more numerous. In evidence 
of the latter, many of the labeled vessels in the infected 
rats were in regions of the mucosa overlying cartilaginous 
rings, sites that were nearly devoid of labeled vessels in 
pathogen-fi'ee rats. This change indicates that the infections 
can increase the number of  mediator-sensitive blood vessels 
in the tracheal mucosa and that the proliferation of these 
vessels contributes to the augmented neurogenic inflamma- 
tory response. 

What organism made the airways susceptible 
to neurogenic inflammation ? 

Our experiments did not directly address the issue of which 
organism made the rats abnormally susceptible to neu- 
rogenic inflammation. There are, however, several reasons 
to believe that M. pulmonis played a key role in this phe- 
nomenon. For example, an active infection by M. pulmonis 
was present. This was evidenced by high serological titers 
to the organism, electron microscopic visualization on the 
airway epithelium of organisms with the typical morpholo- 
gy of M. pulmonis (Nelson and Lyons 1965), and character- 
istic pathological changes in the airway mucosa (Lindsey 
et al. 1971). Furthermore, the abnormally large amount of 
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p lasma extravasat ion associated with neurogenic inf lamma- 
tion in the infected rats appeared  to be due in par t  to the 
prol i fera t ion of  b lood vessels, which is one of  the manifesta-  
tions of  chronic infections such as those caused by M. pul- 
monis. Final ly,  M. pulmonis infections, p roduced  in the lab- 
o ra tory  by intranasal  inoculat ion of  the organisms, can po-  
tentiate neurogenic inf lammat ion  in the rat  t rachea in the 
absence of  viral infections (McDona ld  and Lindsey, unpub-  
lished observations).  

The Sendai virus and coronavirus  infections are not  like- 
ly to have caused the changes we observed. Al though Sen- 
dai virus infections can potent ia te  neurogenic inf lammat ion 
(Pied]monte et al. 1989), this is a modes t  change that  occurs 
at the peak of  the infection. However,  in the animals we 
studied, the viral infections had  p robab ly  resolved, because 
the animals had  high serological titers to the viruses, and 
these titers do not  reach their peak  until after the animals 
have recovered from the infections (Jacoby e t a l .  1975; 
Cast leman 1983). Fur thermore ,  the transient  epithelial 
swelling, necrosis, and sloughing produced  by these viruses 
(Jacoby et al. 1975; Cast leman 1983; Schoeb et al. 1985) 
were not  present  in the animals we studied. 

Sendai virus and coronavirus  could, however, part ici-  
pate  in the potent ia t ion  of  neurogenic inf lammat ion by ex- 
acerbat ing M. pulrnonis infections (Schoeb e ta l .  1985; 
Schoeb and Lindsey 1987). This effect may  be par t icular ly  
impor tan t  in natural ly  occurring infections like those we 
studied because M. pulmonis tends to cause comparat ively  
mild disease in the absence of  " p r o m o t e r s "  (Lindsey et al. 
1986). Exposure to ammonia  (Broderson et al. 1976) and 
viral infections (Howard  e t a l .  1978; Schoeb e t a l .  1985; 
Schoeb and Lindsey 1987) are the best character ized of  
these promoters .  The observat ion in a previous study that  
Sendai virus infections are necessary for the potent ia t ion  
of  neurogenic inf lammat ion in rats infected natural ly  by 
M. pulmonis may be an example of  this phenomenon  
(McDona ld  1988 a). 

Conclusion 

We conclude that  M. pulmonis infections in rats, exacer- 
bated by concurrent  infections caused by Sendai virus and 
coronavirus,  produce  prominen t  changes in the tracheal  
mucosa  within three weeks of  their onset. Epithelial  serous 
cells are replaced by mucous  cells, ciliated cells proliferate,  
globule leukocytes diminish in number,  and  lymphoid  cells 
accumulate  in the lamina propr ia .  The infections also result 
in a prol i ferat ion of  mediator-sensi t ive mucosal  b lood ves- 
sels, which contr ibute  to the potent ia t ion  of  neurogenic in- 
f lammat ion that  accompanies  the other changes. Our  find- 
ings underscore the impor tance  of  chronic infections as fac- 
tors that  determine the composi t ion  of  airway mucus and 
the magni tude  of  the neurogenic in f lammatory  response. 
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