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Abstract
Purpose of Review  This article provides a review of the recent literature related to the FDA-approved drugs that had been 
repurposed as potential drug candidates against COVID-19. Moreover, we performed a quality pharmacophore study for 
frequently studied targets, namely, the main protease, RNA-dependent RNA polymerase, and spike protein.
Recent Findings  Ever since the COVID-19 pandemic, the whole spectrum of scientific community is still unable to invent an 
absolute therapeutic agent for COVID-19. Considering such a fact, drug repurposing strategies seem a truly viable approach 
to develop novel therapeutic interventions.
Summery  Drug repurposing explores previously approved drugs of known safety and pharmacokinetics profile for pos-
sible new effects, reducing the cost, time, and predicting prospective side effects and drug interactions. COVID-19 virulent 
machinery appeared similar to other viruses, making antiviral agents widely repurposed in pursuit for curative candidates. Our 
main protease pharmacophoric study revealed multiple features and could be a probable starting point for upcoming research.

Keywords  COVID-19 · Drug repurposing · Pharmacophore analysis · Main protease · Spike proteins · RNA-dependent 
RNA polymerase

Introduction

Towards the end of 2019, a novel beta coronavirus was iden-
tified as the causative agent of huge cases of unprecedented 
pneumonia, reported for the first time in Wuhan city, China. 
Soon after, the WHO labeled the severe acute respiratory 

syndrome as COVID-19 and the virus as the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1, 2]. 
Starting on March 2020, the WHO announced that COVID-
19 has become a global pandemic [3]. The pandemic affected 
the whole world, [1, 4], and due to its airborne infectivity, 
social distancing measures have been imposed by interna-
tional authorities [5].

As a response to the sudden outbreak of COVID-19, an 
intensive global research efforts have been devoted to inves-
tigate potential therapeutic approaches. Looking at the fast 
return and the low cost of drug repurposing strategies, it 
has been implemented as immediate drug discovery pipe-
line [6•]. Many clinically useful drugs including aspirin and 
sildenafil which were originally used as inflammation and 
hypertension have been successfully repurposed for cardio-
vascular diseases and erectile dysfunction, respectively [7, 
8]. Nowadays, molecular docking as an in silico method is 
very popular in drug discovery researches, because of its 
ability to illustrate the interactions between the ligand and 
its biological targets [8, 9]. Pharmacophore modeling — 
defined as a set of molecular features that enable biologically 
active ligands to exert a pharmacological effect — practice is 
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widely used in the drug discovery process [10]. Herein, we 
reviewed and summarized research of FDA-approved drugs 
repurposed against SARS-CoV-2 virus.

Methods

Workflow

Search Strategy

During the period of COVID-19, the scientific community 
had published an immense number of studies about repur-
posing drugs for COVID-19. These studies are scattered on 
the internet, and no one database will be inclusive enough to 
all of these studies, aside from Google Scholar. All studies 
have been collected by the end of 2020/12/30. In order to 
achieve an efficient search strategy, the following combina-
tions of keywords were applied during the research in the 
Google Scholar database: (COVID19 OR SARS-CoV-2) 
AND (Drug repurposing OR Drug repositioning OR Drug 
re-profiling OR Drug rediscovery) AND (Docking AND 
Molecular dynamic).

Data Selection and Extraction

Titles and abstracts were first checked for eligibility using 
specific inclusion and exclusion criteria (Table 1). Selected 
paper were then completely reviewed as a second stage, 
while articles that met the exclusion criteria were eliminated.

Primarily, searching revealed a total of 405 articles, after 
applying the above mentioned criteria above, we ended up 
with 92 research articles, as presented in the flow diagram 
(Fig. 1). We further classified them according to SARS-
CoV-2 targets: 73 for the main protease, 11 for spike protein, 
and 8 for replicase complex.

Pharmacophore Analysis

To perform the pharmacophore study, we had to ensure that 
all the drugs analyzed bind to the same site on the target. 
Thus, we classified the drug within the same target according 

to the binding site. There are various approaches used in lit-
erature to define the binding site or the docking site. Never-
theless, we obtained one binding site for each target except 
the main protease; it gave us two binding sites. Phase from 
Schrodinger suits was used to generate the pharmacophore 
hypothesis [11]. As the quality of the pharmacophore was 
our biggest concern, we used the number of features and the 
Hyposcore as a measure of quality. The following criteria 
were implemented: a maximum of 7 features, a minimum of 
6 features, and minimum coverage of 50% of the compounds 
at the question.

Data Description

In silico work on COVID-19, drug discovery started even 
before the PDB structure of SARS-CoV-2 targets was 
released; during that time, homology modeling was used 
to generate the protein structure in question. The gener-
ated targets that have been investigated are spike protein, 
RNA-dependent RNA polymerase (RdRp), main protease, 
helicase, and papain-like protease. However, from them, we 
reviewed only the most studied targets (main protease, spike 
protein, and RdRp) [1, 2].

All papers follow a similar protocol, as shown in 
Fig.  2a  either docking alone or docking and molecular 
dynamics simulation.

As illustrated in Fig. 2b, the most used software for 
molecular docking was Autodock vina, followed by Glide 
and preceded by Autodock 4. The open source feature of 
Autodock rationalizes its greatest usage frequency. Auto-
dock vina is the most used because it is easier to use com-
pare to Autodock4, and it has have been implemented in 
many software packages like PyRx. In addition, Autodock 
vina is faster and more accurate depending on the system 
and the parameter setting [12].

While docking studies consider the flexibility of the 
ligand as a rigid structure, molecular dynamic (MD) simula-
tion takes the ligand–protein complex as a dynamic module. 
It searches the conformational space for the most stable con-
formation, giving more accurate results. Moreover, due to 
the cost of running MD simulation, only 48 studies out of 89 
confirmed docking results with MD (Fig. 2a). GROMACS 

Table 1   Inclusion and exclusion criteria for the included articles

Parameter Inclusion criteria Exclusion criteria

Type of publication Original article Preprint, review article, letters, conference abstracts
Kind of the study Studies that evaluated antiviral activities 

against COVID-19
Studies that evaluated antiviral activities against other viruses

Method of study Docking, molecular dynamic Homology modeling
Type of molecule Drugs Phytochemicals, non-drug molecules
Language English Language other than English
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and AMBER were the most used free MD software. On the 
other hand, Desmond was the most used commercial soft-
ware (Fig. 2c).

Results and Discussion

Main Protease

The fact that no human protease mimics the cleavage activ-
ity of the viral main protease; it has been a well-positioned 
drug target [13••]. The sequence identity shows that 96% of 
SARS-CoV-2 main protease is identical with other SARS-
COV viruses [14]. This high conservation encourages 
researchers to study inhibitors and other drugs for repur-
posing them against SARS-COV-2 main protease. Yang’s 
group was the first group to release the crystal structure of 
the main protease (PDB ID: 6LU7) [15]. In this paper, we 
classified the drugs according to the anatomical therapeutic 
chemical classification system (Table 2).

Anti-infective agents were the most frequent class, 
with antivirals and tetracycline being the predominant 
subclasses; thus, they have been considered in the dis-
cussion. The following most frequent classes are the 
antineoplastic and immunomodulating agents (Table 2). 

However, we did not find any similarity between the orig-
inal mechanism during our analysis, and they had failed 
pharmacophore analysis.

Antivirals

Of the 29 antiviral drugs that were reported to bind with the 
viral main protease, 16 drugs are already protease inhibitors; 
hence, the hypothesis here is whether they are SARS-COV-2 
protease inhibitors too. These drugs are indinavir, ritonavir, 
lopinavir, nelfinavir, saquinavir, simeprevir, paritaprevir, 
darunavir, atazanavir, glecaprevir, telaprevir, tipreanavir, 
brecanavir, grazoprevir, tipranavir, and amprenavir. Further-
more, they work on only two proteases, human immunode-
ficiency virus type 1 protease and NS3/4A protein. Of these 
compounds, indinavir was reported eight times with seven 
different docking software, ritonavir was repeated twelve 
times with seven different docking software, and finally, 
lopinavir was repeated eleven times with seven different 
docking software. All these evidences support their poten-
tial as drugs for COVID-19. On the other hand, asunaprevir, 
ciluprevir, and pleconaril work on “Genome polyprotein,” 
a complex protein with many functions including protease 
activity, and they could be considered for further analysis. 

Fig. 1   Flow diagram of the 
screening process of articles 
included in the study
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Lastly, the other ten drugs have diverse targets, and they 
failed pharmacophore analysis, so we excluded them in phar-
macophore analysis.

Tetracyclines

Another class of compounds that peaked our interest is 
the tetracyclines; we found that five tetracyclines in the 
literature claim to have inhibitory activities against the 
main protease. These compounds are oxytetracycline, 
lymecycline, tetracycline, minocycline, and doxycy-
cline. Tetracyclines are broad-spectrum antibiotics, and 
they have the general structure of four fused rings. They 
work by inhibiting protein synthesis; notably, they inhibit 
the binding of aminoacyl-tRNA to the mRNA translation 
complex [89].

Pharmacophore Analysis of the Main Protease

Most studies on the main protease have been conducted on 
the 6LU7 structure, and all of those studies performed their 
docking analysis on two binding sites. One has cysteine-type 
endopeptidase activity (CYS145), and the other is a larger 
protein cavity. It is worth noting that our pharmacophore 
studies only conducted on the cysteine type, as replicating 
such analysis has failed on the second one.

The CYS145 was the most studied binding site in 85% 
of all the studies that used the PDB 6LU7. The number of 
drugs for this binding site was huge, putting pressure on the 
phase alignment algorithm. We had to create pharmacoph-
ore modules for the predominant classes of drugs, including 
antivirals, tetracyclines, antineoplastics, immunomodulat-
ing, and all combined drugs. As described in the workflow, 
we used strict parameters, and only tetracyclines and anti-
virals had survived. For comparison purposes, we included 
the N3 complexed inhibitor and the binding site hypothesis. 
We studied quality, type of features, and features alignment 
for these pharmacophores (Table 3, Fig. 3a).

N3 is a co-crystallized inhibitor with 6LU7; its pharmaco-
phore is rich in hydrogen donor features, which is expected 
because it is a polypeptide, subsequently containing alter-
nating hydrogen bond donor and hydrogen bond acceptor. 
Tetracycline is also rich in hydrogen donor features, and the 
antivirals pharmacophore is rich in hydrogen acceptors. The 
pharmacophore search of antivirals having an anti-protease 
activity — as its original mechanism of action — was suc-
cessful with 6 features and a Hyposcore of 1.09 (Table 3). 
On the other hand, the search for pharmacophores of the 
other antivirals, where-the original mechanism of action is 
not anti-protease, had failed due to our strict parameters. 
These hypotheses contain at least one aromatic ring, and the 
negative charge feature is only present on the binding site.

Notably, the best scores were obtained with tetracycline 
pharmacophores; it had seven features and a Hyposcore 
of 1.35; their structural similarity supported this result 
(Table 3, Fig. 3a).

Fig. 2   In silico work on COVID-19. a Types and frequencies of the 
used in silico methods. b Types and frequencies of the used dock-
ing software. c Types and frequencies of the used molecular dynamic 
software
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Analyzing the table, it seems that tetracycline and N3 
inhibitor are the most similar pair of hypotheses, but that 
is not enough. Pharmacophores have to agree on the loca-
tion of the features concerning each other, so how do these 
hypotheses align to each other? They align with at least 3 
matches, except N3 inhibitor and tetracycline aligned with 
4 matched features. Considering this, we concluded our 
search for pharmacophores with four hypotheses, and we 
emphasized the overlapping features of N3 and tetracycline; 
2 hydrogen bond donors, 1 hydrogen bond acceptor, and 1 
aromatic ring (Fig. 3a).

RNA‑Dependent RNA Polymerase

RNA-dependent RNA polymerase (RdRp) is a replicase 
that operates the synthesis of a complementary RNA strand 
using RNA [18••, 90]. SARS-CoV-2 RdRp is composed of 
932 amino acids forming a framework of SARS-CoV RdRp 
linked to the Nsp7 and Nsp8 cofactors. Structurally, the 
RdRp protein is divided into the N-terminal and polymerase 
domains, which extend from amino acid residues 1 to 397. 
The polymerase domain is subdivided into three structurally 
different subunits: the finger, palm, and thumb [18••, 90].

The active site of Nsp12 is situated in the middle of the 
substrate domain, where the synthesis of RNA takes place 
when an RNA template is accessed from the template input 
channel and nucleoside triphosphate (NTP) from NTP input 
channel [91••]. RdRp has been proposed to be an important 
target for developing drugs against coronavirus as detailed 
in Table 4.

Drug Affecting RNA‑Dependent RNA Polymerase

In accordance with the inclusion criteria of literature, results 
showed a handful papers concerning Nsp12. Data reported 
five antiviral agents targeting the polymerase (remdesivir, 
tipranavir, tegobuvir, simeprevir, and filibuvir). The second 
common drugs were binimetinib, palbociclib, lonafarnib, 
and pegamotecan, which are antineoplastic agents. Other 

drugs seemed to have miscellaneous pharmacological 
classes.

Antiviral agents have diverse mechanisms of action and 
viral targets. Despite this fact, our analysis suggested that 
antiviral drugs can inhibit the catalytic activity of the Nsp12. 
Notably, remdesivir is a known nucleoside analog that has 
been globally well-studied, both in silico and in vitro. Mech-
anistically, remdesivir is incorporated into the growing viral 
RNA leading to the termination of the RNA replication. The 
high affinity of the compound for the active site of RdRp 
indicates that remdesivir would compete with the natural 
substrates ribonucleotides and get incorporated into the 
growing RNA chain. It has been investigated in multiple 
COVID-19 clinical trials (available at https://​clini​caltr​ials.​
gov), and granted the FDA Emergency Use Authorization in 
COVID-19 treatment. While other reported drugs share no 
similarity in their original clinical use, in silico docking data 
revealed that definitive interaction with Nsp12 active site is 
therefore predicted to be a promising inhibitors. Despite the 
low available data, we performed a pharmacophore analysis 
based on drugs and the common binding site.

Pharmacophore Analysis of the RNA‑Dependent RNA 
Polymerase

Drug-based analysis was performed on eight FDA-approved 
drugs of miscellaneous pharmacological classes. The same 
settings of the main protease pharmacophore were followed, 
and six-feature pharmacophore was obtained. Among those 
features, the hydrogen-bond donor was observed only once, 
while the hydrogen-bond acceptor appeared three times. The 
remaining two features are reported under the name of the 
aromatic ring as per Maestro Phase software (Table 3).

The PDB ID 6M71 was the most frequent target observed. 
The results revealed seven features with a unique feature 
of negative ionic that was not observed under drug-based 
hypothesis analysis. Those seven features have 3 hydrogen-
bond donors, 1 hydrogen-bond acceptor, and 2 aromatic 
rings. Comparing the two analyses, they disagree on the 

Table 3   The pharmacophore of 
the Main protease and RNA-
dependent RNA polymerase

Pharmacophore # acceptor # donor # 
hydro-
phobe

# 
aromatic 
ring

# negative # positive PhaseHypo Score

Main protease
  N3 complex 1 4 0 2 0 0 -
  Tetracycline 1 3 2 1 0 0 1.35
  Antivirals 3 1 1 1 0 0 1.09
  Binding site 0 2 0 4 1 0 -
RNA-dependent RNA polymerase
  Binding site 1 3 0 2 1 0 -
  Drugs 3 1 0 2 0 0 0.715
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hydrogen bond donor and hydrogen bond accepter, but they 
agree on the aromatic ring, with the unique negative ionic 
feature reported only for the binding-site based hypothesis 
study (Table 3, Fig. 3b).

Spike Protein

Spike proteins are a class fusion glycoprotein localized in 
the surface of SARS-CoV-2. It has a crucial role in viral 

Fig. 3   The pharmacophore 
analysis for targeting SARS-
CoV-2 enzymes. a Main pro-
tease. b RNA-dependent RNA 
polymerase
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infection by recognizing the host angiotensin-converting 
enzyme-2 receptor (ACE2) [98]. It contains two subunits, S1 
and S2. The S1 subunit contains a receptor-binding domain 
(RBD) with a size of 180–200 KD that binds and recog-
nizes the ACE2 receptor, while the S2 subunit mediates viral 
cell membrane fusion [99••]. The S protein uses the ACE-2 
receptor for entry to the host cell. The spike protein is coated 
with polysaccharide molecules to evade the surveillance of 
the host immune system during entry; targeting this mol-
ecule can potentially decrease the chance of infection owing 
to the prevention of the viral invasion to the host cells [100]. 
Much research was conducted computationally to identify 
the role of repurposed drugs on spike proteins and ACE2 
(Table 5).

COVID-19 mechanism of entary is that the spike recog-
nize ACE2 receptor, then the virus can enter the cell; in our 
review, we classify studies that interrupt this mechanism 
into three classes: First study that investigate drugs that bind 
spike protein showed that these drugs such as troxerutin 
could not be able to recognize ACE2, example of such drug 

is troxerutin [102••]; second study that investigate drugs 
that bind ACE2 thus compete with spike protein on ACE2 
binding site, example of such a drug is lopinavir [106]; third 
study that investigate drug binding to the complex of spike 
and ACE2 (6M0J) and prevent the transition to active state, 
example of such a drug is polymyxin B [88]. According to 
the ATC classification system, most of the drugs affecting 
the spike protein, ACE2, and the complex fall in the anti-
infective category (Table 5).

Drug Affecting Spike Protein

As demonstrated in Table 5, thirty-four drugs have been 
reported to target the spike protein, 6 of them are antivirals 
(lamivudine, nelfinavir, Dolutegravir, vidarabine, Remde-
sivir, Daclatasvir), and 3 of them (lamivudine, vidarabine, 
remdesivir) are nucleoside analogs that originally target the 
DNA synthesis in viruses with the same exact mechanism 
of action, and therefore a similar binding mode.

Ivermectin is reported 2 times in the spike docking analy-
sis and is investigated in clinical trials, but its frequency of 
appearance here does not indicate a potential for being a 
lead compound, because some in silico trials targeted the 
ivermectin from the beginning and not as the end result of 
an exhaustive virtual screening [16].

Drug Affecting the ACE2/Spike Complex

A number of studies investigate the binding of drugs to the 
ACE2/spike complex after the binding of spike to ACE2 has 
already been achieved; they seek a drug that can disrupt the 
interaction of ACE2 with RBD after the binding; 8 drugs 
were reported targeting ACE2/spike complex, and these 
drugs are (naltrexone, ivermectin, lopinavir, chloroquine, 
polymyxin B, colistin, daptomycin, oritavancin). Excluding 
naltrexone and chloroquine, a common trend in these drugs 
is that they have a molecular weight above 500 and most of 
them are above 1000. We run a pharmacophore analysis of 

Table 4   Drugs that target RNA-
dependent RNA polymerase

PDB ID Drug space Drugs References

6M71 DrugBank database Bedoradrine, and Palbociclib [92]
6M71 Miscellaneous com-

pound from literature
Chlorhexidine and Remidisvir [93]

6NUR ZINC database Eltrombopag, Tipranavir, Ergotamine and Conivaptan [51]
6M71 NA Montelukast [94]
78W4 ZINC database Lonafarnib, Tegobuvir, Simeprevir and Filibuvir [95]
6M71 FDA database Nacartocin, Cisatracurium and Pegamotecan [96]
6M71 FDA database Nebivolol [97]
7BV2 FDA database Pitavastatin, Ridogrel and Rosoxacin [91••]

Table 5   Drugs that target the spike protein

PDB ID Drug space Drugs References

6M17 FDA Database Ivermectin [16]
6LZG FDA Database hydroxychloroquine, 

chloroquine
[101]

6VW1 FDA Database Troxerutin [102••]
6VSB FDA Database Dolutegravir [102••, 103]
6M17 FDA Database Cangrelor [102••, 103, 104••]
6M17 FDA Database Kanamycin [104••]
6VSB FDA Database Nelfinavir [104••, 105]
2AJF FDA Database Lopinavir [106]
6LZG FDA Database Hydroxychloroquine [101]
6VSB FDA Database Daclatasvir [42, 102••]
6M0J FDA Database Polymyxin B [88]
6M17 FDA Database Pralatrexate [107]
6VXX FDA Database Imipenem [107, 108••]
6VSB FDA Database Streptomycin [53]
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these drugs and it had failed due to their complexities and 
variability.

Two studies targeting the ACE2 receptor only have been 
investigated. They seek a compound that can prevent the 
recognition of the spike to ACE2 [101, 103]. Herein, 10 
drugs were reported (lividomycin, burixafor, quisinostat, 
fluprofylline, pemetrexed, spirofylline, edotecarin, dini-
profylline, hydroxychloroquine, chloroquine). Obviously, a 
drug targeting ACE2 would not be much useful, but those 
studies were originally part of a bigger investigation and 
concluded that these compounds bind well to many targets, 
one of which is ACE2 [103].

Pharmacophore Analysis of the Spike Protein

During pharmacophore analysis, we did not find any con-
sistency in the use of a common PDB structure from the 
paper that studied the spike protein like what we achieved 
in the main protease. However, we proceeded with choos-
ing only one PDB (the one with the highest resolution) 
for binding site pharmacophore with the argument that 
they all have the similar sequence and thus a similar PDB 
structure. In the end, the pharmacophore analysis failed 
due to the diversity of the drugs.

Conclusion

Herein, we reviewed the current research concerning drug 
repurposing using molecular docking and other in silico 
drug discovery approaches in the battle against COVID-
19. Antiviral drugs were the most studied drugs. The main 
protease represented a potential target looking at its cen-
tral role in viral replication and huge availability per our 
standards. Moreover, studies indicated that the best results 
of pharmacophore investigation were obtained with tet-
racyclines and antivirals, which were originally protease 
inhibitors. We recommend using the models in further 
research, including virtual screening, which could help 
the overall efforts in finding effective therapeutic agents 
against COVID-19.
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