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Understanding of the intracellular molecular machinery that is responsible for the complex collective behavior of
multicellular populations is an exigent problem of modern biology. Quorum sensing, which allows bacteria to activate
genetic programs cooperatively, provides an instructive and tractable example illuminating the causal relationships
between the molecular organization of gene networks and the complex phenotypes they control. In this work we—to
our knowledge for the first time—present a detailed model of the population-wide transition to quorum sensing using
the example of Agrobacterium tumefaciens. We construct a model describing the Ti plasmid quorum-sensing gene
network and demonstrate that it behaves as an ‘‘on–off’’ gene expression switch that is robust to molecular noise and
that activates the plasmid conjugation program in response to the increase in autoinducer concentration. This
intracellular model is then incorporated into an agent-based stochastic population model that also describes bacterial
motion, cell division, and chemical communication. Simulating the transition to quorum sensing in a liquid medium
and biofilm, we explain the experimentally observed gradual manifestation of the quorum-sensing phenotype by
showing that the transition of individual model cells into the ‘‘on’’ state is spread stochastically over a broad range of
autoinducer concentrations. At the same time, the population-averaged values of critical autoinducer concentration
and the threshold population density are shown to be robust to variability between individual cells, predictable and
specific to particular growth conditions. Our modeling approach connects intracellular and population scales of the
quorum-sensing phenomenon and provides plausible answers to the long-standing questions regarding the ecological
and evolutionary significance of the phenomenon. Thus, we demonstrate that the transition to quorum sensing
requires a much higher threshold cell density in liquid medium than in biofilm, and on this basis we hypothesize that in
Agrobacterium quorum sensing serves as the detector of biofilm formation.
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Introduction

Molecular networks, which integrate signal transduction
and gene expression into the unified decision circuitry, are
ultimately responsible for the realization of all life activities
of biological cells including internal developmental programs
and responses to environmental factors. One of the main
challenges of systems biology is to uncover and understand
the relationships between the properties of these molecular
circuits and the macroscopic cellular phenotypes that are
controlled by them [1]. Particularly important are the
phenotypes involving interaction and cooperative action of
multiple cells. The mapping of networks onto phenotypes is
still difficult to accomplish in multicellular eukaryotic
organisms owing to their staggering complexity. Less complex
and more experimentally accessible prokaryotic organisms
became the systems of choice for ‘‘dissecting social behavior
at the genetic level’’ [2]. The phenomenon of bacterial
quorum sensing (QS) gives us a particularly unique oppor-
tunity to follow the causal relationships from molecular
circuitry to cooperative population dynamics.

QS refers to the ability of bacterial populations to
collectively activate certain gene expression programs, e.g.,
toxin release or antibiotic production, once some critical
population density has been reached. QS is found in a vast
variety of bacterial species and has been extensively studied

experimentally [3–6]. In Gram-negative bacteria, the QS
phenomenon is usually controlled by a small gene expression
network that functions as an environmentally activated ‘‘on–
off’’ gene expression switch [5,6] whose operation is analo-
gous to that of radar. At the low cell density that normally
corresponds to the ‘‘off’’ switch state, a key transcription
factor required for the expression of proteins responsible for
the phenotype is suppressed. At the same time, the cell
steadily produces a small amount of the QS signaling
molecule, termed the autoinducer, that can freely diffuse in
and out of the cell. While the population density is low, most
of the autoinducer molecules are washed out and dispersed in
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the environment by diffusion. As the cell density grows, more
molecules of autoinducer enter the bacterium from outside.
Once certain cell ‘‘quorum’’ is reached, the inbound auto-
inducer signal triggers the transition of the QS network to the
‘‘on’’ state, resulting in the production of the transcription
factor and the expression of the target genes.

This transition on both intracellular and population-wide
scales is the focus of our study.We investigate the phenomenon
of QS in the soil-dwelling plant pathogen Agrobacterium
tumefaciens, the causative agent of crown gall disease [7]. Bacteria
of this species often harbor Ti (tumor-inducing) plasmids that
endow their hosts with the unique ability to genetically modify
susceptible plants through a cross-kingdomDNA transfer. Like
many other soil bacteria, Agrobacterium is chemotactic to
exudates released by plant wounds and is capable of cataboliz-
ing various nutrients that leave injured plant roots. Once
bacteria formphysical contact with the surface of thewound, Ti
plasmids offer their hosts an extraordinary advantage over
their plasmidless competitors. A fragment of the plasmid,
termed the vir region, is injected into the plant cell in the form
of a virion-like complex and is stably incorporated into the
plant genome [7]. One of the imported genes is responsible for
the synthesis of opines, a class of low-molecular-weight nitro-
gen-rich metabolites, that can be utilized as a nutrient only by
the bacteria that harbor the Ti plasmid. Other transferred
genes cause a vigorous proliferation of infected plant cells that
eventually results in the formation of a characteristic gall
tumor. Once productive infection is established, Ti plasmids
attempt to propagate themselves into the plasmidless bacteria
of the same or related species by means of genetic conjugation.
It has been shown that the conjugal transfer of Ti plasmids
requires the QS phenomenon [8].

Functional significance of QS for the control of Ti plasmid
conjugation remains an ecological and evolutionary puzzle. It
is widely believed [5,6] that QS controls processes, such as
production of toxins and antibiotics, that are either

inefficient or devoid of adaptive value if not performed on
a population scale. Thus, the fact that the establishment of QS
is upstream of the initiation of conjugation seems to imply
that plasmids await the critical density of donors to
collectively begin transfer to recipients. Since multiple
donors cannot cooperate in DNA transfer, the necessity for
collective action does not seem to be relevant in our case.
Instead, to increase the probability of successful conjugation
it would appear beneficial to exceed a certain number of
recipients per donor. However the density of plasmidless
recipients cannot be estimated using QS since they do not
produce the autoinducer. This seemingly paradoxical sit-
uation may imply that our understanding of the biological
function of QS is not yet complete. Indeed, an alternative
function for QS as a sensor of the volume enclosing the
bacteria has also been proposed [9]. To answer what bacteria
really measure using QS in each particular situation, it is
necessary to consider the ecologically relevant conditions of
bacterial growth [2].
An experimental approach to this problem is often

complicated by the technical difficulty of work in real
ecosystems. On the other hand, mathematical modeling can
significantly aid and complement experimental methods in
answering biological questions that involve spatial and
temporal scales of the QS phenomenon. Some aspects of
either intracellular [10–13] or population [14–16] dynamics
have been mathematically modeled to gain insight into the QS
phenomenon in Pseudomonas aeruginosa and Vibrio fischeri.
However, because of the lack of detailed molecular informa-
tion, experimentally testable conclusions on the connections
between intracellular and population dynamics have rarely
been made. Here we develop a multi-level modeling approach
that describes both the intracellular and the population-wide
dynamics and allows us to follow the connections between
them explicitly. Although much has been learned about the
molecular details of the Agrobacterium QS network, it is not
always clear what functions they perform. Here we construct a
detailed model of the QS network in Agrobacterium and analyze
it both quantitatively and qualitatively. We demonstrate that
the network possesses properties of the on–off gene expres-
sion switch robust to molecular noise. We further develop a
population-scale model that incorporates bacterial motion,
cell division, and chemical communication while explicitly
considering the individual intracellular dynamics of each cell.
This allows us to describe the transition to QS on both cellular
and population scales and quantitatively predict the values of
critical autoinducer concentration and threshold cell density
as functions of various intracellular and environmental
parameters. Finally, comparing feasibility of the transition
to QS in homogeneous medium and biofilm, we present a
hypothesis explaining the ecological and evolutionary roles of
QS in regulation of Ti plasmid conjugal transfer.

The QS Network and Model Assumptions
All genes that are thought to constitute the QS network are

located on the Ti plasmid itself [7]. The entire QS network is
controlled upstream by the availability of the plant-produced
opines to ensure that energetically expensive conjugation
machinery is activated only after the establishment of a
successful plant wound infection. Based on the chemical
nature of the encoded opines, Ti plasmids are divided into
two major types [7], of which we consider only the octopine
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Synopsis

Understanding the interplay between the extracellular environment
and intracellular decision circuitry of a cell is important but is an
arduous goal to achieve since many interacting factors, difficult to
measure and control in experiment, are involved. The authors
address this problem by means of computational modeling using
the example of a bacterial population that cooperatively switches on
a common gene expression program if a certain critical population
density is achieved. They developed a detailed model of the
intracellular control network and demonstrated that it can operate
as an ‘‘on–off’’ gene expression switch that is sensitive to
environmental control and yet highly robust to intracellular
molecular noise. The population-wide transition is further modeled
using a novel method in which each bacterium is given a unique
copy of an intracellular network. This approach, which allows
monitoring of both the dynamics of individual cells and population
behavior, provides an explanation for the gradual appearance of the
transition to the ‘‘on’’ state that has been observed in experiments,
and quantitatively predicts the critical value of the population
density at which this transition occurs. Unexpectedly, a comparison
of the cell densities required for the transition in different
environmental conditions brought about a hypothesis regarding
the previously elusive ecological and evolutionary function of this
cooperative phenomenon.
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type. We reconstructed the layout of the QS network for the
octopine-type Ti plasmids from the published experimental
data (Figure 1). In this plasmid class, octopine molecules that
are imported through the cell wall eventually cause activation
of transcription from the operon occ [17]. In the model, we
assume that octopine is constitutively available at the saturat-
ing concentration that results in the maximal rate of occ
transcription. The last open reading frame of this operon
codes for theQS transcription activator TraR. Binding of TraR
to its cognate autoinducer is thought to occur only within a
narrow window of time during traR mRNA translation when
the newly formed protein chain tightly winds around a single
molecule of Agrobacterium autoinducer (AAI) [18–20]. This total
engulfment ofAAImoleculemakes formation of theTraR–AAI
complex (TraR*) practically irreversible. Furthermore, TraR
protein translated in the absence of AAI is misfolded,
insoluble, and unable to bind AAI [18,20]. This has an
important consequence in that the rate of production of
TraR* depends on the concentrations of traR mRNA and AAI
and does not depend on the accumulation of misfolded TraR
protein, as explicitly shown in Figure 1. Once formed, TraR*
quickly dimerizes to form a stable transcriptionally active
TraR* dimer (TraRd) with a relatively short half-life of 35 min
[18]. TraRd is capable of activating a number of operons that
encode proteins necessary for conjugation. The first open
reading frame of the trb operon codes for the acyl-homoserine
lactone synthetase TraI, which utilizes two metabolites
abundant in the bacterial cell to create AAI [21]. Since our
model considers transition to QS in the mostly nutrient-rich,
stress-free conditions of an optimized growth medium, we
assume that the substrates of TraI are present in excess and
their concentrations do not limit the rate of AAI production.
Both traR and traI were shown to be expressed at some low
constitutive rate even in the absence of octopine [7]. TheTraR–
TraI couple constitutes the classic QS positive feedback loop

found in many Gram-negative bacteria. Additional feedback
loops that also involve other components of the QS network
are specific for Agrobacterium. Thus, negative control of QS is
provided by the antiactivator traM, whose transcription is
directly activated by TraRd [22]. TraM effectively sequesters
TraRd through the formation of a very stable complex in which
TraRd is unable to bind DNA [23,24]. Recently, a number of
authors reported that, like TraR, TraM also forms a dimer [25–
27]. The stoichiometry of the reaction betweenTraR andTraM,
however, remains controversial [25–27]. In our model we
follow the original hypothesis of Swiderska et al. [24], which
assumes that the complex consists of one TraRd and one
monomer of TraM. This hypothesis is partially supported by
Chen et al. [26], who showed that the TraM dimer must
dissociate to form a complex with TraR. Under these
assumptions we disregard dimerization of TraM as not
affecting the network behavior. An additional positive feed-
back loop arises because TraRd activates transcription of the
mshoperon, which is a suboperon of occ that contains traR itself.
Several lines of evidence suggest that active transporters

facilitate traffic of the QS signaling molecules through the
cell wall in a number of bacterial species including Agro-
bacterium [28–30]. In our model, we explore the hypothesis
that AAI is imported from the environment by an active
pump that is also under the transcriptional control of TraRd.
Indeed, the msh operon contains five open reading frames
(ophABCDE) that encode a putative ABC-type importer whose
function is not completely understood but that has been
hypothesized to be an active transporter of AAI into the cell
[30]. Taking into consideration this uncertainty, the putative
AAI importer in the model is denoted simply as Imp.

Results/Discussion

The QS Network Can Operate as a Gene Expression Switch
We first asked whether the intracellular model constructed

by us purely from the individual molecular interactions
indeed describes known biological properties of the QS
network. Although numerical simulation of the full model
can answer this question in principle, it does not bring
qualitative insight into the system’s behavior. Thus, we
reduced the full model to only two nonlinear differential
equations describing TraRd and intracellular AAI that are
readily amenable to qualitative analysis (see Materials and
Methods for details). Figure 2 demonstrates that the QS
network indeed possesses the property of an environmentally
activated gene expression switch. Depending on the value of
Ae , the model possesses one or two stable stationary states.
The only stationary state at a low extracellular concentration
of AAI is characterized by a vanishing number of TraRd
molecules. In fact, a copy number of TraRd significantly
below one indicates that most of the time transcription factor
is not present in the cell at all and the QS network is in the off
state. As AAI accumulates in the environment, the position of
the Ai nullcline elevates so that first the on state is born at
some value of Ae and then the off state disappears at the
critical extracellular concentration, thus triggering the
transition to the on state. As a result of this transition, the
copy number of TraRd dramatically rises from less than one
to several hundreds, and the production of AAI increases
nearly10-fold.
Sensitivity of the QS network to the changes in the

Figure 1. Quorum-Sensing Network of an Octopine-Type Agrobacterium

Ti Plasmid

Blue ellipses represent proteins, red rectangles indicate mRNA species,
and green flattened circles denote metabolites. Open circle arrowheads
represent enzymatic activation of a reaction or transport, and open
triangle arrowheads denote translation. Essential bimolecular reactions
are shown explicitly as open squares. S represents two substrates of the
autoinducer synthetase TraI, and Ø denotes protein degradation.
DOI: 10.1371/journal.pcbi.0010037.g001
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extracellular concentration of AAI and consequently to the
population density is defined by passive permeability of the
cell wall to AAI and any active transport, if existent. Passive
diffusion largely depends on the physical properties of the
AAI molecule (e.g., length of the hydrocarbon chain) and
cannot be controlled by the QS network. On the other hand,
our model shows that an active importer, such as putative
transporter Imp, can exert significant control over the
transition threshold. Indeed, we found that the critical
extracellular AAI concentration Ac

e depends linearly on the
AAI–Imp dissociation constant Kimp

d ¼ k5=k4 for a wide
range of Kimp

d values (Figure 3). One may also speculate that
the availability of such a pump could give the Ti plasmid
evolutionary flexibility in the changing environment since a
large multi-subunit protein complex can quickly accumulate
mutations that potentially affect its transporter properties
and consequently alter the transition threshold.

TraM Is Necessary for the Existence of the Off State
Our model clearly demonstrates that the negative feedback

provided by traM antiactivator is essential for the very
existence of the off state in the QS network. Historically,
traM was identified as a gene whose loss of function resulted
in constitutive conjugation among the bacteria [22,31].
Indeed, the removal of the TraRd–TraM reaction from the
model destroys the bistability of the QS network and permits
only the on stationary state at any extracellular concentration
of AAI. The model explains the mechanism of TraM action
through the mutual exclusion between TraM and TraRd. In
the off state, an appreciable number of TraM molecules (over
100 copies per cell) ensures that TraRd does not accumulate.
During the transition to QS, rapidly created TraR* dimers
sequester the TraM pool and reduce it to less than one
molecule per cell in the on state. Production rate of the traM
mRNA remains high in the on state, but the substantial
surplus of TraRd guarantees that all newly synthesized TraM

molecules are quickly sequestered. If this mechanism is
inactivated by a mutation, the QS network amplifies any
small number of TraRd complexes to the high on level even in
the absence of exogenous AAI. This model prediction has
been verified by genetic analysis. Strain K588, which produces
AAI constitutively, was found to contain a point mutation in
traM that renders the TraM protein inactive. Complementa-
tion of K588 with an intact traM, which was administered on a
separate plasmid, restored the wild-type phenotype com-
pletely (L. H. Z., unpublished data).

Sensitivity Analysis Reveals Critical Components of the QS
Network
Additional information about the contribution of various

components of the QS network to the control of the TraRd
copy number can be gained from the analysis of sensitivity of
the stationary concentration of TraRd to variation in the
network parameters. One of the popular methods to assess
sensitivity of molecular networks [32,33] is based on metabolic
control analysis [34]. We computed the sensitivity of TraRd
concentration to all network parameters in the off state at two
values of Ae , far from the transition to QS (Ae¼ 0) and in the
bistable region (Ae¼42 nM), as well as of the on state, deep into
the region of its stability at Ae¼ 120 nM. The three values of
sensitivity coefficient calculated for each parameter as
described in the Materials and Methods are given in Table
S1. As expected, sensitivity to most parameters peaks in the
on–off transition region. Processes responsible for the
production and degradation of traR mRNA exert the most
powerful control over the copy number of TraRd. However,
the contribution of the positive feedback loop due to the
transcription of the msh operon becomes significant in
comparison with the input from the octopine-induced tran-
scription of occ only during and after the transition to the on
state. Interestingly, the sensitivity analysis shows that various
components of the QS network contribute very differently
into the control of TraRd in the on and off states. Thus, TraRd
degradation is unimportant in the off state, when the copy

Figure 3. Dependence of the Critical Extracellular Concentration of

Autoinducer Ac
e on the Autoinducer–Transporter Dissociation Coefficient

K imp
d ¼ k5 / k4 Predicted by the Intracellular Model

The solid line is fitted to the computed data points indicated by the filled
squares. The value of K imp

d ¼ 0.592 nM used throughout the simulations
reported in this paper is shown as an empty square.
DOI: 10.1371/journal.pcbi.0010037.g003

Figure 2. Nullclines of the Reduced Quorum-Sensing Model at Several

Extracellular Concentrations of AAI

Nullclines represent lines on which the respective variable does not
change with time (e.g., d[traRd]/dt¼ 0 on the TraRd nullcline), and their
intersections correspond to the stationary states of the model. The TraRd
nullcline is shown as a solid black line and the Ai nullcline at three values
of Ae—(a) 35 nM, (b) 67 nM, and (c) 142 nM—is shown in color. Positions
of stable stationary states are marked by filled circles for the off network
state and by filled boxes for the on state. The open circle indicates the
unstable steady state of a saddle type.
DOI: 10.1371/journal.pcbi.0010037.g002
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number of the transcription activator is controlled by TraM,
and acquires prominence in the on state, when sequestration
by TraM becomes irrelevant. Likewise the Imp plays no role in
the off state but exerts control over TraRd during the
transition to QS. In contrast, the subsystem responsible for
the production of TraI looses significance in the on state,
when a large pool of this protein accumulates in the cell.

The QS Network is Robust to Molecular Noise
We next set out to investigate whether the sharp switch-like

behavior of the QS network predicted by the deterministic
model is preserved when fluctuations in the number of
molecules are considered. To answer this question, we
simulated the full intracellular model stochastically (see
Materials and Methods) and compared the results with the
deterministic solution. Figure 4 demonstrates that there is
remarkably good agreement between the deterministic model
and the behavior of the stochastic intracellular model
averaged over a long observation time. The same results
were obtained by averaging the behavior over many
independent realizations.

Undetectable in the average value, fluctuations in the copy
number of TraRd deserve special attention as they can
dramatically affect the network behavior. In particular, the
off state predicted by our model is biologically meaningful
only if the fluctuations of TraRd are controlled as tightly as its
average concentration. Rare but significant departures from
the off state in the absence of the extracellular AAI signal (Ae¼
0) would result in spontaneous activation of genes encoding
conjugation machinery under unfavorable conditions, bring-
ing about selective penalty for the host bacteria. We
performed a detailed analysis of the stability of the off state
by investigating the TraRd probability density function at
varying concentrations of extracellular AAI. The TraRd
probability density function peaks at zero in the off state
and decreases exponentially with the number of dimer
molecules. At Ae¼ 0, where the average TraRd concentration
is 0.034, fluctuations of TraRd are practically negligible. Thus,
two copies per cell are found with probability 0.001, while
three copies are found with probability of only 6.6310�5. This

demonstrates that in the absence of external autoinducer the
QS network maintains robust control of the fluctuations in
the TraRd copy number and effectively prevents spontaneous
transitions to the on state. At the same time, other molecular
species whose copy number is not controlled by the QS
network, e.g., TraI, TraM, and intracellular AAI, exhibit large-
amplitude fluctuations around their average levels, in agree-
ment with earlier reports for other molecular networks [35].
As Ae increases, the fluctuations of TraRd also grow. At
extracellular AAI concentrations in the range of 40–60 nM the
network visits on and off states intermittently. For Ae� 70 nM,
the model is found solely in the on state.

Collective Robustness of the Population Transition to QS
We first investigated the transition to QS in the simplest

case of a population growing exponentially in a homogeneous
liquid medium. The stochastic population model was simu-
lated to imitate actual population dynamics of motile bacteria
in a small volume element (Ve¼ 10�5 ml) of a liquid medium
bulk. During approximately 7 h of simulation time, the
population grew more than 100 times to reach the maximal
density N ¼ 2.52 3 109 cells/ml. Figure 5 demonstrates the
transition to QS in this system as detected by monitoring the
intracellular dynamics of randomly selected bacterial cells.
Observation of an individual bacterium over time shows that
after the initial period of quiescent growth in the off state,
TraRd exhibits sudden and fast switches to the on state (Figure
5A). These phases with variable duration and TraRd abun-
dance alternate with the off phases in a random pattern until
the cell finally settles in the on state. While the intracellular
dynamics of individual bacteria appears to be totally erratic,
the population average demonstrates an orderly, gradual
transition to QS (Figure 5B). Moreover, ensemble-averaged
behavior of the stochastic population model resembles that of
the deterministic model (Figure 5C). For example, notice that
in both cases prior to the transition to the on state TraM
temporarily undergoes a maximum. To be precise, we can
define the transition to QS to occur at the point where the
lines for TraRd and TraM abundance intersect in Figure 5C.
Then deterministic and stochastic models predict transition
at the same critical value of extracellular autoinducer
concentration, Ac

e¼580 6 3 nM. Thus, the collective transition
to QS in the spatially homogeneous bacterial population, as
defined by the ensemble average of intracellular concentra-
tions, is robust to the variability of individual bacteria and can
be described by a simple deterministic model with a
reasonable accuracy. Interestingly, the value of Ac

e predicted
by our model is of the same order of magnitude as the
experimentally found values (150 and 900 nM) for the two QS
systems of Serratia liquefaciens [36].

Transition to QS in the Growing Population is Dynamic
The value of the critical AAI concentration Ac

e for the
exponentially growing spatially homogeneous population is
more than ten times larger than the one that follows from the
case in Figure 4. This discrepancy arises because in the
computation of both stochastic and deterministic values
presented in Figure 4 it is implicitly assumed that a bacterium
remains in the medium with a given extracellular AAI
concentration for a practically infinite amount of time. In
the growing population, Ae rises exponentially together with
the population density and the intracellular network does not

Figure 4. Transition to Quorum Sensing in the Stochastic Model of

Intracellular Dynamics

TraRd concentration averaged over 6 3 106 s (filled squares) is plotted
against extracellular concentration of AAI. The prediction of the
deterministic model is shown as a solid line for comparison.
DOI: 10.1371/journal.pcbi.0010037.g004
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have sufficient time to adjust to the extracellular environ-
ment. As a result, the transition to QS in a growing
population always occurs in conditions far from stationary,
and the values of the critical AAI concentration and the cell
density threshold depend on the parameters of the popula-
tion growth. The duration of the cell cycle that defines the
population growth rate is one of the key parameters. The
lower the population growth rate, the smaller the required Ac

e.
In the unrealistic limit of an infinitely slowly growing
population, the transition is guaranteed to occur at the value
found for the static intracellular model (Ac;‘

e ’ 48 nM). Figure
6 shows that the difference between the actual critical
concentration Ac

e and its asymptotic value Ac;‘
e first decreases

dramatically with the increase in the cell cycle duration Tc

and then slowly vanishes in accordance with an apparent
power law Ac

e � Ac;‘
e }T�0:61c .

The threshold population density depends on Ac
e and a

number of other population parameters, e.g., the spatial
distribution of bacteria in the habitat (see below). The value
of the cell density Nc that has to be reached to achieve QS
under specific environmental conditions can provide useful
information on the possibility of achieving QS in an
environmental niche. For example, experimental observation
of the transition of an Agrobacterium population to QS in
liquid medium can be problematic because of the large value
of the predicted density threshold (Nc

s ’ 2.0 3 109 cells/ml by
the stochastic model and Nc

d ’ 2.82 3 109 cells/ml by the
deterministic approach). In response to depletion of the
nutrients in the liquid medium, a typical Agrobacterium
population begins the transition to the stationary growth
phase at or even below the predicted Nc values [37]. The
ensuing general stress response activates transcription of
lactonase attM, which efficiently destroys autoinducer mole-
cules and abrogates the transition to QS [37–39]. Thus, even
in the nutrient-rich conditions of the optimized liquid
medium it is not unlikely that the transition to the stationary
phase precedes and, therefore, precludes the transition to QS.

Spatial Heterogeneity Reduces Population Density
Threshold

We interpreted the previous finding as an indication that
the simplest experimental scenario of growth in a spatially

homogeneous liquid medium is not ecologically relevant and
the QS network is not ‘‘tuned on’’ to support the transition to
QS in such conditions. Indeed, in nature, the transition to QS
and subsequent bacterial conjugation take place in the thin
but dense biofilm on the surface of a Ti-plasmid-induced
plant tumor. In laboratory conditions, the experiments on
detection and quantification of conjugation are normally
performed in the quasi two-dimensional environment of
polymer filters that provide bacteria with firm support for
attachment and conjugation [40]. We therefore modified the
stochastic population model to simulate an immotile bacte-
rial population that grows exponentially on the surface of a
filter that is placed at the bottom of a Petri dish and covered
with 1 cm of an unstirred liquid medium. We also roughly
estimated the transition to QS in the biofilm growing on the
interface between the plant tumor and the soil using the same
spatial layout but with the AAI diffusion coefficient reduced
by a factor of ten. Although such simplistic approximation
may not adequately represent complex conditions in the soil,
it reveals a qualitative trend relevant for the goal of our study.

Figure 6. Critical Extracellular Concentration of Autoinducer Depends on

the Growth Rate of a Bacterial Population

The difference between the actual critical concentration A e
c computed

using the deterministic population model and the value predicted by the
intracellular model A e

c ,‘ is plotted against the duration of cell cycle Tc

(filled circles). As shown by the linear fit (solid line), A e
c approaches A e

c ,‘

according to the power law A e
c � A e

c ,‘}T � 0.61
c .

DOI: 10.1371/journal.pcbi.0010037.g006

Figure 5. Transition of a Model Bacterial Population to Quorum Sensing in a Homogeneous Liquid Medium

Intracellular concentrations of TraRd (thick red line) and TraM (thin blue line, filled circles) are plotted against the population density that exponentially
grows with time.
(A) Dynamics of an individual cell in the stochastic population model.
(B) Dynamics of the stochastic population model averaged over ten bacteria.
(C) Behavior of the deterministic population model.
DOI: 10.1371/journal.pcbi.0010037.g005
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In the absence of mechanical mixing and active bacterial
motion, AAI excreted into the extracellular space freely
diffuses into the medium and forms a sharp concentration
gradient. As can be seen in the simulation results (Figure 7A),
the AAI concentration drops exponentially from hundreds of
nanomoles per liter in the plane of biofilm to barely
detectable values on the medium boundary. Lower conduc-
tivity of the medium results in a steeper gradient, faster
accumulation of AAI in the plane of biofilm, and reduced
losses of AAI into the environment. Monitoring of the
population-averaged intracellular variables shows that the
transition to QS in the biofilm is not appreciably different
from that in the bulk of the liquid medium (Figure 7B) and
takes place at the similar critical extracellular AAI concen-
tration Ac

e ’ 615 nM. In contrast, the threshold population
densities, 4.43 3 108 cells/cm2 for the faster and 1.33 3 108

cells/cm2 for the slower diffusion, are considerably lower than
the homogeneous bulk value. From analysis of electron
microscopy images of Agrobacterium biofilms [41], we calcu-
lated a typical cell density to be between 0.5 and 5 cells/lm2

(0.5–5.0 3 108 cells/cm2). The values predicted by our model
are thus well within the natural range and can be readily
reached by a biofilm growing in the optimal nutrition
conditions, e.g., on the feeding surface of a plant tumor.

Conclusions
Using the phenomenon of bacterial QS as an enlightening

example, we investigated the relationship between the
dynamics of an intracellular molecular network and the
population-wide phenotype that is controlled by this net-
work. We first reconstructed the QS network of Agrobacterium
Ti plasmids from experimental data and demonstrated that
the network actually possesses the properties required for a
gene expression switch, such as high sensitivity to environ-
mental control and robustness to molecular noise. We then
developed a stochastic model of a bacterial population to
explore the transition to QS in a number of simple
experimental scenarios, namely, during exponential growth
in homogeneous liquid bulk and in an attached biofilm.
One of the long-standing questions in this field is whether

all cells in a population produce autoinducer at the same rate
and experience transition to QS simultaneously [2]. Our
results predict that even in spatially homogeneous medium
there is dramatic variability between the cells in the level of
transcription factor and therefore the rate of production of
autoinducer. This variability presumably arises from the fact
that in a single cell the transition to QS, essentially an
autocatalytic process, vastly amplifies the natural stochasticity
of gene expression inherent in bacteria [42–44]. As a result,
individual cells experience transition to QS in a wide range of
extracellular concentrations of autoinducer and at varied
levels of population density. Such nongenetic variability in
the behavior of individual bacterial cells has been demon-
strated to be advantageous for population survival in some
cases, e.g., in the phenomenon of bacterial persistence under
antibiotic treatment [45,46]. In our system, this variability
may improve chances of Ti plasmid propagation within the
biofilm when the density of donor cells falls short of the
critical value. Although no direct evidence for this has been
reported, such variability can explain why the appearance of
conjugation between donors and recipients is observed
emerging gradually over an extended cell density range [47].
Additional factors responsible for the widening of the
transition range may result from spatial heterogeneity within
the biofilm. In the present stochastic model we disregarded
inhomogeneity of cell distribution in the plane of the biofilm.
In future research it would be interesting to explore the
influence of spatial heterogeneity typical of natural biofilms
on the transition to QS.
Despite large variability between individual cells, a single

population-wide value can be meaningfully defined for both
critical concentration of autoinducer and the threshold
population density for the transition to QS if the intracellular
dynamics of individual cells is averaged over the population.
These values are robust to stochasticity of individual bacteria
and can be predicted with sufficient accuracy by a determin-
istic population model provided that spatial heterogeneity is
insignificant. Our model demonstrates that when driven by
exponential growth, the population transition to QS does not
occur under steady state conditions and therefore the critical
values depend on the parameters of population growth. Thus,
the critical concentration of autoinducer depends on the
growth rate.
Importantly, bacteria grown in different experimental

conditions require different population densities to reach
QS. Transition to QS in the bulk of the liquid medium

Figure 7. Transition to Quorum Sensing in a Model Bacterial Population

Growing as an Attached Biofilm

(A) Spatial gradient of autoinducer created by the biofilm after 7 h of
growth at two different values of AAI diffusion coefficient: (a) 10�5 cm2/s
and (b) 10�6 cm2/s. The x-axis is perpendicular to the plane of the biofilm,
which is positioned at x ¼ 0.
(B) Intracellular copy numbers of TraRd and TraM averaged over 20
randomly selected bacteria versus the population density for the slower
diffusion of AAI.
DOI: 10.1371/journal.pcbi.0010037.g007
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appears to be the least favorable and requires much higher
population density than transition in a biofilm. This result
suggests potential ecological and evolutionary significance of
the QS phenomenon for Ti plasmid propagation. In natural
conditions a bacterial population dwells in a heterogeneous
habitat with both bulk (e.g., soil) and the attracting surface
(the plant–soil interface). Given the difference in cell density
thresholds, it is likely that the transition to QS occurs in the
surface-attached biofilm but not in the bulk. Therefore, it is
tempting to speculate that the Ti plasmid utilizes QS to
detect whether its bacterial host is firmly attached to the
biofilm in close proximity to the source of nutrition
(octopine) and, therefore, is in favorable conditions to
initiate the conjugal transfer. Contribution of QS to the
maturation of biofilms has been suggested for a number of
species (for review see [2]). Interestingly, in our case QS does
not influence any morphogenetic process in the biofilm but
rather appears to detect the condition when the biofilm is
sufficiently advanced in its formation. The requirement of
biofilm formation for conjugation might be explained by the
fact that solid support was found to be essential for the
success of Ti plasmid transfer between the bacterial cells [47].
In addition, location inside a biofilm implies a high density of
neighbors and therefore a high probability of finding a
conjugation partner in close proximity.

Thus, our systems-level model provides experimentally
testable quantitative predictions regarding both the dynamics
of the intracellular control network and the population-wide
characteristics of the transition to QS. Experimental verifi-
cation of these predictions can be achieved, for example, by
using a combination of classical genetic techniques and
modern fluorescent confocal microscopy. One of the less
obvious model predictions amenable to this approach is the
existence of an appreciable intracellular pool of TraM in the
off state. Insertion of a fluorescent reporter, like the green
fluorescent protein or one of its derivatives, into some or all
operons controlled by TraRd would result in the develop-
ment of a sensitive gage to directly observe the dynamics of
the transition to QS in vivo. With such a reporter it should be

possible to observe bistability in the transition region by
simultaneously monitoring populations of cells in the off and
on states, e.g., as has recently been done in a study of the
lactose utilization network [48]. Ability to monitor in vivo the
copy number of TraRd or, complementary to it, concen-
tration of TraM in a statistically significant number of
bacterial cells would also allow one to measure the critical
concentration of AAI and the threshold population density.
The dependence of the autoinducer critical concentration on
the growth rate is also a testable prediction. Our model
predicts that if the duration of the cell cycle increases from 1
h to 2 h, Ac

e should drop almost by a factor of two.
In addition to producing these predictions, our study

suggests an answer to the long-standing question regarding
the ecological and evolutionary role of the QS phenomenon
in the genetic conjugation of Ti plasmids. Finally, our analysis
demonstrates how computational modeling connects multi-
ple scales of biological phenomena, from the level of
molecular networks to that of multicellular populations.

Materials and Methods

Mathematical formulation of intracellular dynamics. We formu-
lated the chemical kinetics of the Agrobacterium QS network as a
system of 16 mass-action rate law equations with 30 chemical
constants and the extracellular concentration of AAI as a free
parameter. Complex processes of transcription and translation are
represented in our formulation by cumulative reactive mechanisms:

DNAþ TF ¢ DNA-TF ! DNA-TF þ mRNA; ð1Þ

mRNA! mRNAþ Protein; ð2Þ

with three and one effective reaction constants, respectively. The
action of the putative AAI importer is modeled according to the
standard enzymatic mechanism:

impþ Ae ¢ imp A! impþ Ai; ð3Þ

where Ae and Ai are the extracellular and intracellular concentrations
of AAI, respectively. Detailed formulation of each model equation is
given in Table 1.

Kinetic constants. We extracted a number of crucial model
parameters, e.g., lifetime of TraRd and reaction constant of TraRd
and TraM, directly from the literature. Many parameters of a more

Table 1. Model Variables and Equations

Type of Variable Variable (X) Kinetic Equation (dX/dt ¼)

Proteins imp_ p k13 �msh r þ k3 � imp A� k14 � imp p� k4 � Ae � imp pþ k5 � imp A

traR* k6 �msh r � Ai þ 2k9 � D� 2k8 � traR�2

traRd (D) k8 � traR�2 � k9 � D� k10 � D� k22 � D � trb v þ k23 � trb o� k16 � D �
traM v þ k17 � traM o� k29 � D �msh v þ k30 �msh o� k11 � D � traM p

traI_ p k25 � traI r � k26 � traI p

traM_ p k19 � traM r � k11 � traM p � D� k20 � traM p

mRNA msh_ r k7 þ k28 �msh o� k12 �msh r

traI_ r k27 þ k21 � trb o� k24 � traI r

traM_ r k15 � traM o� k18 � traM r

Vacant TF binding sites msh_ v �k29 � D �msh v þ k30 �msh o

traM_ v �k16 � D � traM v þ k17 � traM o

trb_ v �k22 � D � trb v þ k23 � trb o

Occupied TF binding sites msh_ o k29 � D �msh v � k30 �msh o

traM_ o k16 � D � traM v � k17 � traM o

trb_ o k22 � D � trb v � k23 � trb o

Metabolites Ai k1 � traI pþ k2 � Ae þ k3 � imp A� k2 � Ai � k6 �msh r � Ai

Transporter-AAI complex imp_ A k4 � Ae � imp p� k5 � imp A� k3 � imp A

TF, transcription factor TraRd.

DOI: 10.1371/journal.pcbi.0010037.t001
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general nature, such as velocities of transcription and translation, are
not reported for our system and were estimated based on values
obtained for other prokaryotic systems. We estimated the average
volume of a bacterial cell Vb to be 1.4 3 10�13 cm3 (a cylinder with
diameter 0.3 lm and length 2 lm) using high-quality electronic
microscopy imagesofAgrobacterium colonies [41]. Basedon this valuewe
converted all concentrations frommoles per liter (M) to molecules per
cell (one molecule per cell corresponds to approximately 12 nM) and
adjusted kinetic constants appropriately. A full set of the constants
used in this work is presented in Table S1. To ensure validity of the
population model predictions, it is essential to correctly evaluate the
level of AAI production by a bacterial cell. We achieved this by fitting
our model to the experimental data obtained for the conjugation
constitutive mutant strain K588 [37] (Figure 8). This mutant produces
copious amounts of AAI that can be readily detected in the medium
throughout population growth (see Results and Discussion).

Sensitivity analysis. We performed a local analysis of sensitivity of
the stationary states of the full deterministic model to variation of the
model parameters using the formalism of the metabolic control
analysis [34] that recently has been extended for the analysis of signal
transduction and gene expression networks [49,50]. In this frame-
work, the sensitivity of the stationary concentrations of intracellular
components Ci to variation of the model parameters kj is given by the
concentration response coefficients:

RCi
kj ¼

@Ci

@kj
�
kj
Ci
¼ @lnCi

@lnkj
: ð4Þ

These coefficients were computed using Jarnac, which was integrated
into Systems Biology Workbench, a freely available software platform
[51].

Reduction of the full model. We used standard methods of
chemical kinetics to reduce the dimensionality of the full QS network
model to only two equations describing the dynamics of TraRd and
intracellular AAI. We first eliminated variables describing vacant and
occupied TraRd binding sites (see Table 1), assuming that the
quasistationary approximation holds for these variables. This
assumption results in the effective Michaelis–Menten approximation
for all transcription events. We simultaneously introduced corre-
sponding Michaelis–Menten constants, which in this case are the
coefficients of dissociation for TraRd binding to respective cis-
regulatory elements, e.g., KtraM

M ¼ k17=k16. Thus, for example, the
equation for traM mRNA becomes:

d
dt
traM r ¼ k15 � D

KtraM
M þ D

� k18 � traM r; ð5Þ

where D represents concentration of TraRd as in Table 1. In a similar
fashion we eliminated the variable imp_A and introduced another
Michaelis–Menten constant, Kimp

M ¼ ðk5 þ k3Þ=k4. We then applied
quasistationary approximation to all three mRNA species as well as
to the proteins Imp, TraI, and TraM and the monomeric complex
TraR*. This allowed us to express all of the remaining variables
through the concentrations of TraRd and AAI. For example, from the
previous equation the quasistationary concentration of traMmRNA is:

traM r ¼ k15
k18
� D
KtraM

M þ D
: ð6Þ

Finally, we obtained the reduced model with two equations:

dD
dt
¼ Ai

k6
2k12

k7þ
k28 � D
kmshM þ D

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

production

� k19k15 � D2

k18ðktraMM þ DÞðk20=k11 þ DÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reaction with TraM

� k10 � D

|fflfflfflffl{zfflfflfflffl}
degradation

; ð7Þ

dAi

dt
¼ k1k25

k26k24
k27 þ

k21 � D
ktrbM þ D

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

production by TraI

þ k2ðAe � AiÞ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
passive exchange

�Ai
k6
k12

k7 þ
k28 � D
kmshM þ D

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

production of TraR�

þ k13k3 � Ae

k12k14ðkimpM þ AeÞ
k7 þ

k28 � D
kmshM þ D

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
active transport

ð8Þ

Population model. Since the full model for the intracellular
dynamics is expressed entirely in mass-action rate law equations, it

can be simulated with both deterministic and stochastic methods. To
model the transition to QS in the exponentially growing bacterial
population deterministically, we complemented the intracellular
model with two equations describing the dynamics of cell density N
and extracellular autoinducer Ae :

dN=dt ¼ aN ð9Þ

dAe=dt ¼ V 9N � ½k2ðAi � AeÞ þ k5imp A� k4imp p � Ae� ð10Þ

where V9 is the ratio of the bacterial cell volume Vb to the full volume
occupied by the population suspended in the medium Ve (1 ml) and
the expression in square brackets represents the exchange of AAI
between a bacterium and the environment (see Table 1 for details).

In the stochastic formulation, each bacterium is represented by a
separate agent endowed with an independent stochastic realization of
the QS network model. We assumed that bacteria can either
randomly move in the medium (planktonic form) with effective
diffusion coefficient Db ¼ 10�6 cm2/s [52] or remain immotile
(attached form). Both forms exchange AAI with the surrounding
medium according to the model equations. In the extracellular
environment AAI is represented by a spatially dependent continuous
concentration field and its spatiotemporal evolution is modeled by
the diffusion equation. While the diffusion coefficient of AAI is not
known, from the size of the molecule we estimated that AAI diffuses
in the liquid bacterial culture with DA¼ 10�5 cm2/s. Cells periodically
divide, resulting in two replicas that are exactly identical at the
moment of division and diverge thereafter. In both deterministic and
stochastic representations average cell cycle is 1 h (a¼ 1.93 10�4 s�1)
according to the estimate based on our experimental data.

Computational realization. All deterministic simulations were
performed with Matlab (MathWorks, Natick, Massachusetts, United
States). The stochastic model of the intracellular network was
simulated with the exact Gillespie algorithm [53] using public-domain
cell-modeling software Cellware [54,55]. To model stochastic pop-
ulation dynamics we developed a dedicated parallel software plat-
form [56] that manages dynamically growing bacterial populations
and utilizes Cellware to compute the intracellular dynamics for each
cell agent. The platform also simulates cell motion, exchange of AAI
with the medium, and diffusion of AAI in the medium. The software
was implemented in Cþþ and MPI to run on a commodity Linux
cluster. All codes used in this work are freely available on request.

Supporting Information

Table S1. Model Parameters

Found at DOI: 10.1371/journal.pcbi.0010037.st001 (121 KB DOC).

Accession Numbers

The NCBI Entrez Protein (http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db¼Protein) accession numbers for the proteins discussed in this

Figure 8. Extracellular Concentration of AAI in the Culture of the TraM-

Defective Mutant Strain K588 versus Time in the Exponential Growth

Phase

The model (solid line) is fitted to the experimental data (filled squares).
All parameters are as in Table S1, except k11, which is set to zero to
model the inability of mutated TraM to sequester TraRd.
DOI: 10.1371/journal.pcbi.0010037.g008
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paper are TraI (AAB95104), TraM (AAC28120), and TraR
(AAC28121). The NCBI Entrez Gene (http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?db¼gene) accession numbers for the genes discussed
in this paper are ophABCDE (1224221–1224225), traI (1224280), traM
(1224219), and traR (1224220).
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