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Abstract

Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures
of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-
occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla),
thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested
using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to
quantify prey distributions - areal biomass, density, and numerical abundance - we were unable to find a spatial relationship
between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by
prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics
and physical habitat also contributed significantly to characterizing predator patterns. Our results indicate that the small-
scale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms
they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had
different constraints and employed different foraging strategies – a shallow diver that makes trips of moderate distance
(kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals).
However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This
supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine
systems more generally.
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Introduction

Predators and their prey must overlap in space and time for

predators to survive [1,2]. Despite the complex behavioral

interactions observed between predators and their prey [3,4,5],

the expected coherence between predators and their prey is

commonly observed in terrestrial [6,7,8], aquatic, [9,10], and

benthic marine systems [11,12,13,14]. Yet, in marine pelagic

systems, many studies have found weak or ephemeral spatial

associations between predators and pelagic prey ([15,16,17,18] but

see [19,20,21,22,23,24,25,26,27]) and even negative relationships

[28], resulting in a large number of novel hypotheses to explain the

divergence. Often, our measures of pelagic prey distributions have

thus not helped us to understand a central issue in ecology, the

mechanisms underlying the distribution of predators in their

habitat [29].

Studies of marine predator-prey relationships most often

examine the spatial relationship between the species of interest

and the biomass or abundance of its prey spatially integrated or

averaged in some way (e.g. g/m2 or individuals/m2 over some

prescribed transect length) [30,31,32,33]. However, a ubiquitous

feature of pelagic marine systems is the spatial aggregation of

resources, or patchiness [34]. As a result, concentrations of prey

rarely occur within the habitat at the average levels we typically

describe. For example, if a 100 m long, 10 m high school of fish

with a numerical density of 100 fish per m3 was found over

a bottom depth of 100 m, various areal density estimates are made

as the integration scale changes: 100 m=10 fish m22; 1 km=1

fish m22, 10 km=0.1 fish m22. A predator, however, is able to

find one of two states, a school at a density of 100 fish m23, or

empty water. Attempts have been to deal with this kind of spatial

variability in prey primarily using approaches that identify scale-

specific relationships (e.g. [35,36]), assuming that the scales of prey

patches are consistent. If, however, patches occur over a gradient

of sizes and densities, or predators do not choose prey based on
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patch size, correlations between predator and prey remain

obscured.

In order to understand predator distributions, we must

characterize prey in a way that is relevant to the costs and

benefits for each predator species, its suitability [2]. While the

abundance or biomass of prey is one consideration, the

distribution of prey has been shown to have a strong effect on

the energetic gains and costs of foraging [37], foraging success, and

overall predator performance [38] while the spatial scales of prey

aggregation can affect the ability of a predator to detect and

remain in a prey patch [39] and prey density and its variability

determine predator consumption rate and efficiency [40,41,42].

The goal of this work was to use measures of the environment,

prey abundance, prey quality, and prey distribution to identify the

key features of prey suitability that predict the distributions of

three co-occurring predator species breeding on islands in the

southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla),

thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus

ursinus). To accomplish this goal, we combined visual surveys of

predators with concomitant fine scale prey characterization and in

situ measurements of the environment to create statistical models

designed to predict predator distributions. We then tested these

models using movement patterns obtained from tagged individual

animals from all three species. The relative importance of the prey

features identified provides insight into the foraging mechanisms

used by a shallow diver that makes trips of moderate distance

(kittiwakes), a deep diver that makes trip of short distances

(murres), and a deep diver that makes extensive trips (fur seals).

Methods

Study System
As part of a large, interdisciplinary ecosystem study known as

the Bering Sea Project [43], we examined the distribution and

behavior of three predators breeding on islands in the southeastern

Bering Sea: black-legged kittiwakes, thick-billed murres, and

northern fur seals. The eastern Bering Sea shelf is a highly

productive ecosystem [44]. St. George and St. Paul islands, part of

the Pribilof Archipelago, sit at the edge of this shelf, providing

nesting habitat for one of the largest concentrations of seabirds in

the North Pacific [45] and hosting most of the world’s breeding

population of northern fur seals. Bogoslof Island, recently re-

colonized by fur seals, lies north of the Aleutian Archipelago

adjacent to Aleutian passes and is surrounded by deep oceanic

water [46]. Populations at the Pribilof Islands and Bogoslof Island

and are undergoing different trajectories with numbers of seabirds

and fur seals declining on St. Paul Island, stable at St. George

Island, and increasing at Bogoslof Island [47,48].

On all three islands, adults of the three focal species are central

place foragers that are constrained in foraging distance and

duration by the fasting abilities of their offspring [49] which are

provisioned by their parents during July and August. These three

species, however, have very different foraging strategies and

constraints. Black-legged kittiwakes feed at or near the surface on

pelagic fish and invertebrates. They are efficient flyers that can

make relatively long trips, with both male and females delivering

multiple prey items stored in their crop to their chicks [50]. Thick-

billed murres are pursuit-diving predators that feed on a variety of

fish, zooplankton, and other invertebrate prey [51] at depths up to

200 m [52,53]. Murres have high energetic flight costs and thus

make relatively short foraging trips; adults of both sexes return to

provision their chicks with individual fish and squid brought to the

breeding site in the bill, often prey that is larger than what they

themselves eat [51]. Fur seals feed mainly on juvenile walleye

pollock (Theragra chalcogramma), squid, and vertically migrating

mesopelagic fish, diving to depths of up to 200 m to forage [54].

They supply milk to their young during periodic haul outs between

extensive feeding trips that last days and cover distances of up to

200 km from the rookeries [55]. Together, these three focal

predator species cover a wide range of central place foraging

strategies.

Approach
Data were collected from mid-July to mid-August of 2008

around the Pribilof Islands and during the same time period in

2009 around both the Pribilof Islands and the adjacent area

around Bogoslof Island. Ship-based sampling of the environment,

potential prey, and the density of birds and fur seals was conducted

in a 200 km radius around each colony along 289, 10-km long

transects that were placed in a random design stratified amongst

three topographic zones. These data were used to create

a statistical model predicting the observed predator spatial

distributions which was then tested against data collected on

habitat use by individual predators tagged at the colonies during

the same time period. Detailed methods for the ship-based

sampling, summarized here, are included in Benoit-Bird et al.

[27].

Ethics Statement
All research was conducted in accordance with the Animal Care

and Use Committees of the respective institutions of the author

responsible for those data and complied with all applicable laws.

Vertebrate prey data was collected in accordance with the

American Fisheries Society’s Guidelines for the Care and Use of

Fish in Research and the Institutional Animal Care and Use

Committee of Oregon State University (permit 3659). Fur seals,

covered by the US Marine Mammal Protection Act, were studied

under the National Oceanographic and Atmospheric Administra-

tion (NOAA) permit number 14329 and abided by the guidelines

of the Committee on Animal Care at the University of British

Columbia (permit A09-0345). Seabird cliffs on the Pribilof Islands

are part of the Alaska Maritime National Wildlife Refuge.

Seabirds were studied in a collaborative effort with Refuge staff

(permit 20570), following the United States Government Princi-

ples for the Utilization and Care off Vertebrate Animals and the

Animal Care Committee of the United States Fish and Wildlife

Service (permit 200908). Access to Bogoslof Island, part of the

National Wilderness Preservation System, was granted by the

United States Fish and Wildlife Service.

Physical and Biological Environment
Environmental data were collected using a CTD (conductivity,

temperature, depth) equipped with a fluorometer and dissolved

oxygen sensor that was profiled to 100 m, or 5 m above the

seafloor, whichever was shallower, at the beginning of each

transect. From these data, a variety of physical habitat measures

were calculated including sea surface temperature (uC), sea surface
salinity, thermocline depth (m), mean temperature above the

thermocline (uC), mean temperature below the thermocline (uC),
oxycline depth (m), minimum oxygen saturation (%), minimum

oxygen saturation depth (m), water column stratification (st/m),

stratification above the thermocline (st/m), and stratification

below the thermocline (st/m),. Biological habitat was character-

ized using vertically integrated chlorophyll concentration (mg/m2),

the chlorophyll maximum (mg/m3), and the depth of the

chlorophyll maximum (m). A tow vertically integrated to 100 m

for meso-zooplankton conducted at the beginning of each transect

was used to measure meso-zooplankton biomass (g/m2). Addi-
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tional environmental variables included range of the transect from

the nearest colony (km) and seafloor depth (m) derived from

acoustic measurements (,1000 m) or charts (.1000 m).

Prey Fields
A single, depth-targeted net trawl for nekton and macro-

zooplankton (e.g. krill) was conducted on each transect using an

8 m by 8 m opening Marinovich midwater trawl fitted with

a 3 mm cod-end mesh liner. These data were used to measure the

identity, size, weight and proximate composition of potential prey.

The median individual length for each major group (mm) and

average energy content per prey (kJ/individual) [56] were used in

the statistical model as measures of individual prey characteristics.

For taxonomic groups including squid, amphipods, vertically

migrating mesopelagic fish, and epipelagic fish (excluding pollock)

that were relatively rare and could not be enumerated with

acoustics, relative abundance across the study area was calculated

using the trawl data. Absences were used as one class while positive

counts of each taxon were grouped into quartiles of abundance for

a total of five abundance classes for each taxonomic group.

Euphausiids (Thysanoessa spp.) and fish (overwhelmingly domi-

nated by juvenile walleye pollock in their first two years of life)

were identified using frequency differencing of the acoustical

scattering data [57] as in [27]. All data not matching the ‘‘fish’’

characteristics were removed from the raw 38 kHz echogram and

all data not matching the ‘‘euphausiid’’ characteristics were

removed raw 120 kHz echogram for additional prey analyses.

Data from each frequency were then thresholded to 280 dB re

1 m21 to remove weak scattering and noise and integrated over

200 m long sections along each transect. These values were

combined with measurements of median individual length and wet

weight along with published acoustic relationships to these

measurements (pollock: [58,59]; euphausiids: [60,61]) to estimate

the average abundance (individuals/m2) and biomass (g/m2; often

referred to as ‘biomass density’ or simply ‘density’) of pollock and

euphausiids as well as the variance in each of these measures for

each transect over the full 100 m depth range and in 20 m depth

slices. Juvenile pollock (‘‘fish’’) data were grouped as a single class

as well as being apportioned to either young of the year (age-0) or

age-1 pollock using trawl data. Since only two transects contained

both age classes and both of these were overwhelmingly

dominated by a single year class, we used simple proportions

weighted by the relative length difference of the two classes to

apportion age classes.

Euphausiids and pollock were both observed to be highly

spatially aggregated so that all transects on which these species

were detected contained at least one discrete patch [27]. Myriax’s

Echoview Software, School Detection module was used to identify

aggregations of each taxon within the masked, full-resolution

echograms. Simply, this approach looks for a minimum number of

contiguous values in both the distance and depth directions above

a set threshold [62]. For euphausiids, masked 120 kHz data must

have been greater than 275 dB re 1 m21 for at least 1 m

vertically and 5 m along track as corrected for beam effects [63],

resulting in more than 95% of pixels classified as ‘‘euphausiids’’ to

be encompassed in patches. For pollock, spatial distributions were

determined to be hierarchically distributed with dense, ovoid

patches inside larger, more loosely aggregated layers [64]. As

a result, two data thresholds were utilized; a relatively low

threshold of 265 dB re 1 m21, which equated to 0.1 fish/m3 for

median sized pollock and encompassed more than 97% of all data

classified as pollock, and 259 dB re 1 m21, which equated to 0.5

fish/m3 for the same sized fish. Experimentation with this higher

threshold showed no significant change in the mean volume

scattering strength measured within each patch or the horizontal

and vertical size of each patch with thresholds between 262 and

253 dB re 1 m21 despite changes in the number of patches

detected, indicating the high contrast between these patches and

the remainder of pollock. The threshold of 259 dB was chosen to

maximize the number of transects with detected patches while

Figure 1. The distribution of juvenile walleye pollock in 2009 based on three different metrics. A. biomass density, the most commonly
used measure, B. the mean volumetric density of pollock within aggregations, a measure of local density within a patch, and C. the maximum
volumetric density of pollock per sampling transect. Map surfaces were generated using minimum curvature interpolations (N = 165).
doi:10.1371/journal.pone.0053348.g001
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detecting patches that were quantified to have ovoid (‘‘school’’-

like) rather than amoeba-like shapes using the same contiguity size

minimums used for euphausiid patches.

Prey spatial distribution characteristics were measured for each

surveyed transect on which prey were detected (Npollock = 221,

Neuphausiids = 247, Ntotal = 289). The minimum, maximum, and

median depth of pollock and euphausiids along each transect were

calculated. For aggregations of euphausiids and both aggregation

classes of pollock, the mean aggregation horizontal size, height,

area, and distance to nearest neighboring aggregation of the same

type were measured for each transect. Data within the identified

boundaries of each aggregation were then thresholded at a value

of 285 dB re 1 m21 before the data were integrated over the

patch area to provide mean volume backscattering which was

converted to density of individuals (fish/m3 or euphausiids/m3)

using echo energy integration [65]. The minimum, maximum, and

mean numerical densities within aggregations were calculated over

the upper 100 m of the water column and in 20 m vertical slices

for each transect. In addition, the average number of individuals

per aggregation and the density of aggregations along a transect

(patches/km2) were estimated. The biomass (g/m2) and numerical

abundance (fish/m2) of pollock in dense aggregations as well as the

proportion of these measures relative to all pollock were estimated

along with the density of these dense aggregations on each transect

(patches/km2). The minimum, maximum, and median depth of

these dense patches was then measured. The relationships between

the biomass and numerical abundance of prey to patch

characteristics were explored using regression analysis.

Figure 2. The observed versus expected density of prey aggregations on each transect. A. Shows dense pollock aggregations and B.
euphausiid aggregations. Only transects on which these groups were detected were included. The expected density of aggregations is the total
biomass for each transect divided by the median biomass per aggregation observed across all transects. Note that in panel A there are 23 data points
to the left of the regression line on the x axis but because of overlapping values, it is not possible to see each point.
doi:10.1371/journal.pone.0053348.g002
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Explaining Observed Predator Distributions
Visual surveys for birds and mammals were conducted by

a single observer 6 m above the waterline from the starboard side

of the vessel’s wheelhouse over the entire length of each transect.

Surveys employed a strip transect technique consistent with

historic surveys in the North Pacific and Bering Seas [66,67,68],

providing densities for three focal predator species on the surface

of the water out to 300 m from one side of the vessel. These

observations were used as the dependent measure in multiple-

regression models incorporating measured habitat and prey

descriptors. The goal of this was not just to create a statistical

model that matched the observations but rather to use these data

to parameterize a predictive model that could be used to identify

patterns in relationships identified as biologically relevant, and

subsequently test this model with novel data. Although more

complex statistical approaches like generalized additive models or

environmental envelopes might improve the statistical fit of the

observations, relationships among variables are difficult to in-

terpret using these approaches and our fundamental understand-

ing of the mechanisms underlying observed relationships is often

obscured by the increased complexity [29].

Best subsets multiple linear regression model selections using

Akaike’s information criteria (AICC) for inclusion of explanatory

variables were performed on the 173 transects (of 289) for which

visual observations were available. Before analysis, each variable

was assessed for normality and homoscedasticity, transformed as

appropriate, and outliers (Cook’s D.0.025) trimmed. A correla-

tion matrix showed that none of the transformed explanatory

variables demonstrated correlation values greater than 0.75,

suggesting limited collinearity [69]. To further minimize the

effects of collinearity, explanatory variables with tolerance values

of less than 0.10 were not allowed in the final model. Any variables

with low tolerances were tested independently to determine which

were the most significant within the model and only the strongest

variable was retained in the final model. The effect of sampling

year on the fit of the model to the data was tested by running the

full model for each predator separately for each year. An F statistic

was then used to test for changes in R2 values. To examine the

effect of colony on the fit of the model to the data, transects were

broken up by their location into three, non-independent groups,

each based on a circle with a radius of 100 km centered on each

island, an approximation of the foraging arena for each colony/

rookery. An F statistic was used to test for changes in the resulting

R2 values.

In addition to model selection employing all available explan-

atory variables, model selection was run on subsets of these

variables to determine the relative contribution of different

measure types including all variables that describe the environ-

ment (17), all variables that describe individual prey characteristics

(12), all variables that describe prey abundance or biomass (50),

and all variables that describe the spatial distribution of prey (48

e.g. depth, patch size, prey density within a patch). In order to test

the hypothesis about what types of prey characteristics were most

important in determining predator distributions, all variables that

have previously been hypothesized to affect these predators and

the new spatial distribution parameters suggested here were

included in the full model. While this meant a large number of

variables (127), it provided the greatest possible fit between the

model and the data which allowed decrements in fit in the subsets

model to be easily observed, testing the hypothesis about prey

characteristics. The four subsets models were each run in-

dependently and then each prey subset type was run with the

environmental descriptors to facilitate comparisons with previously

published work.

The full models for each predator were used to create predator

density predictions for each species in each sampling year. In both

years, approximately 60% of transects had visual survey data that

were used to generate the statistical model. The remaining 40% of

transects did not include visual surveys because they were surveyed

at night (85%) or when fog or weather limited visibility, yet these

transects had prey and oceanographic data. Therefore, all were

used to create predicted predator distributions.

Assessing Predicted Predator Distributions
The predator distributions predicted by the best full subsets

models were tested against habitat used by individually tracked

Table 1. Summary of best subsets multiple regression models for densities each of three focal predators visually surveyed in the
Southeastern Bering Sea in 2008 and 2009.

Northern Fur Seals b Thick-Billed Murres b Black-Legged Kittiwakes b

Pollock Maximum Depth (m) + 0.46 Pollock Minimum Depth (m) – 0.43 Pollock Aggregation Height (m) + 0.42

Euphausiid Length (mm) + 0.41 Euphausiid Energy/Individual (kJ/indiv) + 0.42 Pollock Aggregation Density 5–20 m
(indiv/m3)

+ 0.39

Bottom Depth (m) + 0.37 Euphausiid Mean Patch Density
(indiv/m3)

+ 0.42 Temperature Below Thermocline (uC) – 0.37

Oxycline Depth (m) + 0.30 Euphausiid Maximum Density (indiv/m3) + 0.39 Pollock Maximum Depth (m) – 0.37

Euphausiid Maximum Density
(indiv/m3)

+ 0.26 Pollock Aggregation Density 5–20 m
(indiv/m3)

+ 0.26 Pollock Aggregation Minimum
Depth (m)

– 0.36

Pollock Aggregation Density 5–20 m
(indiv/m3)

+ 0.17 Sea Surface Temperature (uC) + 0.11 Euphausiid Energy/Individual (kJ/indiv) + 0.27

Pollock Aggregation Spacing (m) – 0.15 Oxycline Depth (m) – 0.20

Stratification Above Thermocline
(st/m)

– 0.11 Squid Abundance (Classified) + 0.16

Sea Surface Salinity + 0.13

Adjusted R2 0.73 0.77 0.89

Explanatory variables are listed in descending order of importance for each species’ model. The slope of the relationship for each explanatory variable is shown along
with its regression coefficient. The R2 for each model adjusted for the number of variables in the model is also shown.
doi:10.1371/journal.pone.0053348.t001
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predators of all three species. Individual, breeding adults from

each of the three focal species on each colony were fitted with

archival tags that recorded both their position and some measure

of activity indicative of foraging behavior for the species. Full

methods for each species can be found elsewhere but key details

are summarized here.

In 2009, lactating female seals were tagged at St. Paul Island

(N= 16) and Bogoslof Island (N=21) using archival GPS tags that

carried tri-axial accelerometers and magnetometers and a depth

sensor [70]. Using the 1-s resolution reconstructed locations

between known GPS fixes, areas of fur seal retention were

identified using patterns in the tortuosity, a measure of the

linearity of an animal’s swimming path. Wherever a 10-point

running measure of tortuosity of an individual track was in the

upper quartile of all measured tortuosity values for at least five

points in a row, the location was identified as a foraging patch. If

these patches were less than 100 m from a neighboring patch, they

were grouped together as a foraging area. Each area was then

weighted by the amount of time spent within it.

During 2009, 10 thick-billed murres from St. George Island and

14 from Bogoslof Island were fitted with time-depth recorders and

GPS loggers [71]. Tagged birds were rearing chicks 5–15 days old.

Tags recorded position and depth at 1 to 2 second intervals. The

locations of dives greater than 7 m, the minimum consistently

recorded depth, were identified as potential foraging locations.

Between 13 and 15 adult black-legged kittiwakes raising chicks

were tagged at each colony in each year: both Pribilof Islands in

2008 and the Pribilof Islands and Bogoslof Island in 2009 [71].

Each individual was fitted with GPS and activity loggers that

provided location and wetness at 1–120 s intervals over 2–15 day

periods. Following Paredes et al [71], presumed foraging events

were identified whenever the tag was both wet and dry during a 10

minute interval.

For each predator species, during the periods that overlapped

with the ship-based sampling effort, locations where tagged animal

behavior was consistent with foraging were used to generate

horizontal habitat-use kernels for all tracked individuals from each

island. These adaptive kernels were optimized by least-squares

cross validation [72] using analysis grid cells of 100 m and

smoothed at a scale of 20 km, double the length of the survey

transects. For each species on each island, the 95% utilization

contour was used to define the foraging arena, the 75% kernel

higher foraging effort areas, and the 50% kernels the core foraging

area. These kernels were then combined for comparison to model

predictions by choosing the highest use descriptor kernel (95%, 75,

or 50%) for each species at the location of the midpoint of each

transect from the survey.

Predator densities predicted by the models were binned into

four classes – one class for no predators, and three classes based on

the distribution of the positive density values delineated by the 5th

percentile, 25th percentile, and 50th percentile. These classes were

chosen to approximate the distributions described for tagged

animals using the 95%, 75%, and 50% kernel density distribu-

tions. The predicted classification from the statistical model and

the kernel density classifications from the tagged were compared

for each predator using Wilcoxon Signed Ranks tests. A chi-

squared test was used to examine the distribution of the difference

between the model prediction and the density distribution kernels

of the tagged animals of each species. Distance from the nearest

colony/rookery was grouped by 25 km increments into five classes

(% of total transects): ,25 km (9%), 25–50 km (16%), 50–75 km

(10%), 75–100 km (9%), 100–150 km (28%), and .150 km

(28%). The effect of these distance classes on the difference

between the model predictions and the kernels of the tagged

animals was examined with contingency analysis.

To determine if the fit between the modeled predator

distributions and the distributions of tagged animals was different

across species, a Kruskal-Wallis test was used to assess the effect of

Figure 3. Predicted and observed predator densities. The
observed density of each predator versus the density predicted by
the full multiple regression model for each species.
doi:10.1371/journal.pone.0053348.g003
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species on the difference between model and kernel categories.

Only data over the distance class range for each species that was

determined not to be significantly biased was included in the

analysis.

Results

The spatial distribution of prey varies dramatically depending

on the metric utilized to characterize the prey field, illustrated for

pollock in Figure 1. Despite the fact that each of these metrics has

been proposed as a simple way to characterize the prey field, these

metrics showed little relationship to each other. There were no

significant relationships between the biomass or abundance of prey

and the density of prey in a patch, patch size measures, or patch

spacing (p..0.05 for all comparisons), making it impossible to

convert from one metric to another. There was, however,

a significant positive relationship between the biomass of pollock

on a transect, quantified as the number of aggregations expected,

and the detection of aggregations of pollock (Figure 2a; R2 = 0.71,

p,0.001). However, there was a threshold biomass value above

which pollock began to form aggregations; below this threshold,

only scattered individual pollock were identified. This aggregation

threshold was roughly 10 times the median biomass observed for

a single aggregation of pollock or approximately 100 times the

biomass of the minimum pollock aggregation (quantified as the 5th

percentile of all observed aggregations, not shown). In contrast, no

pattern between biomass and density of aggregations was observed

for euphausiids (Figure 2b).

All of the habitat and prey metrics were used in multiple

regression modeling to explain the distribution of the three focal

predator species observed using at-sea observations. The best-fit

models (summarized in Table 1 with results shown in Figure 3)

show that in only one species does any measure of prey abundance

play a role in predicting predator distributions. For all species, the

most important variables were measures of prey density and

vertical distribution. For each species, a measure of euphausiid size

or quality and measures of environmental structure are also

important. Using the variables shown for each species to predict

the distributions of predators separately for each year showed no

significant change in R2 values for any species (F-tests, df = 1,

p..0.05 for all comparisons). Splitting the data into three, non-

independent circles with radii of 100 km centered on each island,

an approximation of the foraging arena for each colony/rookery,

there was no significant change in R2 values among circles (F-tests,

df = 2, p..0.05 for all comparisons).

To test for the effects of the categories of independent variables

used, models were run on subsets of input variables in four

different classes (Table 2). Comparison of results across variable

types allows testing of hypotheses about predator foraging

strategies. For all three species, descriptions of prey patches

dominate in predicting predator distributions.

The predator model categories (Figure 4a) were significantly

higher than the predator tracking kernel categories (Figure 4b) for

all three species (Wilcoxon Signed Ranks tests fur seals: Z= 2.04,

p,0.05; murres: Z= 6.17, p,0.01; kittiwakes: Z= 6.21, p,0.01;

Figure 4c); the habitat use indicated by kernels was lower than

expected overall from the model predictions. Comparing the

predicted to observed predator categories by looking at the

difference between the two showed that the distribution of values

was significantly different from random (one-sample chi-squared

tests fur seals: x2 = 128.9, df = 4, p,0.001: murres: x 2 = 113.9,

df = 4, p,0.001; kittiwakes: x 2 = 110.5, df = 4, p,0.001;

Figure 4c). For all three species, there were significantly more

values where the two measures matched than expected, and

significantly fewer than expected values offset by two steps or three

steps than expected.

Differences between the model and the tagged predator kernels

were largely explained by distance from the nearest colony.

Contingency table analyses showed that at distances between 25

and 50 km from the nearest colony, tagged fur seals foraged more

than expected based on model predictions while at distances

greater than 150 km from the nearest colony, tagged fur seals

foraged less than expected for the observed conditions; at distances

less than 25 km from the nearest colony, tagged murres foraged

more than expected based on the model predictions while at

distances greater than 75 km from the nearest colony, tagged

murres foraged less than predicted by the conditions; at distances

less than 25 km from the nearest colony, tagged kittiwakes foraged

more than expected from the model while at distances greater than

100 km from the nearest colony, tagged kittiwakes foraged less

than expected for the conditions. When the Wilcoxon Signed

Rank test was repeated for only the transects that did not show

a significant bias (50–150 km for seals, 25–75 km for murres, and

25–100 km from the colonies for kittiwakes), significant differences

were no longer observed between the kernels and the model (fur

Table 2. Summary of adjusted R2 for multiple regression models predicting predator densities.

Environment Prey Predator

Physical & Biological
Individual
characters Abundance Patches Fur Seals Murres Kittiwakes

X X X X 0.73 0.77 0.89

X 0.11 0.13 0.02

X 0.03 0.01 0.06

X 0.02 0.00 0.02

X 0.65 0.71 0.80

X X 0.13 0.13 0.07

X X 0.18 0.14 0.12

X X 0.72 0.77 0.82

The results of the full regression model including all independent variables are shown in the first row. In addition to the full regression models, models were run using
subsets of explanatory variables separated into four classes. Each class of variables was run separately, all prey classes were run together, and each prey class was run in
combination with environmental variables.
doi:10.1371/journal.pone.0053348.t002
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seals: Z= 0.62, p= 0.57; murres: Z=20.44, p= 0.72; kittiwakes:

Z= 1.01, p = 0.64).

For all three species, the availability of ship-based predator

survey data had no significant effect on the agreement between the

model and the kernels (ANOVA; fur seals: F= 2.66; df = 1,289;

p = 0.41; b=0.37; murres: ANOVA: F= 2.56; df = 1,289;

p.0= 0.35; b=0.35; kittiwakes: ANOVA: F= 1.72; df = 1,289;

p = 0.27; b=0.33). There was no effect of species on the difference

between model and kernel categories when each species was tested

using only non-biased distance class ranges (Kruskal-Wallis x
2 = 2.01, df = 2, p.0.05).

Discussion

We observed strong spatial coherence of three predators with

their prey resources despite different foraging strategies and life

history constraints. Prey variables alone explained 66–81% of the

variance in predator densities observed at-sea (Figure 3, Table 1).

Coherence between predators and their prey is commonly

observed in terrestrial [6,73], aquatic [9,74], and benthic marine

systems [11] but less commonly in pelagic marine systems

[21,22,23,24,25,26]. In our study, we also failed to predict at-sea

predator densities when we characterized prey in terms of areal

biomass density or numerical abundance (the approaches most

commonly taken in previous efforts); as a class, these prey variables

predicted an insignificant fraction of the variance in predator

distributions even when variance in these measures was included.

The measures most commonly used to quantify prey distributions

did not reflect how these predators perceived the quality of their

food supply.

For all three predators, the variables that were most important

in predicting observed densities were descriptions of the distribu-

tion of prey different than those traditionally used. However,

physical variables explained large proportions of the variability in

the fur seal and kittiwake full models and a small proportion of the

variability in the murre model. When modeled separately,

however, physical variables predicted only 7–13% of the observed

predator distributions. This indicates that physical habitat

variables were somehow modulating the prey distributional

characteristics rather than serving as indirect proxies for prey or

as direct cues to the predators. Nearly all of the physical habitat

variables that were identified as important in the full models were

those related to vertical water column structure rather than single

point measurements such as sea surface temperature. It is likely

that factors such as the depth of the oxycline and the temperature

below the thermocline interact to affect the vertical distribution of

prey. Vertical prey structure is likely critical to the foraging success

of these air-breathing predators [75,76,77] as it controls whether

a prey item is accessible and at what cost; the vertical distribution

of prey was identified as an important variable in the models for all

three species of predators, as shown for murres in the study using

a very different approach [27] and for breath-hold predators in

other systems [76,77]. Of note for our study is that the upper

meter of the water column utilized by kittiwakes was not directly

sampled yet prey variables measured deeper in the water column

strongly predicted kittiwake distribution, suggesting a relationship

between surface and subsurface prey features.

Diving limits may also influence how a predator exploits prey in

the horizontal dimension. Because diving time is limited, the

horizontal distance a predator can cover in a single dive is limited.

Inter-prey spacing, measured here as local prey density within

a patch, determines how many prey an air-breathing predator can

encounter within a foraging dive. Local prey density has been

shown to directly impact both immediate foraging efficiency and

long-term survival in predators [40,41] but the physical constraints

of diving likely increase the importance of the relationships

between local prey density and foraging efficiency. The effect of

local prey density or spacing appeared to play a role at a larger

scale as well in foraging fur seals. Patches of juvenile pollock, the

primary food for fur seals, were quite small, with an average

diameter of approximately 10 m, and these pollock patches were

often clustered. Fur seals were found more often when inter-patch

spacing was small, approaching the size of the patches themselves

(5–10 m). This might have allowed fur seals to more efficiently

access more than one pollock patch in a single dive.

Despite the importance of prey spacing for all three predators,

none of the horizontal patch scale measurements were important

for predicting habitat use by the predators. In other words,

predators were not selecting prey based on horizontal patch size,

despite a large range of patch sizes present in the habitat: 3–50 m

for pollock and 5–10 km for euphausiids. Larger patches are

predicted to be more conspicuous [78] and to increase a predator’s

rate of prey acquisition [39]. However, because of the long transit

from the nest or brood site, the importance of the selection of

larger patches is greatly reduced in centrally foraging species; from

an optimality perspective, ‘‘while feeding young in the nest,

parents should exhibit nearly the same choice of patches whether

they be large or small’’ [79], consistent with the observations of all

three predators in our analysis. A concurrent study of the selection

of individual patches by diving murres similarly showed no effect

of euphausiid patch size on prey selection [27]. A direct

implication of this result is that analyses focusing on scale-specific

relationships between marine predators and their prey can miss

the coherence between them, particularly among predators and

euphausiid patches, because such patches can vary by two orders

of magnitude in horizontal extent.

The spatial coherence observed between predators and their

prey in our surveys was confirmed by comparing the habitat use of

tagged individual predators from each colony with the distribu-

tions predicted using statistical models of the at-sea surveys. For all

three predators, there was a strong fit between the models and the

foraging kernels of the predators. In addition to relying on statistics

that support this, it is helpful to examine specific sampling

locations more closely. In particular, in evaluating predator density

predictions, it is useful to look at transects where independent

variables were measured but visual census data of predator

densities were not available because of weather or darkness. For

example, a hot spot in kittiwake foraging was predicted to the

southwest of the Pribilof Islands, just off the shelf edge based on

habitat and prey variables measured along more than 20 transects,

half of which did not have visual survey data available. The

Figure 4. Predicted and observed predator habitat use in 2009. A. The predicted density classes for each predator species using the full
multiple-regression model based on transect data and B. the kernel densities for tagged individual predators at each sampled transect. C. The
difference between the model category and the kernel category. Positive, cool colored values indicate that fewer predators used an area than
predicted by the model while negative, warm colored values indicate the opposite. On each plot, the center of each transect that was visually
surveyed for birds and mammals and thus was used to create the regression model is shown with a +. The center of each transect for which
environmental and prey data were available but could not be used to create the regression model is shown by o. Map surfaces were generated using
minimum curvature interpolation that did not allow values plotted at sampled points to differ from their actual values.
doi:10.1371/journal.pone.0053348.g004
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predicted hotspot matched the habitat used by tagged kittiwakes

quite well – in fact the center of the hotspot used by kittiwakes was

predicted by five transects – all of which lacked visual survey data.

These transects without visual survey data were not included when

the statistical model was generated, yet they did equally well in

predicting the foraging kernels of each predator species.

Our results suggest a consistency in the fundamental relation-

ships between predator distributions and within-patch measures of

their prey base, regardless of temporal or spatial scales. For

example, the foraging arena available (#100 km) to central place

foragers at each island showed no significant effect on the goodness

of the models’ fit to the data for each predator species, despite

there being known differences in the composition of the animals’

diets at each island [47,80]. Similarly, year was not included as

a factor in the model, yet the relationship between the predictor

variables and the distribution predators was not significantly

different between years. Finally, despite the fact that nighttime

represents only about six to eight hours of each day in the Bering

Sea during our study period, this is an important time period for

predators in this system [27]. Our sampling, particularly in 2009,

was designed to reflect that, with the result that about 40% of all

transects did not have predator data available. Yet, prey and

environmental data from these nighttime transects did just as well

in predicting predators. In both years, during both day and night,

and in all island foraging arenas, individual predators of each

species always used the same ‘‘rules’’ to choose their foraging

habitat, indicating that there are specific variables that make prey

‘‘suitable’’ for them.

We show that the fine-scale spatial distribution of prey is critical

to how predators perceive the suitability of their food supply and

the mechanisms they use to exploit it, regardless of time of day,

sampling year, or source colony. These distributional character-

istics had limited relationships with transect-averaged (areal) prey

biomass density or prey abundance. For example, there was no

significant relationship between prey areal biomass density or prey

abundance on a transect and the local density of prey within

a patch for either pollock or squid. Only the number of pollock

patches detected had a clear relationship to a measure of

integrated biomass (Figure 2a), showing a threshold effect for

patch formation that is roughly ten times the biomass of a median

pollock patch or 100 times the biomass of the minimum biomass of

a pollock patch. However, the number of pollock patches per

transect was not important in the prediction of any predator. The

relationship between pollock patch numbers and integrated

biomass could be used to relate existing data sets of juvenile

pollock biomass to measures of the degree of pollock patchiness

though not the local density of those patches, which we show is the

critical measurement for predicting predator habitat use.

There was a strong fit between the model predictions and the

habitat used by tagged predators (Figure 3, Table 1), however, the

models tended to over-predict, on average, the number of

predators that should use a given area. The models predicting

observed predator distributions were based on all individuals of

a species whereas the tagging data used to test these models

included only breeding individuals for birds and only breeding

females for fur seals. It is not surprising, then, that the survey data

for predator densities and thus models based on the density of all

predators consistently over-predicted the habitat use by tagged

animals. The over-prediction of predators from the statistical

models, however, was not uniform over the study area, an

indication of the location specific costs and benefits for predators

when they are functioning as central place foragers. The effect of

colony location on the relative value of habitat was clear

(Figure 4c). Even modestly good habitat, as predicated by our

model, was used heavily if it was in very close proximity to an

island (fur seals:,50 km, murres and kittiwakes: ,25 km). At mid

ranges (fur seals: 50–150 km, murres: 25–75 km, kittiwakes: 25–

100 km) habitat was used as predicted. Only the habit character-

ized by the model as the very best was utilized by these predators

as range from the island increased further. To model habitat use

by these central place foragers, a distance from island weighting

function must be applied for each species. For all three species, this

function was different for Bogoslof Island than for each of the

Pribilof Islands, with predators feeding exclusively close to

Bogoslof Island while animals at the Pribilofs covered more

extensive ranges. This may be due to differences in inter- and

inter-specific competition as a function of colony size [81,82] or

the proximity of each island to oceanic habitat [83].

We conclude that when prey are distributed in discrete

aggregations, as both juvenile walleye pollock and euphausiids

were in this system, analysis needs to be done on the patch level

rather than on an arbitrarily defined grid in order to observe

strong coherence between predators and their prey [19,21,24].

This highlights the importance of quantifying prey suitability

[sensu 2], a measure that is defined from the predator’s point of

view rather than the researcher’s, when looking for predator-prey

relationships [19,24,76]. Our results, coupled with predictions

from foraging theory, suggest that prey distributional character-

istics are the causal, driving forces for the distributions of northern

fur seals, thick-billed murres, and black-legged kittiwakes.

Descriptions of direct relationships, rather than proxies, allows

the relationships we observed between specific predators and prey

to be more easily generalized to other geographic areas and other

predators. Further, at least over the range of values measured here,

these models can be employed in a dynamic, predictive capacity in

a changing environment [29]. This is critical in places such as the

Bering Sea where the biology of the system is rapidly showing

effects of climate change [84].

The lack of expected coherence between predators and prey in

marine systems has generated a number of new hypotheses to

explain observed mismatches [18,85] and a general belief that

‘‘traditional foraging models do not adequately describe resource

acquisition in marine environments’’ [15]. For example, Fau-

chauld [18] suggested that behaviorally generated spatial patterns

such as schooling of prey and local enhancement of predators

account for the mismatch, and thus, overlap between predators

and prey should not be expected. Here, we show that in-

corporating spatial aggregation into the description of a prey field

can reveal overlap between predators and prey that could not

when using averaged prey concentrations, areal biomass densities,

or the variance in these averaged measures. The consistent

importance of prey spatial distribution to the habitat use of three

co-occurring predator species with different constraints indicates

the importance of spatial aggregations in determining the foraging

of predators in the southeastern Bering Sea. Coupled with

previous work from other high latitude systems [86] and subt-

ropical ecosystems [87], our results indicate that predator-prey

relationships in pelagic marine ecosystems may generally be

regulated by patchiness.
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